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Robustness of a relaxation oscillator
Tryphon T. Georgiou1 and Malcolm C. Smith2

Abstract

For a relaxation oscillator which consists of a relay-hysteresis in feedback with negative integral action we prove
that the oscillatory behaviour is robust to perturbations in the dynamical component of the feedback loop which are
sufficiently small in a gap sense.
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Dedication

George Zames was a mentor and a friend. In our hearts and minds he will always be remembered
with warmth and admiration for his generous personality and leadership, and his many contributions
to the foundations of modern robust control. To his memory we dedicate this paper.

I. Introduction

A CENTRAL THEME in George Zames’ investigations was to quantify the role of feedback in
combating modelling uncertainty. To this end, in his joint work with Ahmed K. El-Sakkary [34],

he set the goal of seeking in full generality a “description of the tolerable uncertainties.” This work
gave rise to a suitable metric topology having the desired property that feedback stability is maintained
in a small neighbourhood of a nominally stable feedback system. The metric used is known as the gap
metric.

To date, this paradigm has been studied for both linear and nonlinear systems in the neighbourhood
of a fixed operating condition (see [5–11, 14, 23, 26, 27] and the references therein). In the present
work we seek to extend this paradigm to a new situation—a nonlinear feedback oscillator. Such
systems are not globally stable in an input-output sense. Moreover, the closeness between responses
of such systems is not conveniently assessed with the usual norm-based measures. Nevertheless, with
appropriate modifications, we are able to show that the basic ideas of the paradigm generalize to this
new context.

Nonlinear oscillations are encountered in a large variety of physical phenomena from chemical re-
actions and interacting populations [21, pp. 154, 180], to circadian processes [29, pp. 169, 173], to
neurosciences [3, p. 41], and to the dynamics of Cepheid variables in Astrophysics [18, p. 106]. Al-
though the phenomenon of limit cycle oscillation appears ubiquitous, and therefore it must be fairly
robust, there is little known about robustness of the respective mathematical models. In fact, the
extensive mathematical literature on relaxation oscillators focuses on conditions for limit cycles to
exist in a given system, on entrainment by external signals, and on the effects of parametric or state-
equation uncertainty in fixed-order models (see [1,2,12,13,15,16,19,20,25] and the references therein).
In contrast the gap approach to uncertainty allows for changes in the dynamic order of the system
including the possibility of infinite-dimensional elements such as time-delays.

In our analysis we focus on a common type of oscillator, sometimes called a relaxation oscillator,
where negative integral action drives a bistable system via a feedback interconnection. The bistable
element in the feedback path is in general a dynamic hysteresis-type of nonlinearity. When the element
is fixed in either of its two states, there is a build-up by the integral action in a direction which forces
it into the other state, and so on. The most widely referenced example in the engineering literature is
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the van der Pol oscillator (see [15, p. 288], [12]). This paper considers the simple relaxation oscillator
of Figure 1 where the hysteresis is an ideal relay with infinitely fast transition between the two states,
while the dynamical component is a simple integrator. However, the authors believe that the approach
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Fig. 1. Relay-relaxation oscillator

of the paper is amenable to generalization to other nonlinear feedback oscillators.
The paper is structured as follows. Section II describes the mathematical framework for analyzing

the relaxation oscillator and establishes well-posedness. Section III discusses a notion of distance
between oscillatory signals. Section IV presents some background theory and derives the main result
of the paper (Theorem 1) which gives a bound on the amount of modelling uncertainty, measured in
the gap metric, which guarantees that oscillatory behaviour persists for the uncertain system. Section
V considers a specific class of perturbations of the negative integrator in the relay oscillator and gives
robustness bounds by direct calculations and by application of Theorem 1.

II. Feedback systems with relay-hysteresis

A relay-hysteresis H(·) is defined for a continuous input y(t) for which y(0) = 0 (see e.g., [24, p.
66]). The output u(t) takes values from the set {−1, +1} and can be determined from:

(i) u(0) = 1.
(ii) u(t) is +1 when y(t) ≥ +1 and −1 when y(t) ≤ −1.
(iii) Suppose y(t0) > −1 and u(t0) = +1 for some t0 ≥ 0. Then u(t) = +1 on any interval [t0, t1)

for which y(t) > −1.
(iv) Suppose y(t0) < +1 and u(t0) = −1 for some t0 ≥ 0. Then u(t) = −1 on any interval [t0, t1)

for which y(t) < +1.

Condition (i) is due to the inherent “memory” of the system which requires that the “state” u(·) is
specified at the initial time t = 0.

The analysis of feedback systems with relay elements requires care due to the discontinuous nature
of the outputs of such elements. To establish well-posedness of the nominal and perturbed feedback
loops, i.e. existence and uniqueness of solution in the presence of a suitable class of external disturbance
signals, the classical approach of using Banach’s contraction mapping theorem [4, 28, 30–33] is not
applicable. On the other hand, providing arbitrarily fast switching can be avoided, existence and
uniqueness of solution can follow in a straightforward way by integrating the dynamic element of the
feedback loop over successive intervals where the output of the relay-hysteresis element is constant.

