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Abstract. In this paper, we test some of the most commonly used classi-
fiers to identify which ones are the most robust to changing environments.
The environment may change over time due to some contextual or def-
initional changes. The environment may change with location. It would
be surprising if the performance of common classifiers did not degrade
with these changes. The question, we address here, is whether or not
some types of classifier are inherently more immune than others to these
effects. In this study, we simulate the changing of environment by reduc-
ing the influence on the class of the most significant attributes. Based on
our analysis, K-Nearest Neighbor and Artificial Neural Networks are the
most robust learners, ensemble algorithms are somewhat robust, whereas
Naive Bayes, Logistic Regression and particularly Decision Trees are the
most affected.

Key words: classifier evaluation, changing environments, classifier ro-
bustness

1 Introduction

In this paper, we test some of the most popular, and commonly used, classifiers to
identify which are the most robust to changing environments. The environment
is the state of the world when the data set is first collected. Essentially, the data
set is a single snapshot of the world, capturing its state. This state may change
over time, as time passes from first deployment of the classifier in the field. This
state may even change in the time from when the classifier is trained to when
it is deployed. This state may change with situation: different locations of the
same application will have appreciable differences. It would be surprising if the
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performance of a classifier did not degrade with these changes. The question we
address here is whether or not some classifiers are inherently more immune than
others to such changes. Although there has been considerable work on the effect
of changing the distribution of the class attribute on classifier performance [8,
9,5,4], only more recently has research looked at the effect of changes in the
distribution of other attributes [1,7]. This is an area of growing importance, as
evidenced by a recent book on the topic [11].

For the purposes of discussion, let us divide the remaining attributes into
three types: conditions, outcome and context. This division captures the causal
structure of many problems. Conditions cause the class. This is particularly ap-
parent in medicine where they are called risk factors. A change in risk factor
causes a change in the frequency of the disease. For example, the population,
in most western countries, is aging and putting on weight yet smoking less and
eating more carefully. To what extent will a classifier, say predicting heart prob-
lems, be impervious to such changes? The class causes the outcomes. In medicine
these would be the symptoms. We might expect, however, that the symptoms of
a disease would remain constant. Nevertheless, we could see the concept change
over time, i.e. concept drift [14], e.g. as our understanding of the implications of
the disease is clarified. Context causes changes in other attributes but not the
class [13,12]. For example, the increase in the prevalence of other diseases in the
population may mask the symptoms of a heart attack, and therefore degrade
any classifier’s performance.

We discuss here the changes in the influence of a particular attribute on the
class, which can be measured by information gain. We think this is most likely
to occur with changes in conditions, although changes in context and outcome
may also have an effect. A good example of changes in risk factors, and with
them changes in the influence of attributes, is type-2 diabetes. This disease,
originally called adult onset diabetes, has lately turned up in alarming numbers
in children. Age might have originally been a strongly predictive attribute but it
is no longer. Smoking and lung cancer are strongly related, but as more people
quit smoking the influence of other factors will begin to dominate. Simply put,
the predictive power of attributes will change with time.

This research is related to previous work by one of the authors that also ad-
dressed the robustness of classifiers [2]. However, we would contend that the issue
of the robustness of classifiers is a significant and growing area and many as-
pects warrant investigation. This paper differs in the type of change investigated
— the previous work changed the distribution of the data in the test set while in
this work we change the influence of the most significant attributes — and the
simulation of change based on real data sets rather than an artificial one. More
importantly, it differs in that it focuses on algorithms that learn more complex
representations. We surmise that algorithms that produce classifiers reliant on a
large number of attributes should be more robust to such changes than the ones
reliant on a small number. This is, in general, the conclusion we draw from our
experiments although there are subtleties which we discuss later in the paper.
Based on our analysis, K-Nearest Neighbor and Artificial Neural Networks are
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the most robust learners, ensemble algorithms are somewhat robust, whereas
Logistic Regression, Naive Bayes and particularly Decision Trees fare badly.

The remainder of this paper is organized as follows. Section 2 describes our
testing methodology and Section 3 the experimental results. Section 4 is a dis-
cussion of why some learners are more robust than others and suggestions for
future work.

2 Testing Methodology

Our experiments are designed to answer two questions: (a) Which learners are
the most robust to changing environments? (b) Does the reliance on a large
number of attributes make a classifier more robust?

