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key ones being (a) that the number of poles and zeroes of the unknown plant are
known, and (b) that the primary performance criterion is related to good command
following. These theoretical assumptions are too restrictive from an engineering
point of view. Reat pant.6 atwayA contain umodeted high-6requency dynamcA and
6maU detays, and hence no uppe, bound on the numbe.A o6 the p Ant pote6 and ze'o
exizt. Atzo teaL pLant6 ate atway-6 zubject to unmea6uLabte output additive
di6tubanca, although thae may be quite 6maU. Hence, it is important to
critically examine the stability robustness properties of the existing adaptive
algorithms when some of the theoretical assumptions are removed; in particular,
their stability and performance proerties in the presence of unmodeled dynamics
and output disturbances.
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ROBUSTNESS OF ADAPTIVE CONTROL ALGORITHMS
IN THE PRESENCE OF UNMODELED DYNAMICS*

by

Charles E. Rohrs, Lena Valavani, Michael Athens, and Gunter Stein

Laboratory for Information and Decision System
Massachusetts Institute of Technology, Cambridge, MA, 02139

ABSTRACT 1. INTRODUCTION

This paper reports the outcome of an exhaustive analyt- Due to space limitations we cannot possibly provide in
ical and numerical investigation of stability and ro- this paper analytical and simulation evidence of all
bustness properties of a wide class of adaptive control conclusions outlined in the abstract. *Rather, we
algorithms in the presence of unmodeled dynamics and summarize the basic approach only for a single class
output disturbances. The class of adaptive algorithms of continuous-time algorithms that include those of
considered are those commonly referred to as model- Monopoli [41, Narendra and Valavani (11, and Feuer and
reference adaptive control algorithms, self-tuning Morse [2]. However, the same analysis techniques have
controllers, and dead-beat adaptive controllers; they been used to analyze more complex classes of (i) con-
have been developed for both continuous-time systems tinuous-time adaptive control algorithms due to
and discrete-time system. The existihg adaptive con- Narendra, Lin, and Valavani [33, both algorithms sug-
trol algorithms have been proven to be globally assymp- gested by Morse [4], and the algorithms suggested by
totically stable under certain assumptions, the key ones Egardt [7] which include those of Landau and Silveira
being (a) that the number of poles and zeroes of the [61, and Kreisselmeier (191; and (2) discrete-time
unknown plant are known, and (b) that the primary per- --adaptive control algorithms due to Narendra and Lin [22],
formance criterion is related to good command following. Goodwin, Ramadge, and Caines [23] (the so-called dead-
These theoretical assumptions are too restrictive from beat controllers), and those developed in Egardt [171,
an engineering point of view. Real pla ts always COn- which include the self-tunning-regulator of Astrom and
tain u,,odeled high-f-equenoy d n mneics and smalZ delyzj, Wittenmark [18] and that due to Landau [20]. The
and hence no upper bound on the number of the plant thesis by Rohrs [151 contains the full analysis and
poles and zeroes exists. Also real pLants are always simulation results for the above classes of existing
subject to umwfeurable output additive disturbances, adaptive algorithms.'
although these may be quite all.. Hence, it is impor-
tant to critically examine the stability robustness The end of the 1970's marked significant progress in
properties of the existing adaptive algorithms when the theory of adaptive control, both in terms of ob-
some of the theoretical assumptions are removed; in talning globkl asymptotic stability proofs [1-7] as
particular, their stability and performance properties well as in unifying diverse adaptive algorithms the
in the presence of unmodeled dynamics and output dis- derivation of which was based on different philosophical
turbances. viewpoints [8,91.

