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Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies.
Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced
resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the ex-
pectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated
analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states
is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage
enabled by a quantum state in a phase discrimination task.

Nearly one century old, quantum mechanics is now livelier
than ever. Fundamental experiments have just demonstrated,
beyond any major loophole, that quantum correlations are in-
compatible with a local realistic interpretation [1–3]. More-
over, the realization that quantum properties can be harnessed
for practical applications [4] is presently fuelling a heated in-
ternational race [5] to deploy quantum technologies [6]. This
is no coincidence: the improved comprehension of fundamen-
tal quantum properties and our increased ability to exploit
them go hand in hand.

The most essential feature signifying quantumness in a
single system and underpinning all forms of quantum cor-
relations in composite systems [7–9] is quantum coherence,
namely the possibility of creating superpositions of a set of
orthogonal states. Revealing quantum coherence in the state
of a natural or man-made system earmarks its behaviour as
genuinely nonclassical [10, 11]. Its degree of coherence
may quantify the capability of such an object for quantum-
enhanced applications [12, 13], ranging from cryptography
[14] to metrology [15] and thermodynamics [16, 17]. It is
thus imperative to accomplish a rigorous operational charac-
terization of quantum coherence.

Recently, various approaches have been put forward to de-
velop a resource theory of coherence [12, 13, 18–27]. These
partly follow from, and complement, earlier studies on re-
source theories of asymmetry [18, 28–33], of which coherence
may be seen as a special instance [20, 34]. A resource the-
ory is defined by the notions of free states (i.e. those not con-
taining the resource, and assumed available at no cost) and
free operations (i.e. those one is restricted to, and that can-
not transform free states into resource states) [35, 36]. Fixing
a reference basis (based on physical arguments [37]), which
we can identify as the computational basis {| j〉}d−1

j=0 for a d-
dimensional system, the convex set I of free states in any
resource theory of coherence is given by incoherent states
diagonal in the reference basis, δ =

∑d−1
j=0 δ j | j〉〈 j|. Any

state ρ can be reduced to an incoherent one by a full de-
phasing operation ∆, which maps ρ into its diagonal part
∆(ρ) =

∑d−1
j=0 | j〉〈 j| ρ | j〉〈 j| in the reference basis.

Different authors have however considered different options
in analyzing limitations on the processing of coherence (see
also [38, 39]). We mention the following alternative choices
of free operations, in order of inclusion: incoherence preserv-
ing operations [12] ⊃ incoherent operations [13] ⊃ strictly in-
coherent operations [40] ⊃ translationally invariant operations
[20] ⊃ genuinely incoherent operations [27]. By incoherence
preserving operations we refer to the maximal set of quan-
tum channels ΛM which map incoherent states into incoherent
states [12], i.e. ΛM(δ) ∈ I for any δ ∈ I . Incoherent op-
erations are instead those quantum channels ΛI which admit
one operator-sum decomposition ΛI(ρ) =

∑

l KlρKl
† with all

incoherence preserving Kraus operators {Kl} [13]. Strictly in-
coherent operations ΛS are a subset of incoherent operations
whose incoherence preserving Kraus operators {Kl} further
obey 〈 j|KlρK

†
l
| j〉 = 〈 j|Kl∆(ρ)K†

l
| j〉 ∀ j, l, meaning that they

can neither create nor use coherence [19, 40]. More restric-
tively, genuinely incoherent operations ΛG [27] (also known
as generalized incoherent measurements [40]) are those which
leave every incoherent state invariant, ΛG(δ) = δ [27]; their
Kraus operators are all incoherence preserving in all possible
operator-sum decompositions. In-between the last two sets are
translationally invariant operations, introduced within the re-
source theory of asymmetry [18, 20]: specialized to coherence
(i.e., asymmetry with respect to time translations generated by
a Hamiltonian H diagonal in the reference basis {| j〉}), trans-
lationally invariant operations ΛT are defined by the condition
e−iHtΛT (ρ)eiHt = ΛT (e−iHtρeiHt) for any ρ and any real t.

Several quantities have been proposed accordingly as can-
didate measures of quantum coherence, respecting physical
requirements of monotonicity under (some of) the sets of op-
erations introduced above [12, 13, 18–22, 25–27, 30, 33, 37,
41]. A canonical measure which complies with all the afore-
mentioned resource theories is the relative entropy of coher-
ence [12, 13, 18, 30], which for a state ρ takes the simple
form CS(ρ) = S(∆(ρ)) − S(ρ), where S(ρ) = −Tr[ρ log2 ρ] is
the von Neumann entropy. This measure can be interpreted
as the optimal rate of maximally coherent states that can be
distilled by incoherent operations ΛI in the asymptotic limit
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of many copies of ρ [25]; however its experimental determi-
nation requires full state tomography, which can be unfeasible
for large systems. More accessible measures of relevance for
quantum metrology [15], such as the Wigner-Yanase skew in-
formation and the quantum Fisher information [33, 41], are
monotone under translationally invariant operations but not
under the larger set of incoherent operations [20], which may
put into question their broader status as coherence quantifiers.
In general, despite recent progress, there remains a shortage
of rigorous and physically intuitive bona fide measures of co-
herence endowed with direct operational interpretations.