To empirically answer the above questions, we selected a good variety of data
sets. We used 6 data sets from the UCI repository [3]: Adult, Letter, Nursery,
Connect-4, Breast Cancer and Vote. The number of classes ranges from 2 to 26;
the number of instances from 569 to 67557 !; the number of attributes from 8 to
42 and the types are both continuous and categorical. All algorithms come from
the Weka data mining and machine learning tool [16]. The classifiers produced
range from those that are reliant on a small number of attributes such as the
decision tree algorithm J48, through those of ensemble algorithms that rely on
a larger number — Random Forest, Bagging, AdaBoost — to ones that use all
attributes such as Naive Bayes, Logistic Regression, Artificial Neural Networks,
K-Nearest Neighbor. In this study, the five most significant attributes are de-
termined using the “Gain Ratio Attribute Evaluator” of Weka. For all of the
experiments, we changed the influence of the attributes by changing its informa-
tion gain ratio, as discussed in the next section. We train each algorithm using
the original data and test the classifier on data where the influence of different
attributes on the class is progressively decreased.

2.1 Changing an Attribute’s Influence

One measure for the influence of an attribute on the class is information gain,
defined as the expected reduction in entropy caused by partitioning the examples
according to that attribute. To decrease the influence of an attribute, we reduce
the information gain by adding noise to that attribute. Equation 1 shows the
information gain of attribute A relative to a collection of examples with class
labels C.

Gain(C,A) = Entropy(C) — Z |CC’7J||Entr0py(Cv) (1)
veValues(A)

Entropy(C,) = =y _ pilogsp;
1=1

! For the experiments, we use a sub-sample of 10% for all data sets except the smallest



4 Houman Abbasian, Chris Drummond, Nathalie Japkowicz and Stan Matwin

Values(A) is the set of all possible values for attribute A; C, is the subset of
C for which attribute A has value v; p; is the proportion of C, belonging to class
i. In equation 1, adding noise to attributes does not change C' but will change
C,. The noise randomly changes attribute values of selected instances. So, the
proportion p; of each class associated with a particular value will move closer to
the proportion of classes in the whole data set. Therefore, Entropy(C,) moves
towards Entropy(C) resulting in a lower Gain(C, A).

In this paper, we used a slightly modified version of information gain called
gain ratio.? This measure includes a term called split information which is sen-
sitive to how broadly the attribute splits the data and defined by equation 2.
By adding noise to attributes, the |C;| will move closer to each other. Therefore
SplitInfo in equation 2 will become larger and as a result the gain ratio will be
lower.

. . Gain(C,A
GainRatio(C, A) = 7Split1n§‘o(C?A) (2)

: ~|Ci|, |Cil
SplitInfo(C,A) = —Z 2
ol [ BN &)

log

In the following, rather than record the actual gain ratio, we record change
level. This is the percentage of test instances whose attribute values have been
changed. Thus 100% means all values have been altered. If the attribute is nom-
inal, the existing value is replaced by one randomly selected from the remaining
values of that attribute. If the attribute is numeric, it is replaced by a randomly
generated number drawn from the uniform distribution, spanning the maximal
and minimal values of that attribute.

3 Experimental Results

In this section, we first determine which attributes have the largest effect on
performance. We then compare classifiers to see how they fare as the influence
of the attributes decreased.

3.1 The Influence of each Attribute on Accuracy

Some attributes will have a strong influence on the class; others will have a much
weaker influence. To determine the strength, we found the five most influential
attributes, based on the information gain ratio, for each data set. We then used
10-fold cross validation to calculate the performance of each learner, averaged
over all change levels. Table 1 shows the different degrees of influence that the
attributes have on the class. The % in this table indicates that, using a paired
t-test with an alpha of 0.05, the accuracy of the learner for corrupted data is
significantly different from that for the original data.

2 The use of information gain as a way of selecting significant attributes has a long
history in machine learning. So does this modified version, which is used to select
attributes in C4.5 [10]
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Table 1. Accuracy with decreasing the gain ratio

Data set Attribute J48 RF NB BG ADB KNN LR ANN
11 53.22% 70.19* 49.2* 74.4* 73.44* 80.35 57.09* 80.25

12 83.3 82,52 68.7 82.6 83.22 80.75 81.83 80.47

6 82.04 82.32 81.4 82.7 80.62 80.18 82.1 80.37

Adult 8 83.17 81.54 81.5 78.3 83.22 80.52 83.05 80.73
10 83.87 82.63 81.6 82.7 83.22 80.7 83.43 81.13