A unified analytical approach has been developed and Unfortunately, the stability proofs of all these algo-
documented in the recently completed Ph.D. thesis by rithms have in comon a very restrictive assumption.
Rohrs [151 that can be used to examine the class of For continuous-time implementation'this assumption is
existing adaptive algorithms. It was discovered that that the number of the poles and zeroes of the plant,
all existing algorithms contain an infinite-gain opera- and hence its relative degree, i.e., its number of poles
tor in the dynamic system that defines comand ref- minus its number of zeroes, is known. The counterpart
erence errors and parameter errors; it is argued that of this assumption for discrete-time systems is that
such an infinite gain operator appears to be generic t the pure delay in the plant is exactly an integer number
all adaptive algorithms, whether they exhibit explicit of sampling periods and that this integer is known.
or implicit parameter identification. The pctica
engine"ing couequence o the ex4tence the in- This restrictive assumption, in turn, is equivalent to
Jinte-qacA OPE44to/L OAC dj a4Uou,6. Analytical and enabling the designer to realize for an adeptive
simulation results demonstrate that sinusoidal reference algorithm, a positive real error transfer function, on
inputs at specific frequencies and/or sinusoidal output which all stability proofs have heavily hinged to-date
disturbances at any frequency (including d.c.) cause the (8]. Positive realness implies that the phase of the
Loop gain of the adaptive control system to increase system cannot exceed + 90* for all frequencies, while
witho~ut bound, thereby exciting the (unmodeled) plant it is a well known fact that models of physical systems

dynamics, and yielding an unstable control system. become very inaccurate In describing actual plant high-
Hence, it is concluded that none of the adaptive algo- frequency phase characteristics. Moreover, for prac-
rithms considered can be used with confidence in a tical reasons, most controller designs need to be based
pWCt control system design, because i.abU4f on models which do not contain all of the plant dynamics,
.a t i w a pub4,h in order to keep the complexity of the required adaptive

compensator within bounds.

*Research support by NASA Ames and Langley Remerch Motivated from such considerations, researchers in the
Centers under grant NASA/NGL-22-009-124, by the U.S. field recently started investigating the robustness of
Air Force Office of Scientific Research (AFSC) under adaptive algorithms to violation of the restrictive
grant AOS1 77-3281, and by the Office of Naval Research (and unrealistic)assumption of exact knowledge of the
under grant OKI/N0Ol4-82-K-0582(NR 606-003) plant order and its relative degree. oeznou and

Proc. 21st IEEE Conference on Decision Kokotovic [10] obtained error bounds for adaptive

and Control, Orlando, Florida, Dec. 1982.
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observers and identifiers in the presence of unmodlnd the plant is unity or at most two. The algorithms
dynamics, while such analytical results were harder to published by Narendra and Valavani [1] and Feuer and
obtan for reduced order adaptive controllers. The Morse (21 reduce to the same algorithm for the perti-
first such result, obtained by Rohr* et &1 a 11), nent case. This algorithm will henceforth be referred
consists of "linearization" of the erro-r eq;tions, to as CAl (continuous-time algorithm No.1)
under the assumption that the overall system is in its
final approach to convergence. zoannou and Kokotovic The following equations sumarize the dynamical equa-
[123 later obtained local stability results in the tions that describe it; see also Figure 1. The aqua-
presence of unmodeled dynamics, and shovd that the tions presented here pertain to the case where a unity
speed ratio of slow versus fast (unmodeled) dynamics relative degree has been normally assumed. In the aqua-
directly affected the stability region. Earlier sims- tions below r(t) is the (comand) reference input, and
lation studies by Rohrs St al [13) had already shown d(t)-O.
increased sensitivity of adaptive algorithms to dis- 9 8(s)
rurbances and umodaled dynamics, generation of high Plant: y(t) =u(t)] (1)
frequency control inputs and ultimately instability.
Simple root-locus type plots for the linearized system i-l
in [111 shoved how the presence of unmodeled dynamics Auxiliary w (t)-s Cu(t)]; (2)
could bring about instability of the overall system It Variables: ui P(s)
was also shown there that the generated frequencies in
the adaptive loop depended nonlinearly on the maqnit des i-1
of the reference input and output. (t) - [y(t)]; i-,2,....n (3)Vyi Wl~~ -. ,., 3

The main contribution of this paper is in showing that
two operators inherently included in all algorithms 0 1kr(t

considered - as part of the adaptation mechanism - [
hare infinite gain. As a result, two possible noch- tt (t (3a)
anisms of instability are isolated and discussed. It is
argued, that the destabilizing effects in the presence L t [J y
of unmdeled dynmiLcs can be attributed to either phase

- in the case of high frequency inputs - or primarily (a)
gain considerations - in the case of unmeasurable out- model: YK(c) " ( r-[ )] (4)
put disturbances of any frequency, Including d.c., which
result in nonzero steady-state errors. The latter fact
is most disconcerting for the performance of adaptive Control

algorithms since it cannot be dealt with, given that a Input: u(t) - kT(t) (t) (5)
persistent disturbance of any frequency can have a des-
tabilizing affect. OutputError: e(t) - y(t) - yM(t) (6)