If it is known a priori that the input to the hysteresis element is continuous on [0,∞) then there
can be no finite limit point of switching times. (This can be seen by assuming to the contrary and
observing a contradiction to the input being continuous at the limit point, or, by applying Proposition
3 with G = 0.) However, this approach is not available when the input is constructed successively over
intervals which may become arbitrarily small. To deal with this problem we will consider dynamical
elements of the nominal and perturbed feedback loops whose outputs have a Lipschitz property, and
thereby establish a lower bound on the time between switches of the relay.
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A. Choice of Signal Spaces and Systems

Let L∞[0,∞) denote the Lebesgue space with the usual sup norm, and C[0,∞) its subspace of
continuous functions. Let

Lip[0,∞) = {y(t), t ∈ [0,∞) : y(0) = 0, and satisfies a Lipschitz condition

CT = sup{|y(s) − y(t)|
|s − t| : s �= t, and s, t ∈ [0, T )} < ∞, for all 0 < T < ∞}.

The Lipschitz constant CT may depend on y and the length T of the interval, but is finite. We now
define the following input and output spaces:

U = L∞[0,∞),

Y = {y(t) ∈ C[0,∞) : y(0) = 0}.
The choice of U and Y is dictated by the fact that the output of the relay-hysteresis is discontinuous,
while the input is required to be continuous.

We consider linear dynamical systems defined by an integral operator

G : u(t) �→ y(t) =

∫ t

0

g(t − τ)u(τ)dτ,

where u(t) ∈ U and the kernel g(t) is piecewise Lipschitz, i.e., for any T > 0 there are finitely many
intervals [0, τ1), . . ., [τm, T ) such that |g(s)− g(t)| < C|s− t| where s, t belong to the same subinterval
and C is a constant which may depend on T . The class of such systems will be designated by G. We
believe that the theory presented in this paper extends to a much wider class which includes nonlinear
time-varying systems as well.

Proposition 1: The range of G ∈ G is a linear submanifold of Lip[0,∞).

Proof: Let u ∈ L∞[0,∞). The kernel g is measurable, and so is the product u(τ)g(t− τ) on any
finite interval. Let T > 0 and take t, t + δ in [0, T ). Then

|y(t + δ) − y(t)| =

∣∣∣∣
∫ t+δ

0

u(τ)g(t + δ − τ)dτ −
∫ t

0

u(τ)g(t − τ)dτ

∣∣∣∣
=

∣∣∣∣
∫ t

0

u(τ) (g(t + δ − τ) − g(t − τ)) dτ +

∫ t+δ

t

u(τ)g(t + δ − τ)dτ

∣∣∣∣
≤ ‖u‖∞

(∫ t

0

|g(t + δ − τ) − g(t − τ)| dτ +

∫ t+δ

t

|g(t + δ − τ)|dτ

)
.

Clearly ∫ t+δ

t

|g(t + δ − τ)|dτ ≤ δ sup
τ∈[0,T ]

|g(τ)|.

To bound the first integral let [0, τ1), [τ1, τ2), . . ., [τm, T ) denote intervals where g is Lipschitz con-
tinuous, and assume that C is an upper bound on the Lipschitz constants in all such subintervals.
Then, ∫ t

0

|g(t + δ − τ) − g(t− τ)| dτ ≤ δCT + 2δm · sup
τ∈[0,T ]

|g(τ)|.

This is due to the fact that t ≤ T and either |g(t + δ − τ) − g(t − τ)| ≤ Cδ, or, in at most m intervals
of length δ, |g(t + δ − τ) − g(t − τ)| ≤ 2 supτ∈[0,T ] |g(τ)|. We conclude that

|y(t + δ) − y(t)| ≤ δC1
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where the constant C1 depends on T . That y(0) = 0 follows by continuity of the integral since
g(t − τ)u(τ) is bounded near 0.

B. Well-posedness of relay feedback systems
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Fig. 2. Relay feedback system with external disturbances

We consider the relay feedback system of Figure 2 where external disturbances are added at each
node. This feedback system will be denoted by [G,H]. We begin by considering the case of the
nominal oscillator where G is a negative integrator. In this case

y1(t) =

∫ t

0

(H (y0 − y1) (τ) − u0(τ)) dτ, (1)

with y0 ∈ Y , and u0 ∈ U . The algebraic equations:

y2 = y0 − y1, (2)

u2 = H(y0 − y1), (3)

u1 = u0 − u2, (4)

determine the remaining variables y2, u2, u1 in terms of y1 and the external disturbances y0, u0.
Proposition 2: For any u0 ∈ U and y0 ∈ Y , (1) has a unique solution y1 ∈ Y . The remaining signals in

the feedback loop satisfy: u1, u2 ∈ U and y2 ∈ Y .

Proof: We first establish existence of solution. Define t1 > 0 to be the smallest t for which
ρ1(t) := y0(t) −

∫ t

0
(1 − u0(τ))dτ = −1. If ρ1(t) > −1 for all t ≥ 0 we set t1 = ∞. In either

case we observe that H (ρ1) (t) = +1 on [0, t1) and hence y1(t) :=
∫ t

0
(1 − u0(τ))dτ satisfies (1).