Original Data| 82.64 82.48 82 82.3 83.37 80.7 83.5 80.87

14 49.05* 63.69* 49.2* 55.5% 6.749 60.52* 51.35% 21.21*

13 61.88* 73.7*% 54.1% T0* 6.749 66.71* 61.84* 24.27*

11 49.56* 75.81* 52.7* 67.9% 6.749 68.94* 58.4* 25.2%*

Letter 7 63.63* 73.03* 54.7* 67* 6.749 70.66* 65.98* 26.01*
12 59.95% 72.42* 50.8* 63.5% 6.749 64.15* 60.08* 27.1*

Original Data| 70.94 80.46 62 76.4 6.916 75.34 74.82 29.48

8 63.38% 65.31* 64.4* 63.8* 46.68* 63.06* 64.85* 65.92*

2 79.86* 79.98* 77.1* 78.7* 65.89 79.23* 80.3* 80.35*

1 84.33* 85.06* 84.7* 84* 65.89 82.46* 84.92* 85.5*

Nursery 7 88.41 90.15 87.9 88.5 65.89 86.67 89.18 89.92
5 88.9 90.26 88.1 88 65.89 85.68 89.99 90.32

Original Data| 90.02 91.66 88.6 88.5 65.51 87.89 91.66 91.72

36 79.8 80.63 58.8% 81.4 72.79 78.13 58.34 83.61

35 79.8 80.62 57.9% 81.4 72.79 78.13 64.47 83.42

21 70.59*% 76.3*% 65.1*% 72.6* 69.1* 76.26 54.12* 76.86*

Connect-4 18 79.8 80.63 59.8% 81.4 72.79 78.12 65.24 83.57
41 79.8 80.64 58.1*% 81.4 72.79 78.13 64.89 83.49

Original Data| 80.02 80.33 71.7 81.8 73.25 78.05 65.11 82.02

5 65.71* 68.61 72.3 69.8 73.93 7295 71.13 74.74

4 73.24 70.06 71.8 69.2 73.07 73.94 71.04 74.72

6 70.95 68.24 73.6 69.2 69.41 72.66 70.96 72.79

Breast Cancer 9 74 70.11 73.7 70.2 74.78 73.82 72.02 75.57
3 74.07 67.77 73.7 T72.1 74.98 74.8 71.52 75.74

Original Data| 76.44 68.6 74.6 70.4 75.91 75.87 71.42 75.28

4 67.91* 72.12* 85.7* 67.7* 73.47* 89.91 78.33* 74.87*

3 96.07 95.35 90.5 96.7 96.26 91.04 88.54 94.44

5 96.07 95.51 89.7 96.7 96.7 92.03 83.36 95.13

Vote 12 95.94 96.45 90.1 96.5 96.33 92.06 91.71 95.25
14 96.1 95.64 89.7 96.7 96.6 91.59 90.85 95.72

Original Data| 96.11 95.17 89.6 96.4 96.11 92.15 92.84 94.69

For the Adult, Vote and Connect-4 data sets, only one attribute has a sub-
stantial influence. For others, more attributes are influential: three attributes for
Nursery, and all five for the Letter data set. For the Breast Cancer data set, only
for the Decision Tree is there a statistically significant difference and then only
for the first attribute. However, as the percentage of positive samples is 30%,
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the accuracy of all algorithms on the original data is very close to 70%, that of
the default classifier. Thus corrupting the attributes has little impact. We will
drop this data set from further consideration.

For the Letter data set, AdaBoost uses a Decision Stump as its base classifier.
The performance of a Decision Stump, on this data set, is close to that of de-
fault classifier, so corrupting the attributes has little effect on its accuracy. The
performance of the Neural network is also low, yet higher than that of AdaBoost
and the change level does affect its performance significantly. The surprising
point for connect-4 data set is that the first and the second most influential
attributes do not have an impact on the accuracy that is statistically significant
for any learner. However, the third most influential attribute does. Exactly why
this occurs will need further investigation.

3.2 Ranking the Algorithms

For each learner and each data set, we use the attributes that significantly affect
the accuracy of the learner. First, we trained each learner using the original data
set. We then tested it on data where the influence of the attributes has been
decreased. We decreased the influence of each attribute using different change
levels (20%, 40%, 60%, 80%, and 100%). The performance of each learner was
averaged over all attributes for each change level. It should be noted that in
Table 2 smaller is better, i.e. there is less change in performance. The best value
in each row is in bold type. The average value of the best performing learner
is underlined if it is significantly better than the value from the second best
learner, using a paired t-test with a significance level of 0.05.
Let us go through the results of Table 2 by data set:

Adult The performances on clean and corrupted data are essentially indistin-
guishable for Nearest Neighbor and the Neural Network. The small negative
numbers are likely caused by random errors. So, we conclude, on average
across all change levels, the Neural Network and Nearest Neighbor are the
most robust learners.