Our conclusions that the adaptive 
algorithms considered

cannot be used for pmio ati adaptive control, because Parameter
the physical sytemta wiZ.Z eventuaZly become unstab~e, Adjustment
are based upon two facts of life that cannot be ignored Law: i(t) i(t) ! w(t) e(t) (7)
in any physical control design: (1) there are always
unmodeled dynamics at sufficiently high frequencies Nominal
(and it is futile to try to model unmodeled dynamics) Controlled
and (2) the plant cannot be isolated from unknown dis- Plant: *B* k; B P (8)
turbances (e.., 60 Hz hum) even though these may be A* AP - AK* - g BK*
small. Neither of these two practical issues have been u P y

included in the theoretical assumptions common to all __ne) "-
adaptive algorithms considered, and this is why these Error BEquaion e~) Z*J* YK [r(t)]+
algorithms cannot be used with confidence. To avoid E t eM
exciting unmodoled dynamics, stringent requirements '-T
mst be placed upon the bandwidth and phase margin of +*E* W 

w(
(t) (9)

the control loop; no such considerations have been A- * ' "
discussed in the literature. It is noi at all obvious,
nor easy, how to modify or extend the available algo- In the above equations the following definitions apply:
rithms to control their bandwidth, much less their
phase margin properties.

Ic(t) = + k(t) (10)
In Section 2 of this paper proofs for the infinite gain
of the operators generic to the adaptation mechanism where k* is a constant 2n vector
are given. Section 3 contains the development of two n-2 n-3
possible mechanisms for instability that arise as a K*(s) - k*(nl)S + k* (n-2 ) + u
result of the infinite gain operators. Simulation u

results that show the validity of the heuristic argu- where k* Is the i-th component of k*
ments in Section 3 are presented in Section 4. Section ui u
5 contains the conclusions. (). nl n-+ n-2

2. TIE R MODIL SThUCTU1UE FOR A REPESENTATIVE y yn y(n-l) y

ADAI'TIVW A TO where kei is the i-th component of k* and the vector

yi
The simplest prototype for a model reference adaptive ke* componenwise corresponds exactly to the vector k(t)
control algorithm in continuous-time has its origins to in eqn. (3a). In the preceding equation we have tried
at least as far beck as 1974, in the paper by Monopoli to preserve the conventional literature notation [3,,

(14 . This algorithm has been proven asymptotically 5,91, with P representing the characteristic polynomial
stable only for the came when the relative degree of for the state variable filters and h(t) the parameter

... ..iir1 i1il
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misalignmnt vector. The quantity a represents the for any positive constants b,c,w , the operator of
A eqn. (12) has infinite gain. 0

closed-loop plant transfer function that would result
if i were identically zero, i.e., if a constant control Profz The proof consists of constructing a signal
4aw k-k' were used. Under the conventional assumption (t, such t

that the plant relative degree is exactly known and, if Gt suh t II
B divides P, then k" can be chosen Ell, such tt L 2

1 (1lim T (16)

= - *.. (12) = 1e0(t) L
A* (I

n ) 2

AN in unbounded.

If the Relative Degree Assuption is violated, 1=

g a A' Let e(t) = a sii 0 t, with a an arbitrary positive

can only get as close to - as the feedback struc- constant and % the same constant as in eqn. (15).

ture of the controller allows. The first torn on the These signals produce:
right-hnd si de of eqn . (9) results from such a consid- I
eration. Note that if eqn. (11) were satisfied, eqn. w(t)e(t) a ab sinwt + - ac - ac cos2iot (17)
(9) reduces to the familiar error equation form that
has appeared in the literature [81 for exact modeling. t
For more details the reader is referred to the litera- k(t) - k + w(T)e(r)dT
ture cited in this section an well as to (151. 0

Figure 2 represents in block diagram form the combina- i 2 a c s 0 4o 0 0
tion of pearammter adjustment law and error equations 0 o
described by (7) and (9). t

3. THE DWIXITZ GRIN OPURATORS u(t) - G w(t)[.(t)] - 'O + w(t) fw(T)e(T)dT=
3.1 Quantitative Proof of Infinite Gain for Operators 1