This leads to a solution of the feedback equations by defining y2, u2, u1 from (2), (3), and (4). If
t1 = ∞, no further construction is required, so we assume that t1 < ∞. Now define t2 > t1 to be
the smallest t for which ρ2(t) := y0(t) − y1(t1) −

∫ t

t1
(−1 − u0(τ))dτ = 1. Since H (ρ2) (t) = −1 on

[t1, t2), y1(t) = y1(t1) +
∫ t

t1
(−1 − u0(τ))dτ satisfies (1), leading to a solution of the feedback equations

on [0, t2). In a similar fashion we can extend the solution to an interval [0, tk) successively for tk > tk−1

etc. To complete the proof we need to show that tk → ∞ as k → ∞. Assume to the contrary that
tf := limk→∞ tk < ∞. By definition of y1(t),

|y1(tk) − y1(tk−1)| ≤ (1 + ‖u0‖∞)(tk − tk−1),

for all k. Since y0(t) is continuous at tf , then |y0(tk) − y0(tf)| ≤ 1/2 for k sufficiently large. Thus

2 = |ρk(tk) − ρk−1(tk−1)| = |y0(tk) − y1(tk) − y0(tk−1) + y1(tk−1)|
≤ |y0(tk) − y0(tk−1)| + |y1(tk) − y1(tk−1)|
≤ 1 + (1 + ‖u0‖∞)(tk − tk−1)
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for k sufficiently large, which gives a contradiction.
We now turn to the question of uniqueness of solution. Assume that there exists a solution y1 ∈ Y

of equation (1). By continuity of y0(t), y1(t), there exists an ε > 0 so that y0(t) − y1(t) > −1 for

all t ∈ [0, ε). Thus, (1) implies that y1(t) =
∫ t

0
(1 − u0(τ))dτ on [0, ε), which is the same solution as

obtained in the existence part. The solution continues to agree with that of the existence part on
[0, t1), and then successively on subsequent intervals by similar reasoning.

For the general case where G ∈ G the feedback equations become

y1(t) =

∫ t

0

g(t − τ) (u0(τ) − H (y0 − y1) (τ)) dτ, (5)

together with (2),(3), and (4).
Proposition 3: For any u0 ∈ U and y0 ∈ Y , (5) has a unique solution y1 ∈ Y . The remaining signals in

the feedback loop satisfy: u1, u2 ∈ U and y2 ∈ Y .

Proof: The proof of existence proceeds in a similar way to that of Proposition 2. Let ρ1(t) :=
y0(t) − G(u0(t) − 1) and note that ρ1(t) is continuous with ρ1(0) = 0. Let t1 > 0 be the smallest t
for which ρ1(t) = −1, or set t1 = ∞ if ρ1(t) > −1 for all t ≥ 0. Then H(ρ1)(t) = +1 on [0, t1) and
y1(t) = G(u0(t) − 1) gives a solution of the feedback equations on [0, t1). As in Proposition 2, the
solution can be extended on successive intervals [tk, tk+1). If tf := limk→∞ tk < ∞ then, for all k,

|y1(tk) − y1(tk+1)| ≤ Ctf (tk − tk−1)

for some Ctf < ∞, which may depend on ‖u0‖∞, see Proposition 1. A contradiction to the finiteness
of tf follows as before. The proof of uniqueness of solution also follows as in Proposition 2.

III. When are two oscillatory signals close?

A new feature in the problem of robustness of limit cycle oscillations is the difficulty of using the
norm of the difference of two signals over the semi-infinite time-axis to quantify closeness. This is
because oscillatory trajectories can get “out of step” in time due to perturbations. Two possible
ways of dealing with this—restriction to compact time intervals and analysis in a phase space—have
drawbacks. In the first case, allowable perturbations need to become smaller and smaller as the time-
interval is increased. In the second case, there may not be a common phase-space for the nominal and
perturbed oscillator, e.g. when there is a difference in model order or when time-delays are introduced.
Accordingly we introduce the device of allowing the time-axis to be re-scaled for one of the signals to
be compared. Then, a notion of distance between oscillatory signals can be defined by combining the
norm of their difference with the size of the chosen scaling. We now formalize such a distance measure.

Let W := U × Y and define:

d(w1(t), w2(t)) := inf{‖w1(t) − w2(σ(t))‖∞ + sup
t

|σ(t) − t|
t

: for σ ∈ K∞},

where K∞ denotes the set of continuous monotonically non-decreasing functions σ of t ∈ [0,∞] such
that σ(0) = 0 and σ(∞) = ∞. For convenience, in the sequel, we use the notation σw(t) := w(σ(t)).
We note that a similar notion of distance has also been considered by S. Varigonda (personal commu-
nication).

IV. Robustness analysis

Our analysis relies on the formalism developed in [9–11]. In particular, we consider the relay oscillator
in the standard feedback interconnection of Figure 2. We denote by W := U ×Y the “ambient space”



DRAFT: August 23, 2002 6

where input/output signals reside and consider the graphs of systems as subsets of W, i.e.,

M := graph(G) := {
(

u
y

)
: y = Gu, u ∈ U , y ∈ Y} ⊂ W,

N := graph(H) := {
(

u
y

)
: u = Hy, y ∈ Y , u ∈ U} ⊂ W.