Letter AdaBoost appears initially to be the most robust but, as explained ear-
lier, the accuracy of AdaBoost on the original data set is very low and
changing attributes has little effect. Excluding AdaBoost, Neural Network is
the most robust at all levels. On average across all change levels, the Neural
Network is the most robust learner and Random Forest is second.

Nursery Bagging is the most robust at lower change levels, while Nearest
Neighbor is the best at higher levels. In addition, on average Nearest Neigh-
bor is the most robust method but, using the t-test, it is not significantly
different from the second best learner, Bagging.

Connect-4 Nearest Neighbor is the best learning algorithm at all change lev-
els. On average across all levels, Nearest Neighbor is the best learner and
AdaBoost the second best.

Vote Nearest Neighbor is the best model at all change levels. On average across
all levels, Naive Bayes is the second best.
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Table 2. The impact of change level on the difference in performance

Data set |Change Level| J48 RF NB BG ADB KNN LR ANN
20% 9.25 3.83 11.29 2.42 3.56 -0.35 8.04 -0.86

40% 18.94 8.12 22.35 542 7.30 -0.55 17.88 -0.36

Adult 60% 29.2512.90 31.43 7.61 10.04 -0.25 26.11 -0.16
80% 38.47 16.20 44.35 11.00 12.39 0.22 34.83 -0.31

100% 51.20 20.41 54.38 13.08 16.38 -0.46 44.69 -0.20

Ave 29.42 12.29 32.76 7.91 9.94 -0.28 26.31 -0.38

20% 5.10 2.64 3.33 4.68 0.17 2.85 4.53 2.63

40% 9.57 5.95 6.63 843 0.17 597 9.53 3.64

Letter 60% 14.12 8.67 9.18 11.59 0.17 9.36 15.47 4.54
80% 18.66 11.74 13.02 15.32 0.17 12.54 21.18 6.10

100% 23.18 14.65 16.34 18.29 0.17 15.02 25.72 6.69

Ave 14.12 8.73 9.70 11.66 0.17 9.15 15.29 4.72

20% 4.97 4.59 3.80 3.12 552 3.78 4.85 4.38

40% 9.69 9.53 9.16 8.14 13.07 8.49 9.34 9.27

Nursery 60% 14.23 15.23 13.27 12.67 20.09 13.08 15.55 14.18
80% 18.93 19.60 17.90 18.23 24.57 17.86 20.33 19.45

100% 23.01 25.41 22.12 22.74 30.87 21.65 24.79 25.00

Ave 14.16 14.87 13.25 12.98 18.82 12.97 14.98 14.46

20% 4.05 0.78 5.08 3.96 1.54 0.78 8.23 0.98

40% 7.09 2.69 861 6.50 2.63 1.65 10.00 2.98

ConnectA4 60% 8.47 3.48 11.98 8.93 3.85 1.79 10.54 5.03
80% 12.17 5.89 14.89 13.66 6.06 2.54 13.26 7.79

100% 15.35 7.36 18.35 12.84 6.65 2.20 12.89 9.06

Ave 9.43 4.03 11.78 9.18 4.15 1.79 10.99 5.17

20% 7.98 7.55 0.67 829 6.12 0.33 6.59 8.29

40% 16.67 11.89 1.61 19.83 16.97 1.09 9.58 11.49

Vote 60% 32.15 28.82 5.05 29.72 18.61 1.12 15.16 19.80
80% 40.65 30.18 3.97 35.74 32.15 3.52 17.42 27.78

100% 43.52 36.81 5.66 50.16 39.38 5.14 23.83 31.74

Ave 28.20 23.05 3.39 28.75 22.64 2.24 14.52 19.82

Not surprisingly perhaps, a t-test for a significant difference between the best
and the second best classifier does not give us all the information we require. The
results are further validated for statistical significance using a one way analysis
of variance followed by what is termed a post hoc analysis [15]. First, the learners
are tested to see if the average difference in performance, on the original and
changed data, of the 8 learners are equal, across the five change levels and the
most significant attributes respectively. This is the null hypothesis in ANOVA;
the alternative hypothesis is that at least one learner is different. The results of
the ANOVA are given in Table 3 and allow us to reject the null hypothesis, but
it does not tell us how to rank the classifiers.
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Table 3. ANOVA with their corresponding F-Value and P-Value