In this Letter we fill this gap by introducing the robustness

of coherence. As the name suggests, it quantifies the mini-
mal mixing required to destroy all the coherence in a quantum
state — an already operational definition, inspired by similar
concepts previously investigated for entanglement, steering-
type correlations, non-locality and other resources [36, 42–
45]. We prove that such a measure is a full monotone in
all possible resource theories of coherence. The measure is
furthermore computable (exactly in relevant cases, and nu-
merically in general via a simple semidefinite program [46])
and observable: it can be recast as the expectation value of a
witness operator for any quantum state. This makes it very
appealing for experimental investigations, e.g. in condensed
matter and biological contexts [10, 11, 47]. We then show that
the measure admits a direct operational interpretation: it quan-
tifies the advantage enabled by a quantum state, compared to
any incoherent state, in a phase discrimination task. We fur-
ther discuss the generalization of these results to the case of
asymmetry in a companion paper [34], which also contains
detailed proofs for some technical results of this Letter.

Let D(Cd) be the convex set of density operators acting on a
d-dimensional Hilbert space, and let I ⊂ D(Cd) be the subset
of incoherent states. We define the robustness of coherence
(RoC) of a quantum state ρ ∈ D(Cd) as

CR(ρ) = min
τ∈D(Cd)

{

s ≥ 0
∣

∣

∣

∣

ρ + s τ

1 + s
=: δ ∈ I

}

, (1)

that is, the minimum weight of another state τ such that its
convex mixture with ρ yields an incoherent state δ. The con-
cept is illustrated in Fig. 1 for a qubit (d = 2). If we denote by
τ⋆ and δ⋆ the states achieving the minimum in (1), then

ρ =
(

1 + CR(ρ)
)

δ⋆ − CR(ρ)τ⋆ , (2)

is said to realize an optimal pseudomixture for ρ. Notice that
it is necessary in Eq. (1) to let τ be an arbitrary state: if one
restricted τ to be incoherent, then the minimum s would di-
verge for any state ρ with nonzero coherence, henceforth re-
sulting totally uninformative. This contrasts with the case of
entanglement, for which the original robustness was defined in
terms of pseudomixtures with separable states [42], and only
later extended to pseudomixtures with arbitrary states [43].

We now prove that the RoC is a bona fide measure of co-
herence. First of all, it is seen by definition that

CR(ρ) ≥ 0 and CR(ρ) = 0 ⇐⇒ ρ ∈ I . (3)

Figure 1. (Color online) Robustness of coherence CR(ρ) for a single
qubit state ρ = 1

2 (11 + ~r · ~σ), where ~r is the Bloch vector and ~σ is
the vector of Pauli matrices. Incoherent states span the thick vertical
r3 axis. The optimization in Eq. (1) is fulfilled by an equatorial pure
state τ⋆ as depicted, resulting in CR(ρ) = (r2

1 + r2
2)

1
2 = 2|ρ01|.

Second, the RoC is convex, which is a desirable (although
not fundamental) property for a coherence quantifier [13]. The
proof mirrors the one for the robustness of entanglement [42].
Let ρ1 and ρ2 be two states, and write for each the optimal
pseudomixture ρk =

(

1+CR(ρk)
)

δ⋆
k
−CR(ρk)τ⋆

k
(k = 1, 2). Tak-

ing the convex combination ρ = pρ1+(1−p)ρ2 with 0 ≤ p ≤ 1,
notice that a pseudomixture ρ = (1 + s)δ − sτ can be written,
with δ =

[

p
(

1+CR(ρ1)
)

δ⋆1 +(1−p)
(

1+CR(ρ2)
)

δ⋆2
]

/(1+s) ∈ I ,
τ =

[

pCR(ρ1)τ⋆1 + (1− p)CR(ρ2)τ⋆2
]

/s, and s = pCR(ρ1)+ (1−
p)CR(ρ2). By definition, CR(ρ) ≤ s, which proves convexity,

CR
(

pρ1 + (1 − p)ρ2
) ≤ pCR(ρ1) + (1 − p)CR(ρ2) . (4)

Third, and most importantly, the RoC is nonincreasing un-
der all the sets of operations used in resource theories of co-
herence. We prove in fact a general form of monotonicity
under incoherence preserving (sub)channels. Let {Γl}ml=1 be an
instrument, i.e., a set of m (sub)channels (completely positive
maps whose sum

∑m
l=1 Γl(ρ) =: Λ(ρ) defines a trace preserving

channel Λ), mapping any incoherent state δ ∈ I into another
(un)normalized incoherent state Γl(δ). For any ρ, we have then