The equations specifying the feedback interconnection can be written as w0 = w1 + w2 where

w0 :=

(
u0

y0

)
∈ W,

w1 :=

(
u1

y1

)
∈ M,

w2 :=

(
u2

y2

)
∈ N .

The theory [10, Sections II and VIII] makes extensive use of the feedback map from external distur-
bances to the input and output of one of the two components of the feedback loop; e.g., in the case
G, of the map

ΠM‖N : W → M : w0 �→ w1.

This is often referred to as a parallel projection operator—a terminology which reflects a geometric
interpretation discussed in [5] and [10, Equation 1]. There is also a complementary parallel projection

ΠN‖M : W → N : w0 �→ w2,

and moreover
ΠM‖N + ΠN‖M = I.

Next, the “distance” between dynamical systems is quantified by the distance to the identity of a
suitable map which relates the input-output trajectories of the two systems. More precisely, if M1

denotes the graph of a perturbed system G1, we search over all causal maps ΦM which map M
bijectively onto M1 with ΦM0 = 0 and select one which differs least from the identity. A nonlinear
generalization of the gap metric can be based on the quantity infΦM{‖(I −ΦM)|M‖} (see [10]).

We follow [10, Section VIII] and compare the response of two systems G,G1 to a common external
signal w0. All we need in the current framework is a surjective map ΦM from M onto M1. Let
w0 = m1 + n be the unique decomposition with m1 ∈ M1 and n ∈ N , and note that

m1 = ΠM1‖Nw0 and n = ΠN‖M1
w0.

The equation
m1 = ΦMm

must have a solution m ∈ M due to surjectivity of ΦM. Define x0 = m + n and observe that
m = ΠM‖Nx0 and n = ΠN‖Mx0, from which we obtain

m1 = ΠM1‖Nw0 = ΦMΠM‖Nx0. (6)

It follows that

w0 = n + m1

= ΠN‖Mx0 + ΦMΠM‖Nx0

= (I + (ΦM − I)ΠM‖N )x0. (7)
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The latter equation will be used to bound x0. By subtracting σΠM‖Nw0 from both sides of (6) and
rearranging terms, we obtain

(σΠM‖N − ΠM1‖N )w0 = (I − ΦM)ΠM‖Nx0 + σΠM‖Nw0 −ΠM‖Nx0, (8)

where σ is any scaling of the time axis. This last equation will be our main tool for showing robustness
of oscillations. The aim is to show that if the gap between the two dynamical components G and G1

is small then the left hand side of the equation can be made small by suitable choice of a (“small”) σ,
which amounts to closeness in the sense of Section III. Our main result is stated below.

Theorem 1: Let G be the negative integrator, G1 be an arbitrary element in G, and H be the relay-
hysteresis defined in Section II, and denote their graphs by M,M1,N , respectively. If there exists a
surjective map ΦM : M → M1 such that

‖(I −ΦM)|M‖ ≤ ε <
1

3
,

then there exists a function σ ∈ K∞ such that

sup
t

|σ(t) − t|
t

≤ 4ε(1 − ε)

(1 − 2ε)2
, (9)

and the response of the two feedback systems [G,H] and [G1,H] with zero external excitation signals
satisfy

‖σΠM‖N0 −ΠM1‖N0‖∞ ≤ 2ε

1 − ε
. (10)

Equation (10) shows that the trajectories of the nominal and perturbed systems are close in a peak
sense, when one of the two is scaled appropriately in time. This shows that oscillations persist in the
perturbed system, albeit with different and possibly varying periods. The proof of the theorem will
be done in two steps. First, we consider the response of the autonomous system [G,H] (i.e., with
w0 = 0), and we obtain bounds on the perturbation of the response when a small nonzero disturbance
signal x0 �= 0 is applied. This step is intended to bound the term

σΠM‖Nw0 − ΠM‖Nx0

in the right hand side of equation (8) when x0 is close to w0 = 0. Second, we bring in the perturbed
system G1 and analyze equation (7) to establish a bound on the signal x0. This is achieved by
considering a modified relay-hysteresis as an intermediate step. This part of the proof is intended to
bound the term

(I− ΦM)ΠM‖Nx0

in equation (8).

A. Effect of disturbances on nominal trajectory

We first consider the nominal trajectory of the unforced oscillator [G,H] and compare it with the
response to a small disturbance signal.

A.1 Nominal trajectory of [G,H]

The unforced response (i.e., with w0 = 0) of the nominal system [G,H] is shown in Figure 3. The
shape of the response is a direct consequence of the fact that the negative integrator G is driven by
u1 = −u2 = ±1, and this value remains constant until the input y2 = −y1 to the relay reaches the
value ±1, at which point the relay switches and u1 changes sign. The switching times are t1 = 1, and
tk = tk−1 + 2 for k > 1.
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Fig. 3. Autonomous response of relay oscillator

A.2 Bounds on the forced response and time-scaling function

We now consider a disturbance w0 = x0 �= 0 applied to the nominal system [G,H] where ‖x0‖∞ =
r < 1. We show that the response retains the oscillatory nature, and we construct an appropriate
scaling function σ so that σΠM‖N0 is close to ΠM‖Nx0 in the sense of Section III.