2

of CAI . Q + - abct + ! + (Ien%+ -- / o 
t +

The error system in Fig. 2 consists of a forward linear 2 2 )c.S2
time-invariant operator representing the nominal control- - + -a OS3o b sin2 ot+ _ cos3 t
;led plant c:uplets with urmodeled dynamics, g*B* , 8w o 0 4 0 0 w o

k*A*
r (9

and a ti e-varying feedback operator. it is this feed- (19)

back operator which is of immediate interest. The
operator, reproduced in Fig. 3 for the case where w is Next, using standard norm inequalities, we obtain

a scalar and r-l. is parameterized by the function -w(t) from eqn. (19)

and can be reproented mathematically as: 21 1 2 ntI!T  
_11. ITt I I"(t+)IL 11, - > II b ,=<+ -" ,.= ot l , ,.L -I1 +

U (t) G W([(t)l- U0  +.w(t) fw(T)evr)dr (12)222

in order to saks the notion of the gain of the operator 0 22

G Ct)C. precise, we introduce the following operator 2
t eoretic concepts. -I[3asi2. tIIT 11 accos3%tII (20)

Definition 1: A function f t) from [O,w) to R is said 4 2 S

to be in L if the the truncated norm >I 2 t + c2tI s, ot It T (21)

T 1/2 222 a L tl;

IIf(t)IIT f f2(T)dT) (13) with, .2 +2+ +_2 +
is finite for all finite T. K u o 2

Definition 2: The gain of en operator G(f(t)], which 3 22

Maps functions in L2e into functions in L2e is defined + 4$°+ aw °2< (22)

as I 1 "0

I IG;(f(t) I IT Now2
l ll - sup I T (14) 2Il'bct2ac t sinw.tlf(t)QL2o ! Lt:) 1.

T(O) ( 222 2 a
2
c4 t2sn2o t2b€3 t2 a 

2  
s t d

if there is no finite nmber satisfying eqn. (14), then 0 a 2 o /
a is said to have infinite gain. (23)

Theores 1: if w(t) is given by

w(t) - b.C sinw t (15)
0

-e



-4-i

T 3 2 infinite gains can arise from any component of the vec-
2  2  3 I a~cI( tj W ) tor w(t).

12i 4w 2 L 0 Remark 2: The corresponding operators Gw and H de-
t C0s2Wt l*fined for various other adaptive algorithms such an

"sinu 0ot 4 J + he Hairandra, LinP, Valavani [31 and Morse [4) of the

model reference type, as weil as the algorithms devel-

a2be3 oped by Egardt (9], which include the self-tuning re-
- [2t nw t{%

(t) -
2 ) coat] (24) gulators, can also be proven to be infinite gain

2 o a 0 operators; see Rohes (15].
0

Remark 3: Infinite gain operators are generically pres-

2b 2c~ 2 + a 2 T - K2T
2 

_ T
2  

aK (25) nt in adaptive control and are typically represented

2-4 / 20 as in Fig. 4, where F(s) is a stable diagonal transfer

function matrix and N is (usually) a memoryless map.

where _ and C are vectors of various input and output

2(2c4 )2 +  a2bc3 Y binati&on, including filtered versions of said signals.

2 < *(26) The operator in Fig. 4 can also be proven to be infinite

2w~ 0 gain (see Rohrs (15]).

(,24 )2/(232 <(2) 3.2 To mechanisms of Instability

. 1  d (27) In this section, we use the algorithm C Al to in-
troduce and delineate two mechanism which may cause

2  2  unstable behavior in the adaptive system CAl, when it is
(. 2 3) implemented in the presence of unuodeled dynamics and

a0 " <0 (28) excited by sinusoidal reference inputs or by distur-

bances. The arguments made for CAl are also valid for
0 0other classes of algorithms mentioned In Remarks 2 and

Combining inequalities (21) and (25) we arrive at: 3, mutatis mutandis. Since the arguments explaining
instability are somewhat heuristic in mature, they are

)2 verit.ed by simulation. Representative simulation re-
1u(t)cT ajc2  a2c4 3 2 suLts are given in Section 4.