Adult Letter Nursery Connect-4 Vote

F-Value P-Value|F-Value P-Value|F-Value P-Value|F-Value P-Value|F-Value P-Value

72.3 <0.0001| 32.46 <0.0001| 2.6 0.012 | 11.42 <0.0001| 25.86 <0.0001

To achieve this we use the post hoc analysis. We apply the Fisher’s Least
Significant Difference (LSD) test, with an individual error rate of 0.05. Table 4
provides the average values of each metric for each learner, as well as their sig-
nificant ranks, the columns labeled Ave and R respectively in this table. Note
that if two or more instances have the same letter, then their performances are
not significantly different. Table 4 shows the overall impact of changing the in-
fluence of all significant attributes over all change levels. For the Adult data set,
the Neural Network and Nearest Neighbor are the most robust learners; the en-
semble learners Bagging, AdaBoost and Random Forest are next. For the Letter
data set, although AdaBoost is the most robust learner the original accuracy of
AdaBoost is close to the default classifier. Excluding AdaBoost from this data
set, the Neural Network is the most robust and Random Forest, Nearest Neigh-
bor, Naive Bayes, Bagging are the next. Nearest Neighbor, Random Forests,
AdaBoost and the Neural Network are the most robust model, for the Connect-
4 data set. Next are the Decision Tree, Bagging, Logistic Regression and Naive
Bayes. For the Nursery data set, the post hoc test is not able to differentiate
among the learners very well. The mean difference value of the learners is close
to one another and the variance is high. In this data set all learners except Ad-
aBoost are placed in the first level. For the Vote data set, the best learners are
Nearest Neighbor and Naive Bayes, all other learners are in the next group.

Table 4. Overall impact of decreasing attribute influence

Adult Letter Connect-4 Nursery Vote All data sets
Alg Ave R| Alg Ave R| Alg Ave R| Alg Ave R| Alg Ave R| Alg Ave R
ANN -0.38 A|ADB 0.17 AJKNN 1.79 A|KNN 12.97 A|JKNN 2.24 A|KNN 5.18 A
KNN -0.28 A|ANN 4.72 B| RF 4.03 A| BG 12.98 A| NB 3.39 A|ANN 8.76 A
BG 791 B| RF 8.73 C|ADB 4.15 A| NB 13.25 A| LR 14.52 BJADB 11.14 B
ADB 9.94 B|KNN 9.15 C|ANN 5.17 A| J48 14.16 A|ANN 19.82 B| RF 12.59 B
RF 1229 B| NB 9.70 C| J48 9.43 B|ANN 14.46 A|ADB 22.64 B| BG 14.1 B
LR 26.31 C| BG 11.66 C| BG 9.18 B| RF 14.87 A| RF 23.05 B| NB 14.18 B
J48  29.42 C| J48 14.12 D| LR 10.99 B| LR 14.98 A| J48 28.22 B| LR 16.42 C
NB 32.76 C| LR 15.29 D| NB 11.98 B|ADB 18.82 B| BG 28.75 B| J48 19.07 D
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From table 4, due to the high variance among learners in each data set, the
post hoc tests does not differentiate among the learners very well. For the Adult
data set, the post hoc test does not differentiate among the learners of the third
group indicated by letter C. For the Letter data set, it also does not differentiate
among the third group of the learners. This is repeated across the individual
data sets.

To improve differentiation of the robustness of algorithms, in the last column
of Table 4, we give the average values for each learner, and significant ranks,
for all data sets combined. Here, Nearest Neighbor is the clear winner with
the Neural Network in second place. Learners reliant on a smaller number of
attributes such as Random Forests, AdaBoost and Bagging are next. AdaBoost
is the best but, as it did poorly in terms of accuracy on a couple of original
data sets, this robustness comes at some price. The Decision Tree comes firmly
in last place. In general, our experimental results show that learners reliant on
more attributes, tend to be more robust to the changes of the influence of some
of them.

4 Discussion and Future Work

In this section, we discuss some hypotheses for why some learners are more robust
to changing the influence of attributes than others. These need verification and
will be the subject of future work. We will also discuss other directions for future
research.