We denote the signals in the loop by u1, y1 etc. when the external disturbance is w0 = 0, and by

u′
1, y

′
1 etc. when the external disturbance is w0 = x0 =

(
u′

0

y′
0

)
with ‖u′

0‖∞, ‖y′
0‖∞ ≤ r. Similarly we

denote the switching times by t1 = 1, t2 = 3, . . . and t′1, t
′
2, . . . in the two cases, respectively. We first

claim that the sequence t′1, t
′
2, . . . is infinite. To see this observe that, for small t,

y′
1(t) =

∫ t

0

(1 − u′
0(τ))dτ, (11)

which is strictly increasing. Moreover y′
2(t) = y′

0(t) − y′
1(t) ≤ r − (1 − r)t, so y′

2(t) eventually reaches
−1 at which time the first switch occurs. Thereafter y′

1(t) becomes strictly decreasing and there is
a further switch, etc. We also point out that there can be no finite limit point of switching times
(Proposition 2).

We now define a suitable K∞-function σ which maps the sequence t′1, t
′
2, . . . onto t1 = 1, t2 = 3, . . .

and leads to σΠM‖N0 − ΠM‖Nx0 which is small in norm. On the interval [t′k, t
′
k+1] we define

σ(t) := tk + 2
y′

1(t) − y′
1(t

′
k)

y′
1(t

′
k+1) − y′

1(t
′
k)

, (12)

while on [0, t′1],

σ(t) :=
y′

1(t) − y′
1(0)

y′
1(t

′
1) − y′

1(0)
=

y′
1(t)

y′
1(t

′
1)

. (13)

Observe that σ(t′k) = tk for all k, and that σ(·) is monotonically increasing. Now observe that on
the interval [t′k, t

′
k+1] for k ≥ 1:

σy1(t) − y′
1(t) = (−1)k(−1 + σ(t) − tk) − y′

1(t),

while on the interval [0, t′1] since y1(t) = t:

σy1(t) − y′
1(t) = σ(t) − y′

1(t).

In both cases, σy1(t) − y′
1(t) is a linear function of y′

1(t). Hence it is monotonic on each such interval.
But

|σy1(t
′
k) − y′

1(t
′
k)| = |(−1)k+1 − y′

1(t
′
k)|

= |(−1)k+1 − (y′
0(t

′
k) − y′

2(t
′
k))|

= | − y′
0(t

′
k)| ≤ r.
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This holds for all k ≥ 1 while for t = 0 we have that |σy1(0)− y′
1(0)| = 0. Together with monotonicity

this shows that
|σy1(t) − y′

1(t)| ≤ r

for all values of t ∈ [0,∞). Since σu2 = u′
2 while u0 = 0 and ‖u′

0‖∞ ≤ r, then

‖σu1(t) − u′
1(t)‖∞ ≤ r.

We conclude that
‖σΠM‖N0 − ΠM‖Nx0‖∞ ≤ r = ‖x0‖∞. (14)

Next we establish a bound on the amount of “time stretching” which σ introduces. On the interval
[t′k, t

′
k+1] we have

y′
1(t) = y′

1(t
′
k) −

∫ t

t′k

u′
1(τ)dτ

= y′
1(t

′
k) −

∫ t

t′k

(u′
0(τ) + sgn(y′

1(t
′
k))) dτ

= y′
1(t

′
k) − (t − t′k)sgn(y′

1(t
′
k)) −

∫ t

t′k

u′
0(τ)dτ. (15)

Using the bound ‖u′
0‖∞ ≤ r we obtain:∣∣y′

1(t
′
k+1) − y′

1(t
′
k) + (t′k+1 − t′k)sgn(y′

1(t
′
k))

∣∣ ≤ (t′k+1 − t′k)r

which gives the bounds:

(t′k+1 − t′k)(1 − r) ≤ ∣∣y′
1(t

′
k+1) − y′

1(t
′
k)

∣∣ ≤ (t′k+1 − t′k)(1 + r). (16)

From y′
2 = y′

0 − y′
1, the bound ‖y′

0‖∞ ≤ r and the fact that y′
2(t) = ±1 at successive switching times

we also have the bounds
2(1 − r) ≤ ∣∣y′

1(t
′
k+1) − y′

1(t
′
k)

∣∣ ≤ 2(1 + r). (17)

Combining (16) and (17) we deduce that

2
1 − r

1 + r
≤ t′k+1 − t′k ≤ 2

1 + r

1 − r
. (18)

Since y′
1(0) = 0, the factor 2 can be removed in (17) when k = 0 so that we obtain the bounds

1 − r

1 + r
≤ t′1 ≤

1 + r

1 − r
. (19)

Summing up (18) for successive values of k, adding (19) and using the fact that tk = 2k− 1 we obtain
that

tk
1 − r

1 + r
≤ t′k ≤ tk

1 + r

1 − r
,

and then, that

|t′k − tk| ≤ 2r

1 − r
tk ≤ 2r

1 − r

1 + r

1 − r
t′k.