L2 12 
+

24 20 3.2.1 The Causes of Possible Instability

Also, In order to demonstrate the infinite gain nature

N T of the feedback operator of the error system of CAl in

22 Section 2, it is assumed that a component of w(t) has

I 2e(t) a2 sin2w t dt < a2T (30) the form

0 w (t) a b + c sinot (32)
Therefore,

and that the error has the form

IIU(t) IT >[a b2 c2 a 2 a4 3_ 2 1/2 e(t) - a sinwt 033)

l2(t) iT -2 T  The arguments of Section 2 indicate that, if e(t) and

L2 a component of w(t) have distinct sinusoida at a com-
mon froequsency, the operator Gw(t ) of eqn. (12) and theand, therefoe. Gw for w as in eqn. (15) a.JLns. W'rH of* t)gi.

gain. w operator w(t) o eqn. (31) will have infinite gains

Two possibilities for e(t) and w(t) to have the forms
In addition to the fact that the operator G (t) from of eqn. (32) and eqn. (33) are now considered.
e(t) to u(t) has infinite gain, the operator %, from
e(t) to f(t) in Fig. 3 also has infinite gain. This case M3 If the reference input consists of a sinu-
operator is described by- soid and a constant. e.g.

t -) = r s tinot (34)

H w (t) I a + f w(T)e(T)dT (31) r(t) rI 2 0

w(t) ( where r , and r are constants, then the plant output

yt) wil contain a constant term and a sinusoid at

Theorem 2: The operator H with w(t) given in eqn. frequency w . Consequently, through eqns. (2) ,(3) and
w(t). (3), all colpononts of the vector v(t) will contain a

(1S) has infinite gain. constant and a sinuscid of frequency W.

!Io: Choose e(t) a a sima t as before. if the controlled plant matches the model at d.c. but
o( t)) is g not at the frequency w , the output error

Then 1(t) - vt[~) ngiven by eqn. (18).

e(t) a y(t) - y (t) (35)

Proof of nfinite gain for this operator then follows
in exacthy analogous steps as in Theorem I and is, will cotain a sinusoid at frequency wo" Thus, the

therefore, omitted, conditions for infinite gain in the feedback path of

Figure 1 have been attained.
?mow Is th operators G and H will also have
infinite gain for vectors vt), silee the operator

-4-+ . I". +"- +-, . . . _



Came (2): If a sinusoidal disturbance, d(t), at fre- signals will grow without bound very quickly (as the
quenc uentera the plant output as shown in Fig. 1, effects of the unstable loop and continually growing

thesiullidwill appear in w(t) through the following gain of Gw W(Wt)d.

eqato whc replaces eqn (3) inL the. preenc of an since the-infinite gain of G cnb civda
oupu oit r ac ifkA it

iIany frequency w if9 has +1800 phase shift at
w (t) E y(t)+d(t)J; i-1,2,...,n (36) any frequencythe adaplive system is susceptible to

Yi P~s)instability frow either a reference input or a dis-
The following equation replaces eqn. (6) when an out- turbance.
put disturbance is present Thus the importance of the Relative Degree Assumption,

OWt - y(t) + 4(t) - ytW (37) which essentially allows one to assume that I = iM ~k*A.
r

Any sinusoid present in 4(t) will also enter e~t) strictl.y positive real is seen. The stability proof
through eqn. (37). Thus the signal e~t) and w(t) wil.l of CAl hinges on the assumption that g*5* is
contain sinusoids of the same frequency and the op- k*A*

ortr ()and G 0t will display en infinite gain, strictly positive real and that G E.t f passive, i.e.

3.2.2 Instability Due to the Gain of the Operator G 4
of Equation (12) w G Gw(t) ((t)le(t)dt > 0 (38)

The operator G of eqn. (12) is not only an infinite
gain operator - but its gain influences the system in Both properties of positive realness and passivity
such a manner as to allow arguments using linear sys- are properties which are independent of the gain of
teas concepts, as outlined below, the operator involved. HoweZer, it is always the case

uhat, due to the inevitable unmodeled dynamics, only a
Assume, initially, that the error signal is of the form budis known on the gain of the plant at hih fre-
of eqn. (33). i.e., a sinusoid at frequency w . Assume ouzcf. Therfre, for a large class of unodle
also that a component of w(t) is of the form 8f eqn. dynamics in the plant, including all uw'odeled dynamics
(32), i.e., a constant plus a sinusoid at the same fre.- with relative degree two or greater, the operator,
quency w as the input. The output of the infinite g3
gain ope~ator, Gt3 of eq* (12), as given by*n k*B* * ill have +1800 phase shift at some frequency

(19), consists of a sinusoid at frequency w with a gain r
0 and be susceptible to unstable behavior if subjected

which increases linearly with time plus other terms at to sinusoidal reference inputs andior disturbances in
o radians/sec (i.e. d.c.) and other harmor'ics of ca that frequency range.

