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We use a core molecular model capable of generating circadian
rhythms to assess the robustness of circadian oscillations with
respect to molecular noise. The model is based on the negative
feedback exerted by a regulatory protein on the expression of its
gene. Such a negative regulatory mechanism underlies circadian
oscillations of the PER protein in Drosophila and of the FRQ protein
in Neurospora. The model incorporates gene transcription into
mRNA, translation of mRNA into protein, reversible phosphoryla-
tion leading to degradation of the regulatory protein, transport of
the latter into the nucleus, and repression of gene expression by
the nuclear form of the protein. To assess the effect of molecular
noise, we perform stochastic simulations after decomposing the
deterministic model into elementary reaction steps. The oscilla-
tions predicted by the stochastic simulations agree with those
obtained with the deterministic version of the model. We show
that robust circadian oscillations can occur already with a limited
number of mRNA and protein molecules, in the range of tens and
hundreds, respectively. Entrainment by light�dark cycles and co-
operativity in repression enhance the robustness of circadian
oscillations with respect to molecular noise.

circadian clocks � stochastic simulations � model � Drosophila � Neurospora

C ircadian rhythms characterized by a period close to 24 h are
observed in nearly all living organisms from cyanobacteria

to Neurospora, plants, insects such as Drosophila, and mammals.
The molecular mechanism of these rhythms relies on negative
autoregulatory feedback on gene expression (1–4). Theoretical
models for circadian rhythms based on such control mechanisms
have been proposed (5–11). The question arises (12, 13) as to the
biological validity of these models when the numbers of mRNA
and protein molecules involved in the regulatory mechanism are
small, as may occur in cellular conditions. Here we use a core
molecular model proposed for circadian rhythms in Drosophila
to assess its robustness with respect to molecular noise. By means
of stochastic simulations we show that robust circadian oscilla-
tions already can be produced by the autoregulatory mechanism
when the maximum numbers of mRNA and protein molecules
are in the order of tens and hundreds, respectively. The robust-
ness of circadian oscillations increases with both the number of
molecules and the degree of cooperativity of the repression
process, and entrainment by light�dark (LD) cycles stabilizes the
phase of the oscillations with respect to molecular noise.

Core Molecular Model for Circadian Oscillations
The model, schematized in general form in Fig. 1, is based on the
negative feedback exerted by a protein (which will be referred to
below as clock protein) on the expression of its gene. This model,
previously proposed for circadian oscillations of the PER protein
and per mRNA in Drosophila, is described by a set of five kinetic
equations (see refs. 5 and 6 and Appendix, which is published as
supporting information on the PNAS web site, www.pnas.org). It
accounts for the occurrence of sustained oscillations in contin-
uous darkness, phase shifting by light pulses, and entrainment by
LD cycles. Similar results have been obtained in more detailed
models incorporating additional clock gene products such as
TIM and CLOCK (7–11), but for simplicity we will focus on the

model based on the regulation exerted by PER alone. The model
of Fig. 1 thus will serve as a core model capable of generating
circadian oscillations and does not aim at representing the
current, more complex view of the molecular mechanism of the
Drosophila circadian clock, which is known to involve a larger
number of interacting proteins (1–3). In this simple form the
model can apply also to the case of Neurospora (8), in which
circadian rhythms originate from the negative feedback exerted
by the FRQ protein on the expression of its gene (1).

Molecular Noise and Stochastic Simulations
The decrease in the total number, N, of molecules in a system of
chemical reactions is accompanied by a rise in the amplitude of
fluctuations around the state predicted by the deterministic
evolution of this chemical system. These fluctuations reflect
intrinsic molecular noise of amplitude proportional to 1�√N.
Molecular fluctuations can be taken into account by describing
the chemical reaction system as a birth-and-death stochastic
process governed by a master equation (14). In a given reaction
step, molecules of participating species are either produced
(birth) or consumed (death). Each step is associated with a
transition probability proportional to the numbers of molecules
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Fig. 1. Core model for circadian rhythms. The model represents a prototype
for the molecular mechanism of circadian oscillations based on negative
autoregulation of gene expression. The model incorporates gene transcrip-
tion, transport of mRNA (MP) into the cytosol where it is translated into the
clock protein (P0) and degraded. The clock protein can be reversibly phos-
phorylated from the form P0 into the forms P1 and P2, successively. The latter
form is degraded or transported into the nucleus (PN), where it exerts a
negative feedback of cooperative nature on the expression of its gene. The
model accounts for circadian oscillations of per mRNA and PER protein in
Drosophila (5, 6) but does not aim at providing a detailed picture of the
mechanism of circadian rhythmicity in this organism, where additional gene
products are at work (1–3). Similar results are obtained in a more extended
model incorporating the formation of complexes between various clock pro-
teins (7–11). The model can apply also to circadian oscillations of frq mRNA and
FRQ protein in Neurospora (8).

www.pnas.org�cgi�doi�10.1073�pnas.022628299 PNAS � January 22, 2002 � vol. 99 � no. 2 � 673–678

BI
O

PH
YS

IC
S



of involved chemical species and to the chemical rate constant of
the corresponding deterministic model.