Returning to (15) and substituting into (12) we obtain that for t ∈ [t′k, t
′
k+1],

σ(t) − t = α(t − t′k) − (t − tk) − 2

∫ t

t′k
u′

0(τ)dτ

y′
1(t

′
k+1) − y′

1(t
′
k)

(20)
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where

α := −2
sgn(y′

1(t
′
k))

y′
1(t

′
k+1) − y′

1(t
′
k)

.

It follows from (17) that 1
1+r

≤ α ≤ 1
1−r

and then, that |α− 1| ≤ r
1−r

. Thus from (20), for t ∈ [t′k, t
′
k+1]

|σ(t) − t| ≤ |α − 1|t + |αt′k − tk| + 2
r(t − t′k)
2(1 − r)

≤ |α − 1|t + |αt′k − t′k| + |t′k − tk| + r(t − t′k)
(1 − r)

≤ 2|α − 1|t + |t′k − tk| + r(t − t′k)
(1 − r)

≤ 2
r

1 − r
t +

2r

1 − r

1 + r

1 − r
t′k +

r

1 − r
(t − t′k)

≤ 3
r

1 − r
t + (

2r

1 − r

1 + r

1 − r
− r

1 − r
)t′k

≤ 4
r

(1 − r)2
t.

Hence ∣∣∣∣σ(t) − t

t

∣∣∣∣ ≤ 4r

(1 − r)2
. (21)

We now turn to the interval [0, t′1]. Substituting (11) into (13) and rearranging terms gives

σ(t) − t =
t − ∫ t

0
u′

0(τ)dτ

y′
1(t

′
1)

− t,

whence

|σ(t) − t| ≤ t

∣∣∣∣y
′
1(t

′
1) − 1

y′
1(t

′
1)

∣∣∣∣ + t
r

|y′
1(t

′
1)|

≤ t
r

1 − r
+ t

r

1 − r
= 2t

r

1 − r
,

which is tighter than the bound in (21). Thus (21) holds for all t.

B. The effect of modelling uncertainty

We now continue with the proof of Theorem 1 which is built around the key equations (7) and (8).
Accordingly we now consider a perturbed system G1 with graph M1 for which there is a bijective
mapping ΦM : M → M1.

B.1 Modified relay-hysteresis

In order to proceed with the proof, a key step is to bound the norm of x0 which solves equation
(7). For this, a difficulty arises from the fact that the response of the nominal system [G,H] is not
globally bounded. Indeed, a constant input signal u0 of amplitude > 1 will result in a non-oscillatory
behaviour where the output y1 of the integrator G ramps up to ∞. Thus, while we easily obtain that

‖x0‖∞ = ‖(ΦM − I)ΠM‖Nx0‖∞, (22)

from (7), the unboundedness of ΠM‖N prevents a bound on ‖x0‖∞ from being deduced directly.
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The approach in [10, Section IV] which makes use of degree theory for analyzing the solution of
the feedback equation on bounded sets appears quite challenging in the present context. Hence, we
follow an alternative route. We consider a modified system, shown in Figure 4, where the relay has
been replaced by H0 whose output increases linearly with slope α in the region |y2| ≥ c > 1. This
new system will be shown next to be globally bounded. Yet, for small enough inputs, the responses of
both [G,H] and [G,H0] are identical. This will eventually allow us to obtain the required bounds of
Theorem 1 for the unperturbed hysteresis H. Following our earlier convention we denote the graph of
H0 by N0.

-
∫G

H0

u0 u1

u2 y0

y1

y2

−

−u
y

c
−c

Fig. 4. Globally bounded relay oscillator

Proposition 4: Let ‖x0‖∞ = r. Then ‖ΠM‖N0
x0‖∞ ≤ f(r) where

f(r) =

{
1 + r + α max{0, 1 + 2r − c}, when r < 1, and
max{c − α−1 + (1 + α−1)r, 2(1 + α)r}, when r ≥ 1.

Proof: We introduce the notation h0(x) for a multi-valued function which contains the range
values of H0 at any point in time, i.e. H0(x)(t) ∈ h0(x(t)). This is given by

h0(x) =

{ {+1,−1} when |x| ≤ 1,
H0(x) when |x| > 1.

The solutions of the feedback system of Figure 4 are determined by the integral equation

y1(t) =

∫ t

0

(H0 (y0 − y1) (τ) − u0(τ)) dτ.

It follows that if M0 > 0 is such that h0(y0(τ)−M)−u0(τ) ≤ 0 for all τ ∈ [0, t] and all M ≥ M0, then
y1(t) ≤ M0. (To see this, assume to the contrary, and consider an interval [t1, t] where y(t1) = M0,
y(τ) ≥ M0 for τ ∈ [t1, t], and y(t) > M0. Since the integrand is ≤ 0 in the interval [t1, t] it follows that
y(t) ≤ y(t1) which is a contradiction.)