,..ut 1 a2t si e.t other terms.
i~e. ua)-a il~ 3.2.3 Instability Due to the Gain of the operator

Toinfinite ganoperator manifests its large gain H of Equation (31)

by roducing at the output a sinusoid at the same fre- I h rvossbetotestainwseaie
quenUcy, w, as the input sinusoid but with an amplitude wn he pevaiu e beon the siuati ro was) exaine
increasin with time. By concentrating on with time due to a positive feedback mechanism in the
the signal at frequencl wo. and viewing the operator error loop. In this subso ,Uon, we explore the situa-

G t s ipl ie-nrasMginwt - hs tion where the sinusoidal error, e(t), is not at a
Wt)aa i letm icraigaiwihn ae frequency where it will grow due to the error system

shift at thek frequency w, and very small gain at other butratherwhen there exist persistent steady-state

frequencies. we will be able to com up with a mach- errrs. Such a persistent error could arise from
anism for instability of the error system of Figure 2, either or both of the two mechanism discussed in
where G(t) consists of the feedback part of the loop. Section 3.1.

If the foward path, r--,of the error loop of Figure 1) A reference input with a number of frequencies is
k*A* applied and the controlled plant with unmodeled dy-

2,hslmss than +1900 phase shift at the frequency w namics cannot match the model in amplitude and phase
2, hs wa for all reference input frequencies involved. This

and if the gain of G X~)were indeed small at all other will cause a persistent sinusoid in both the error

frequencies, then the high gain of G0t at (awould a (t), through eqn. (6), end the signals w(t), through
1 0) eqns. (2) and (3), and/or

not affect the stability of the error loop. (2) An output sinusoidal disturbance, 4(t), enters
If, hoeer h forwz4 lop1 ~ *,de ae10 as shown in Figure 1. causing the persistent sinusoid

however. -- k.A oehav * directly on e~t), through eqn. (37), and v(t) through

phase shift at w , the combination of Ibis phase shift eo 3)

with the sign reversal will produce a positive feedback Assume, that through one of the above or any other
loop around the operator Gw (t) , thereb" reinforcing mechanism that a component of w(t) contains a sinusoid

the inusid t th inpt o Q .The inuoid ill at frequency W as In eqn. (32) and that e Ct) contains
the inuoidat te iputof %tr he inusid ill a sinusoid of Othe same frequency. Then the operator

then increase in amplitude linearly with time, as the H(t) has infinite gain and the norm of the output

gain of a0~t grow, until the ccl~led gain of G0~t signal .Qf this operator, MUS, increases without hound.

L (t Itt The signal., i(t), will take the form of *qn. (18),
sag * exceeds unity at the frequency w - At this repeated he-re:

point, the loop itself will become unstable and all R(t) + *o~ -ce sina wt0 2 o4W~
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the second te= one can see that the pameters with the reference input
of the controller, defined in eqn. (10), i.e., (t - .3+2.0 sin8.tk(t) - k' e [t), wi3l icease wihout sound.• t]-.+.s8.t()

This simulation demonstrates that if the sinusoid, in-
If there are.any unmodeled dynamics at all, increasing put is at a frequency for which the nominal controlled
the size of the nominal feedback controller Para- plant does not generate a large phase shift (at
meters without bound will cause the adaptive system to Wo =8.0, the phase shift of eqn. (42) is -1330), the
become unstable. Indeed, since it is the gains of thenominal feedback loop that are unbounded, the system
will become unstable for a large class of plats in-wl become1 nstabhse fr alaela d s o plnts in Similar results were obtained for the algorithms des-
luding all those whose relative degree is thro in 3,4,6,79, but re not included here due

mere, even if no usdeled dynamics are pres . to space considerations. The reader is referred to