A numerical algorithm that implements such a master equa-
tion approach to stochastic chemical dynamics has been intro-
duced by Gillespie (15, 16). Besides other approaches (17–19),
this method of the Monte Carlo type is widely used to determine
the effect of molecular noise on the dynamics of chemical (18,
19), biochemical (20), or genetic systems (21). The Gillespie
method associates a probability with each reaction; at each time
step the algorithm stochastically determines the reaction that
takes place according to its probability as well as the time
interval to the next reaction. The numbers of molecules of the
different reacting species as well as the probabilities are updated
at each time step. In this approach (see refs. 15 and 16 and
Appendix), a parameter denoted � permits the modulation of the
number of molecules present in the system. To assess the effect
of molecular noise on circadian oscillations we have used this
method to perform stochastic simulations of the core determin-
istic model described above after decomposing it into detailed
reaction steps (see Appendix, Decomposition of the Deterministic
Model into Elementary Reaction Steps).

Influence of Molecular Noise on Circadian Oscillations
We first wish to check whether for sufficiently large numbers of
molecules, stochastic simulations of the detailed reaction system
produce results similar to those obtained with the deterministic
model. Shown in Fig. 2A (Left) are circadian oscillations of
mRNA (MP) and nuclear (PN) and total (Pt) clock protein
obtained with the deterministic model under conditions of

continuous darkness. These sustained oscillations correspond to
the evolution toward a limit cycle, which is shown in Fig. 2 A
(Right) as a projection onto the (MP, PN) plane. Corresponding
results from stochastic simulations performed with the detailed
reaction system for � � 500 are shown in Fig. 2B. For this value
of �, robust circadian oscillations are obtained in which the
number of mRNA molecules varies in the range of 0–1,000,
whereas the numbers of nuclear and total clock protein mole-
cules oscillate in the range of 200–4,000 and 800–8,000, respec-
tively. The effect of molecular noise is merely to induce vari-
ability in the maxima of the oscillations. This effect is reflected
by the noisy appearance of the limit cycle and a thickening of its
upper portion linking the maximum in mRNA with the maxi-
mum in nuclear (or total) clock protein.

To assess the robustness of circadian oscillations at lower
numbers of molecules we determined the dynamics of the
detailed genetic control network by stochastic simulations for
decreasing values of �. The results in Fig. 3 show that robust
circadian oscillations occur in continuous darkness for � � 100
(A) or 50 (B) when the number of mRNA molecules oscillates
from 0 to 200 (A) or 0 to 120 (B), whereas the number of
nuclear clock protein molecules oscillates in the range of
20–800 (A) or 10–600 (B). The limit cycles are more noisy, but
the period histograms calculated for some 1,200 successive
cycles indicate that the distribution remains narrow with a
mean free running period � close to a circadian value. The
standard deviation � remains small with respect to the mean
period but slightly increases as the number of molecules
diminishes.

Fig. 2. Circadian oscillations predicted by the negative-feedback model schematized in Fig. 1. (A) Oscillations obtained in the absence of noise. The curves are
generated by numerical integration of the five kinetic equations governing the time evolution of the deterministic model (see refs. 5 and 6 and Appendix).
Sustained oscillations of mRNA (MP) and nuclear (PN) and total clock (Pt) protein presented (Left) correspond to the evolution toward a limit cycle shown as a
projection onto the (MP, PN) plane (Right). (B) Oscillations generated by the model in the presence of noise for � � 500 and n � 4. The results shown correspond
to those obtained in A for the deterministic model. The data, expressed in numbers of molecules of mRNA and of nuclear and total clock protein, are obtained
by stochastic simulations of the detailed reaction system corresponding to the deterministic model schematized in Fig. 1. Here the number of mRNA molecules
oscillates between a few and 1,000, whereas nuclear and total clock protein oscillate in the ranges of 200–4,000 and 800–8,000, respectively. Robust circadian
oscillations occur in these conditions despite the presence of molecular noise, with a mean period of 24.4 h and a standard deviation of 1.3 h. The decomposition
of the deterministic model into elementary steps, the method of stochastic simulation, and parameter values are listed in Appendix.
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It is for still smaller numbers of molecules that circadian
rhythmicity becomes obliterated by noise. Fig. 3C illustrates the
results of stochastic simulations performed with � � 10. Highly
irregular oscillations occur, during which the number of mRNA
molecules varies from 0 to 30, whereas the number of nuclear
protein molecules oscillates in the range of 5–160. Even for such
reduced numbers of mRNA and protein molecules, however,
oscillations are not destroyed fully by noise. The histogram of
periods indicates that the mean is still close to a circadian value,
but the standard deviation is increased greatly.