We consider solutions under the condition that ‖u0‖∞, ‖y0‖∞ ≤ r. It follows that if

h0(y0 − M) − u0 ≤ 0 (23)

for all M ≥ M0 and all values |u0|, |y0| ≤ r, then M0 > 0 is an upper bound for ‖y1‖∞. Condition (23)
is equivalent to

h0(r − M0) ≤ −r. (24)

If r < 1 this holds providing M0 > 1 + r. If r ≥ 1, it holds providing r − M0 ≤ ξ where ξ satisfies
−1 + α(ξ + c) = −r, which then gives a bound M0 ≥ r + c + α−1(r − 1). We therefore deduce the
bounds:

‖y1‖∞ ≤
{

1 + r when r < 1,
c − α−1 + (1 + α−1)r when r ≥ 1.
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Under the same conditions ‖u0‖∞, ‖y0‖∞ ≤ r, since |y2| ≤ r + |y1|, |u2| ≤ max{1, 1 + α(|y2| − c)},
|u1| ≤ |u2| + r we deduce the following bounds for u1:

‖u1‖∞ ≤
{

1 + r + α max{0, 1 + 2r − c} when r < 1,
2(1 + α)r when r ≥ 1.

Remark. For the analysis of the next section, a favourable choice of the parameters c and α is c = 2
and α = 1/2, which gives:

f(r) =

⎧⎨
⎩

1 + r when r ≤ 1
2

1
2

+ 2r when 1
2

< r < 1
3r when 1 ≤ r.

(25)

This choice of parameters gives the least conservative upper bound for ε in Theorem 1 for this manner
of proof.

B.2 Derivation of bounds for the perturbed system and proof of Theorem 1

Our next step is to consider the fundamental equations (7) and (8) but with H replaced by H0 and
c = 2, α = 1/2 in the definition of H0. Namely we consider the equation:

(σΠM‖N0
− ΠM1‖N0

)0 = (I −ΦM)ΠM‖N0
x0 + σΠM‖N0

0 − ΠM‖N0
x0, (26)

for some σ ∈ K∞, where
0 = (I + (ΦM − I)ΠM‖N0

)x0. (27)

We point out that (26) and (27) hold providing that [G,H0] and [G1,H0] are well-posed feedback
systems. The proofs of these facts are similar to the proofs of Propositions 2 and 3 and are omitted.
Let ‖ΦM − I‖ ≤ ε. Then from (27) and Proposition 4 we obtain

‖x0‖∞ = ‖(ΦM − I)ΠM‖N0x0‖∞ (28)

≤ εf(‖x0‖∞). (29)

In order to obtain an upper bound for ‖x0‖∞ from (29) it is necessary that ε < 1/3, since otherwise the
inequality is satisfied whenever ‖x0‖∞ ≥ 1 from (25). If ε < 1/3 we observe that (29) fails whenever
‖x0‖∞ ≥ 1/2, from (25). Thus, if ε < 1/3 we conclude that ‖x0‖∞ < 1/2, in which case (29) is
equivalent to ‖x0‖∞ ≤ ε(1 + ‖x0‖∞). This gives the upper bound:

‖x0‖∞ ≤ ε

1 − ε
<

1

2
. (30)

Under the same condition that ε < 1/3, from (25) and (30) we have the bound:

∥∥ΠM‖N0x0

∥∥
∞ ≤ 1 +

ε

1 − ε
=

1

1 − ε
.

Since ΠM‖N0 + ΠN0‖M = I, this gives:

∥∥ΠN0‖Mx0

∥∥
∞ ≤ ‖x0‖∞ +

∥∥ΠM‖N0
x0

∥∥
∞

≤ ε

1 − ε
+

1

1 − ε
=

1 + ε

1 − ε
.

We deduce that, providing
1 + ε

1 − ε
≤ c = 2, (31)



DRAFT: August 23, 2002 13

which is equivalent to ε ≤ 1/3, the system [G,H0] never produces an input to H0 which exceeds c,
which then means that

ΠM‖N0x0 = ΠM‖Nx0, (32)

i.e. [G,H0] and [G,H] have the same response to the disturbance x0. Now observe that

ΠM‖N00 = ΠM‖N0, (33)

since |y1(t)| never exceeds one in the response of [G,H] to a disturbance w0 = 0 (see Section IV-A.1),
and the same is then true for [G,H0]. We therefore conclude, using (32), (33), and (14), that there
exists a σ ∈ K∞ such that

∥∥σΠM‖N00 − ΠM‖N0x0

∥∥
∞ =

∥∥σΠM‖N0 −ΠM‖Nx0

∥∥
∞

≤ ‖x0‖∞ ≤ ε

1 − ε
(34)

providing ε < 1/3. Moreover, from (21), we have the bound

∣∣∣∣σ(t) − t

t

∣∣∣∣ ≤ 4‖x0‖∞
(1 − ‖x0‖∞)2

≤ 4ε(1 − ε)

(1 − 2ε)2
. (35)

We now return to (26) to obtain using (28) and (34) the bound:

∥∥(
σΠM‖N0

− ΠM1‖N0

)
0
∥∥
∞ ≤ 2‖x0‖∞ ≤ 2ε

1 − ε
, (36)

providing ε < 1/3. Equation (36) implies that

∥∥ΠN0‖M1
0
∥∥
∞ =

∥∥ΠM1‖N0
0
∥∥
∞

≤ ∥∥σΠM‖N00
∥∥
∞ + 2‖x0‖∞

≤ 1 +
2ε

1 − ε
.