4. (151 for a more comprehensive set of simulation results,
in which instability occurs via both the mechanisms

in this section the arguments for instability presen- described in sections 3.2.2 and 3.2.3, for sinusoidal

ted in the previous sections are shown to be valid inputs.

via smlation. 4.2 %aimlations with Output Disturbances

The simdlations oere geereated using a nukwnally oirst
order plant wi e g pair of complex u odeled poles s he results in this subsection demonstrate that the

deribed p t winstability mechanism explained in Section 3.2.2 does• esc~~ed byindeed occur when there ig an additive unknown output "

229______ disturbance at the wrong frequency, entering the syst
y(t) 229 u(t)1 (39) as shown in Fig. 1. In addition, the instability mecha-

(s+l) (230+229) nism of section 3.2.3, which will drive the algorithms

unstable when there is a sinusoidal disturbance at any
and a reference model frequency, is also shown to take place. The same

numerical example is employed here as well.
(t) t 2 r(t)] (40)

M s+3
Instability via the Phase Mechanism of Section 3.2.2

The simulatis were all initialized with
In this case, CAl was driven by a constant reference

k y(0) -. 65 ; k (0) - 1.14 (41) input r(t) - .3 (45)

which yield a stable linearization of' the associated with a very small output additive disturbance
error equations. For the parameter values of eqn.
(41) one finds that d(t) - 5.59 + 10 sin 16.1t (46)

The results are shown in Fig. 7. and instability occurs
A* 3 527 (42) as predicted. The only surprise may be the minuteness

s 331a 2259s 527 of the disturbance ( 10 - 0) which will cause instabilit.

The reference input signal was chosen based upon the Instability via the Gain Increase Mechanism
discussion of section 3.2.2 of Section 3.2.3

r(t) - .3 + 1.85 sin 16.1t (43) Figure 8 shows the results of a simulation of CAl that
was generated with

the frequency 16.1 red/sec. being the frequency at r-0.3

which the plant and the transfer function in (42),i.e.
but the disturbance was changed to

q'*has 180' phase lag. A small d.c. offset wee L'zo-

r d(t) a 8.0x10 sin5t (47)
vided so that the linearized system wumld be asympto-
tically stable. The relatively large amplitude, 1.85 q's o
of the sinuaoid in eqn. (43) was choeen so that the At 0 -5, k'A' of eqn. (42) provides only -102 phase
unstable behavior would occur over a reasonable simul- shift to thl sinusoidal error signal oZ i.creasing
ation time. The adaptation gains were set equal amplitude, which is characteristic of tnstability via
to unity. the mechanism of Section 3.2.2, is not seen in Fig. a.

What in seen is that the system becomes unstable by
4.1 Snudaoidal feference Inputs the mechanism of Section 3.2.3. While the output appear

to settle down to a steady state sinusoidal error, the
Figure 5 shows the plant output and par mters k (t) ky parameter drifts away until the point where the con-

nd k y(t) for the conditions described so far. The troller be ome unstable. (Only the onset of unstable

aplitude of the plant output at the critical freqny behavior is shown in Figure 8 in order to maintain

(wo-16.1 red/sea) and the parameters grow linearly scale). We note also that even when the error appeared
settled, its value represented a large disturbance am-

with time until the loop gain of the error system plification rather than disturbance ret.)eT=ton.
bosemee larger th n unity. At this point in time,
even though the pemeer values are well within the TAe most disconcerting 2M of this analysis is that
region of sability for the linearised system, highly none of the systems analyed have been able to counter
Unstable bav"io results, this parmtar dZiftfr ,a sinusoidal disturbance at

any fareunvrid
figure 6 ohmes the results Of a simulation, this timetre
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A(S) Figure 5: Simulation of CAl with unmodeled dynamics
and r(t)-0.3 + 1.85sin16.1t. (System
eventually becomes unstable).

Figure 1: controller structure of CAL with additive-
output disturbance,* d(t).
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fthu rim

Figure 7: Simulation of Chl with uzuzo4eled dynamics, Figure 9: Simulation of CAI withi unisodoled dynamics,
r(t)-O.3. and d(t)*5.59XlO- 6sjul6.lt. r(t)-O.O, and d(t)-3.0xl0 6 .
(System eventually becomes unstable). (System eventually becomes Unstable.)
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