For Artificial Neural Networks robustness to attribute changes is dependent
on a decision surface using all attributes of the data simultaneously. Thus, the
changing of one attribute of an instance is unlikely to cause that instance to
be misclassified, unless the weight of that attribute is very much larger than
that of others. Likewise, for Nearest Neighbor all attributes are used to find
the distance between two instances. If the influence of one attribute decreases,
other attributes can still be predictive. For decision trees such as J48, where the
complexity of the tree depends on the data set we use, often only a few attributes
define the decision boundary. Thus, if the influence of one of these attributes on
one particular instance on the class is changed, then that instance may well cross
the decision boundary.

For example, Figure 1(a) is the decision tree and Figure 1(b) is the data and
decision boundary formed by the tree (solid lines) and that formed by the Neural
Network (dashed line). Note that x is the most significant attribute for decision
tree. Now suppose that by changing the influence of this attribute, the instance
at the top of Figure 1 moves in the x direction crossing the decision boundary for
the tree. That instance will now travel down the right branch of the decision tree
as shown by the dashed line in Figure 1(a), classifying this instance incorrectly.
This instance does not cross the decision boundary for the Neural Network. This
is because this boundary uses both attributes and is much smoother. The same
reasoning can be applied to the instance that crosses the y=c boundary in Figure
1(b). If by changing y, the second most influential attribute, the instance crosses
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Fig. 1. The impact of noise on decision tree and Artificial neural network

the boundary y=c then the left solid branch on the tree classifies this instance
as 0 but the Neural Network correctly classifies it.

Ensemble algorithms, as they consist of multiple classifiers, tend to rely on
many, though not all, attributes. Where they differ, from each other, is primarily
in the way the individual classifiers are constructed. We expect that Random
Forests, by deliberately selecting classifiers based on different attributes, would
be the most robust. That is supported by our experimental results in that it
does well on a couple of data sets. It is, however, beaten overall by AdaBoost,
although the poor performance of AdaBoost on some original data sets accounts
for much of this. Further experiments are needed to determine whether or not
there is any real difference between ensemble algorithms in terms of robustness.
If there is, we aim to find out what is at the root these differences. What is clear,
however, is that they are generally better than the base classifier they use.

We had concerns that the statistical tests, which showed AdaBoost to be very
robust, might be misleading due to its poor performance on some of the original
data sets. So, we claim that for an algorithm to be considered robust it must
not only have a small difference in performance, but also the performance on the
original data set must be good, or at least competitive with other algorithms. As
future work, it would be worth exploring if a single metric might capture these
two concerns. An alternative would be to plot points showing how they trade-off
on a two-dimensional graph, similar to ROC curve or cost curves [9, 5]. Another
concern with the experiments is that the measure we used, information gain
ratio, is also used by the decision tree algorithm to chose the attributes at each
branch. So, it may have a larger impact on the performance of decision trees than
on that of other algorithms. We will therefore explore the effect of using different
measures for selecting the most significant attributes in the future experiments.
This can be quite easily realized within Weka as it has many attribute evaluators:
Info Gain, Relief Attribute Evaluator, Principal Components, and OneR.
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As other future work, the experiments will look at a greater range of al-
gorithms. It would be worth exploring if there are other general characteristics,
apart from the number of attributes used, that affect robustness. Another simple
extension of current research is to include more data sets. We will also use the
entire number of instances of the present data sets instead of just a 10% fraction
of them. Some of the data sets we chose only had one significant attribute. This
property has been noticed before, simple classifiers often do well on UCI data
sets [6]. It would be worth doing experiments on data sets with a wide spread
in the number of significant attributes, to see how this affects robustness. We
will also experiment with changing the influence of a combination of attributes
instead of one attribute at a time and with changing attributes in other ways.

We believe this paper has given some insight into what makes a classifier
robust to changing environments. Nevertheless we have not explained by any
means all the factors. We need to determine why Naive Bayes and Logistic
Regression, which use all attributes, are not robust. Further experiments will be
needed to expose the other differences between classifiers.

5 Conclusions

The objective of this study was to investigate the robustness of a variety of com-
monly used learning algorithms to changing environments. The Neural Network
and Nearest Neighbor are the most robust, learners reliant on smaller number
of attributes such as Random Forest, AdaBoost and Bagging are located in the
second place and finally the Decision Tree is in last place. In general, we conclude
that learners reliant on more attributes tend to be more robust. This is clearly
not the whole story, however, as Naive Bayes and Logistic Regression are not
robust, future work will investigate this issue further.
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