The robustness of circadian oscillations with respect to mo-
lecular noise can be quantified further by the autocorrelation
function that measures the degree of periodicity of the time
evolution of a given variable. In the presence of noise, the more
periodic the evolution, the more slowly the autocorrelation
function goes to zero. In the absence of noise, the autocorrela-
tion function for a periodic system keeps oscillating between 1
and �1. Shown in Fig. 4A is the time course of the autocorre-

lation function for the oscillations illustrated in Fig. 3A, in which
� � 100. The envelope of the function decreases exponentially,
and the half-life corresponding to 50% decrease yields a measure
of the robustness of periodic oscillations with respect to noise.
Here, the half-life is close to 3 times the mean period of circadian
oscillations. The loss of correlations primarily is due to the
phenomenon of phase diffusion (18, 19); because of noise the
phase of free-running oscillations varies in such a way that
eventually it covers the whole range of possible values over a
period (Fig. 4B).

Robustness increases in proportion to the number of mole-
cules present in the system. The ratio of the half-life of the
correlations divided by the mean period indeed increases in a
linear manner with parameter � (Fig. 4C), which is in agreement
with analytical predictions on the effect of noise on limit cycle
oscillations (22). When � rises from 50 to 500, the half-life of
correlations goes from �1.8 to 12 times the mean period. The
half-life becomes smaller than the mean period for values of �

Fig. 3. Effect of number of molecules on the robustness of circadian oscillations. Shown in rows A–C are the oscillations in the numbers of molecules of mRNA
and nuclear clock protein (Left), the projection of the corresponding limit cycle, and the histogram of periods of 1,200 successive cycles for � varying from 100
(A) to 50 (B) and 10 (C). The curves are obtained by stochastic simulations as described for Fig. 2B for n � 4. For period histograms, the period was determined
as the time interval separating two successive upward crossings of the mean level of mRNA or clock protein. In A and B, the decrease in the numbers of mRNA
and protein molecules still permits robust circadian oscillations [see histograms in which the mean value (�) and standard deviation (�) of the period are indicated
in h], whereas at still lower numbers of molecules (C) noise begins to obliterate rhythmic behavior. For the oscillations in A, an average of one molecule of mRNA
is produced every 2.5 min, whereas one molecule of clock protein is synthesized per mRNA molecule every 30 min; the average number of mRNA molecules is
of the order of 60.
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below 40, reflecting the takeover of periodicity by noise even
though some remnant of circadian behavior is still noticeable for
values of � as low as 10 (see Fig. 3C).

Effect of Cooperativity on Robustness of Circadian Oscillations
In the above simulations, we have considered that four mol-
ecules of nuclear protein must bind successively to the gene
promoter to repress transcription. To allow for positive coop-
erativity, which often characterizes repression (23), we assume
(see Appendix, Parameter Values for Stochastic Simulations)
that the affinity of binding increases with the number of
protein molecules already bound. Cooperativity, however, is
not required for oscillatory behavior. Circadian oscillations
indeed can occur if repression involves the binding of a single
molecule of nuclear protein. To investigate the effect of
cooperativity on robustness of circadian oscillations with
respect to molecular noise, we performed stochastic simula-
tions with � �100 for values of n ranging from 1 to 4, where
n denotes the total number of protein molecules that bind to
the promoter to repress transcription. For the parameter
values considered, n is also the degree of cooperativity equal
to the maximum Hill coefficient characterizing the sigmoidal
decrease of the promoter activity as a function of nuclear
protein in the deterministic model. The results (Fig. 4D)

indicate that robustness, as measured by the ratio of the
half-life of correlations divided by the mean period, signifi-
cantly increases when n passes from 1 (absence of cooperat-
ivity) to values of 2 and above. The ratio remains in a narrow
range for n � 2–4 and passes through a maximum for n � 3.
The variation in half-life as well as changes in standard
deviation of the period show that cooperative repression
enhances the robustness of circadian oscillations with respect
to molecular noise.