Thus, if

1 +
2ε

1 − ε
≤ c = 2, (37)

which is equivalent to ε ≤ 1/3, the system [G1,H0] never produces an input to H0 which exceeds c,
which then means that

ΠM1‖N0
0 = ΠM1‖N0,

and (36) then produces the bound

∥∥(
σΠM‖N −ΠM1‖N

)
0
∥∥
∞ ≤ 2ε

1 − ε
. (38)

Equation (38) is the same as equation (10), and equation (35) is the same as (9). These are established
under the assumption that ε < 1/3. This completes the proof of Theorem 1.
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V. Example

We study the behaviour of the relaxation oscillator of Figure 2 when the nominal integrator, i.e.
with transfer function P (s) = −1/s, is replaced by a system with transfer function

P ′(s) =
−ae−hs

s + b

where a > 0. We first study the case of h = 0 since this is amenable to explicit calculation. We denote
the solutions of the perturbed system by u′

1, y
′
1, etc. Before the first hysteresis switch, the system

evolves according to: ẏ′
1 + by′

1 = a, which has solution

y′
1(t) = (1 − e−bt)

a

b
,

providing b �= 0. If b ≥ a, then the hysteresis never switches and the relaxation oscillation breaks
down. So let us assume that b < a. After the switch the system evolves according to: ẏ′

1 + by′
1 = −a.

In order that ẏ′
1 becomes negative just after the switch we require that b > −a, otherwise ẏ′

1(t) remains
equal to one or escapes to +∞, and again the relaxation oscillation breaks down. So let us assume
that |b| < a. Under such a condition the hysteresis continues to switch at times 0 < t′1 < t′2 < . . ., and
in each interval [t′k, t

′
k+1] the solution is:

y′
1(t) = (−1)k

(a

b
− (1 +

a

b
)e−b(t−t′k)

)
.

We now define a suitable scaling function σ(t). On the interval [t′k, t
′
k+1] we define

σ(t) = tk + (−1)k (y′
1(t) − y′

1(t
′
k))

while on [0, t′1], σ(t) = y′
1(t). As before, observe that σ is monotonically increasing, σ(t′k) = tk for all

k and σu1(t) − u′(t) = 0. Furthermore, on [t′k, t
′
k+1]:

σy1(t) − y′
1(t) = (−1)k(−1 + σ(t) − tk) − y′

1(t) = 0

since y′
1(t

′
k) = (−1)k+1. The same fact holds on [0, t′1], so we have shown that

σΠM‖N0 = ΠM1‖N0.

The switching times are given by

t′1 =
1

b
ln

a

a − b
,

t′k+1 = t′k +
1

b
ln

a + b

a − b
,

and we easily check that t′k → tk as a → 1 and b → 0. It can also be shown that

sup
t

|σ(t) − t|
t

→ 0

as a → 1 and b → 0.
We now turn to the question of the “gap” between G and G′. We find that

M =

[
M
N

]
L∞ =

[
s

s+1−1
s+1

]
L∞,

M′ =

[
M1

N1

]
L∞ =

[ s+b
s+1

−ae−hs

s+1

]
L∞,
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where, as customary, we represent by G(s)L∞ the image of L∞[0,∞) under the action of a convolution
operator whose kernel is the inverse Laplace transforms of G(s). Define (V, U) = (1,−1) and note that

(V, U)

(
M
N

)
= 1. Thus,

Φ :=

(
M1

N1

) (
V U

)

maps M onto M1 and we find that

(I − Φ)|M =

(
M
N

) (
V U

)

−
(

M1

N1

) (
V U

)

=

( −b
s+1

ae−hs−1
s+1

) (
1 −1

)
.

It follows that

‖(I −Φ)|M‖ ≤ 2 max

{∥∥∥∥ b

s + 1

∥∥∥∥ ,

∥∥∥∥1 − ae−hs

s + 1

∥∥∥∥
}

where ‖ · ‖ in the righthand side of the above equation denotes the induced norm of the relevant
operators in an L∞ sense, i.e.,

∥∥∥∥ b

s + 1

∥∥∥∥ = ‖be−t‖L1 = |b|, while

∥∥∥∥1 − ae−hs

s + 1

∥∥∥∥ =

∫ h

0

e−tdt +

∫ ∞

h

|e−h − a|eh−tdt = 1 − e−h + |e−h − a|,

being in both cases the L1 norm of the respective convolution kernels. Hence, Theorem 1 predicts that
oscillations will not break down providing

max{|b|, 1 − e−h + |e−h − a|} <
1

6
. (39)

In contrast, by direct calculation we were able to show for the case h = 0, that oscillations do not
break down if |b| < a, which is consistent with condition (39).

VI. Summary

Theorem 1 gives a sufficient condition for robustness of oscillatory behaviour of the relay relaxation
oscillator. It states that, as long as a perturbation of the dynamical component is sufficiently small
(< 1/3) in a gap sense, oscillations persist.
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