Entrainment by LD Cycles in the Presence of Molecular Noise
Circadian rhythms are permanently subjected to periodic forcing
by the external LD cycle. The questions arise as to whether
entrainment by the LD cycle can occur in the presence of low
numbers of molecules and what the effect is of periodic forcing
on the robustness of circadian oscillations with respect to
molecular noise. By means of stochastic simulations for the case
of � � 100 corresponding to the oscillations obtained in
conditions of continuous darkness in Fig. 3A, we determine in
Fig. 5 the characteristics of oscillations after entrainment by a
12:12-h LD cycle. The effect of light is incorporated by consid-
ering that light enhances degradation of the clock protein, as
observed in Drosophila (1–3).

The results (A and B) indicate that the circadian clock
mechanism can be entrained by the 24-h LD cycle in the presence
of molecular noise. The mean period indeed is shifted from
24.8 h before entrainment (Fig. 3A) to 24.1 h (Fig. 5A). The
standard deviation of the period is not affected significantly by
entrainment (compare Fig. 5B with Fig. 3A Right). The most
striking effect of periodic forcing is to stabilize the phase of the
oscillations. Thus, instead of spanning the whole period (Fig.
4B), the distribution of the phase of maximum mRNA has a
mean close to 15.4 h after the beginning of the light phase (Fig.
5D), which is in agreement with experimental observations that
indicate (24, 25) that in Drosophila the peak in per mRNA occurs
�4 h after the onset of darkness. The increased robustness
caused by locking of the phase of circadian oscillations after
entrainment is reflected also by the autocorrelation function that
oscillates with constant amplitude (Fig. 5C) instead of exponen-
tially decreasing to zero (Fig. 4A).

Discussion
Previous reports raised doubts as to whether the oscillations
produced by deterministic models for circadian rhythms based
on negative autoregulatory feedback remain robust in the pres-
ence of molecular noise (12, 13). In one brief study (12),
stochastic simulations produced highly irregular oscillations
characterized by the rapid vanishing of autocorrelations even
though the maximum numbers of mRNA and protein molecules
were rather large, of the order of 3,000 and 10,000, respectively.
In contrast, our results demonstrate that robust oscillations can
occur already with maximum numbers of mRNA and protein
molecules of the order of tens and hundreds, respectively (see
Figs. 3 and 4), whereas robustness is enhanced further at larger
numbers of molecules (Fig. 2B). This conclusion validates the
use of deterministic models to study the molecular mechanism
of circadian rhythms and explains why such models provide a
reliable picture of the working of circadian clocks in a variety of
organisms.

Robustness is used commonly with another meaning to
denote the persistence of a certain type of dynamic behavior
over a significant range of parameter values. In deterministic
models, sustained circadian oscillations only occur in a precise
region of parameter space (5–11). We have verified that a
similar conclusion is reached with stochastic simulations. The
latter show that sustained oscillations occur in a sizeable
domain of parameter values and that outside this domain the
numbers of mRNA and clock protein molecules f luctuate

Fig. 4. Robustness of circadian oscillations measured by half-life of auto-
correlations. (A) Time evolution of the autocorrelation function, with indica-
tion of half-life time, for the oscillations obtained for � � 100 and n � 4 in Fig.
3A. (B) Phase of maximum in mRNA in the presence of molecular noise. The
histogram is obtained under free-running conditions for 1,200 successive
periods for the case considered in A. (C) Half-life of autocorrelations increases
in a linear manner with the parameter � that provides a measure of the
number of molecules present in the system. The oscillations corresponding to
� � 500, 100, 50, and 10 are shown in Figs. 2B and 3A–C, respectively. (D)
Influence of the degree of cooperativity of repression on the robustness of
circadian oscillations. The half-life of autocorrelations is determined as a
function of n for the case � � 100. In A–C, as well as in other figures, the degree
of cooperativity n is equal to 4. In D, the standard deviation � of the period
distribution (shown for n � 4 in Fig. 3A) goes from 7.7 h (mean period � �
26.9 h) for n � 1 to 2.6 h (� � 21.2 h), 1.9 h (� � 20.3 h), and 2.7 h (� � 24.8 h)
for n � 2, 3, and 4, respectively.
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around steady-state levels. The results presented here have
been obtained far from a bifurcation point, well inside the
domain of sustained oscillations. For a given value of �, the
disrupting effect of molecular noise becomes more significant
when the system is close to the bifurcation point corresponding
to the onset of sustained oscillations beyond a critical param-
eter value (unpublished data).

The passage through a bifurcation point can be observed for
all parameters of the model including the rate constants ai and
di that characterize the binding of the repressor to and dissoci-
ation from the gene promoter (reaction steps 1–8 in Table 1).
The study of a deterministic differential system based on the
detailed sequence of reaction steps listed in Table 1 indicates
that when ai and di (i � 1,. . . 4) are decreased without changing
the equilibrium dissociation constants Ki � di�ai, the oscillations
disappear when the parameters are decreased by some 3 orders
of magnitude with respect to the case considered in Fig. 2. The
system then reaches a stable, excitable steady state. Stochastic
simulations show that in these conditions molecular noise in-
duces large excursions away from the steady state corresponding
to irregular, large-amplitude peaks in mRNA and clock protein.
This result may explain the lack of robustness reported by other
authors (12) who considered smaller values for the bimolecular
rate constants characterizing the association of the regulatory
protein to the gene promoter on DNA (see Appendix, Parameter
Values for Stochastic Simulations).

Besides assessing the robustness of circadian oscillations
with respect to molecular noise, we showed that the persistence
of circadian rhythmicity is enhanced by the cooperative nature
of repression. The role of cooperativity in the oscillatory
mechanism is supported by the formation of complexes be-
tween various clock proteins in Drosophila and mammals as
well as in Neurospora (1–4, 26, 27). Periodic forcing by LD
cycles, which acts as natural synchronizer for circadian
rhythms, also has the effect of enhancing their robustness at
low numbers of molecules by stabilizing the phase of the
oscillations (Fig. 5D). As indicated by the stochastic study (D.
Forger and C. Peskin, unpublished data) performed with

similar numbers of molecules on a closely related model (7)
incorporating the formation of a PER�TIM regulatory com-
plex, other factors such as the formation of a complex between
different clock proteins may contribute further to the stability
of circadian rhythmicity with respect to molecular noise.
Robustness may be enhanced also by the interaction between
multiple feedback loops, as suggested by a model (12) in which
the negative feedback on gene expression is of indirect rather
than direct nature.

The present results show that robust circadian oscillations
based on autoregulatory feedback and strengthened by cooper-
ativity and environmental forcing can occur even at reduced
numbers of mRNA and clock protein molecules near the lower
limits encountered in cells. In Drosophila, precise intracellular
levels of protein and mRNA molecules for the various clock
genes still are unknown, and only relative values of protein levels
have been measured thus far (28). It would be interesting to
know the absolute numbers of mRNA and protein molecules
involved in the oscillatory mechanism in Drosophila and mam-
mals. In Neurospora, the number of FRQ molecules has been
estimated to be in the range of only a few tens per nucleus (29).
At such low numbers our results indicate that rhythmicity still
exists but begins to be affected markedly by noise. A conspicuous
feature of Neurospora is its syncitial morphology. The nucleo-
cytoplasmic nature of the circadian oscillator implies that in
Neurospora, the different nuclei within a cell may be coupled
through a common variable, cytosolic FRQ. Such a coupling
might enhance the robustness of circadian oscillations with
respect to molecular noise even in the presence of reduced
amounts of this protein within each nucleus. Other forms of
coupling, between oscillating cells (30), similarly may enhance
the robustness of circadian rhythms in other organisms such as
Drosophila and mammals.
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Fig. 5. Effect of molecular noise on circadian oscillations
under conditions of periodic forcing by an LD cycle. The
data are obtained for � � 100 and n � 4 and should be
compared with the results shown in Figs. 3A and 4 A and B
in the case of continuous darkness. (A) Circadian oscilla-
tions in the numbers of mRNA and nuclear clock protein
molecules. (B) Histogram of periods with mean value (�)
and standard deviation (�) indicated in h. (C) Time course of
the autocorrelation function. (D) Histogram of the time
corresponding to the maximum number of mRNA mole-
cules over a period. In A, periodic forcing is achieved by
doubling during each light phase the value ascribed during
the dark phase to the parameter (kd3) measuring the prob-
ability of the protein degradation step (see Table 1, which
is published as supporting information on the PNAS web
site). Histograms and autocorrelations are determined for
some 1,200 successive cycles.
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