CR(ρ) ≥
m

∑

l=1

Tr[Γl(ρ)] CR

(

Γl(ρ)
Tr[Γl(ρ)]

)

. (5)

The proof can be easily sketched (see [34] for more de-
tails). Take the optimal pseudomixture for ρ given by Eq. (2)
and apply the (sub)channel Γl to both sides, Γl(ρ) =

(

1 +
CR(ρ)

)

Γl(δ⋆)−CR(ρ)Γl(τ⋆). Since Γl(δ⋆)/Tr[Γl(δ⋆)] is still in-
coherent, definition (1) implies CR

(

Γl(ρ)
Tr[Γl(ρ)]

)

≤ CR(ρ) Tr[Γl(τ⋆)]
Tr[Γl(ρ)] .

Then,
∑

l Tr[Γl(ρ)]CR
(

Γl(ρ)
Tr[Γl(ρ)]

)

≤ ∑

l Tr[Γl(ρ)]CR(ρ) Tr[Γl(τ⋆)]
Tr[Γl(ρ)] =

CR(ρ)
∑

l Tr[Γl(τ⋆)] = CR(ρ), concluding the proof. In the
case m = 1, Eq. (5) proves that the RoC cannot increase, on
average, under the maximal set of incoherence preserving op-
erations {ΛM} [12]. For m ≥ 1, if one identifies each Γl with
a Kraus operator Kl (obeying

∑m
l=1 Kl

†Kl = 11), then Eq. (5)
proves monotonicity of the RoC under selective incoherent
operations {ΛI}, flagged as property C2b in [13], which is typ-
ically a rather demanding requirement in resource theories.
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Overall, Eq. (5) establishes the RoC as a full monotone with
respect to all possible formulations of the theory of coherence.

We now show that the RoC has also desirable properties
of computability and accessibility. Inspired by entanglement
witnesses [7, 48], which are very useful tools to detect insep-
arability in laboratory [49], we introduce the notion of coher-

ence witnesses. A Hermitian operator W satisfies ∆(W) ≥ 0 if
and only if Tr[δW] = Tr[δ∆(W)] ≥ 0 for all incoherent states
δ ∈ I ; we call any such observable W a coherence witness,
because finding Tr[ρW] < 0 reveals coherence in the state ρ
[? ]. We find that the expectation value of any witness W,
obeying the further constraint W ≤ 11, provides a quantitative
lower bound to the RoC [34],

max{0, −Tr[ρW]} ≤ CR(ρ) , ∀ W such that (6)

∆(W) ≥ 0 and W ≤ 11 . (7)

Importantly, given any state ρ, there always exists an opti-
mal witness W⋆, characterized in particular by ∆(W⋆) = 0,
which saturates inequality (6). In other words, the RoC is an
observable quantity, given by the expectation value of a suit-
able (state-dependent) witness operator for any quantum state
ρ. Finding such an optimal witness, hence determining CR(ρ)
as defined in (1), can be then recast [34] as a simple semidefi-
nite program [50] (significantly more efficient than the convex
optimization one for the robustness of entanglement [51]):

maximize −Tr[Wρ] subject to Eq. (7) . (8)

For the convenience of the reader, we release MATLAB [52]
code that makes use of the free CVX package [53, 54] to eval-
uate the RoC, as a Supplemental Material [46].

These results reveal that one can readily estimate the RoC
from below in laboratory, by measuring any observable W

obeying the constraints in (7), with no need for full to-
mography of the state ρ. This may be particularly valu-
able for witnessing coherence effects in biological domains,
e.g. energy transport phenomena in light-harvesting systems
[10, 11, 47, 55]. However, given a state ρ, the lower bound of
Eq. (6) can vanish for non-optimized choices of W. Typically,
one needs some knowledge on the form of ρ to determine the
optimal witness W⋆; a similar issue is encountered in entan-
glement detection [49]. Nonetheless Eqs. (6) and (7) imply
that, for any set of observables {Oi}, i = 1, . . . , k, experimen-
tally measured with expectation values oi = Tr[Oiρ], and not
necessarily tailored to the measurement of RoC, one can con-
sider coherence witnesses of the form W =

∑k
i=1 ciOi + m11,

for c1, . . . , ck,m ∈ R, and obtain a lower bound to the RoC by
the SDP [34] (code available [46])

maximize −(∑k
i=1 cioi + m

)

subject to ∆
(∑k

i=1 ciOi + m11
) ≥ 0,

∑k
i=1 ciOi + m11 ≤ 11.

One can even make potentially better use of available experi-
mental data, by exactly estimating the minimal RoC compati-
ble with the data; this can also be cast as an SDP [34, 46].

Accessible faithful lower bounds to the RoC can be given
too, noting that W2 = (∆(ρ) − ρ)/‖∆(ρ)‖∞ obeys (7), so that

CR(ρ) ≥
‖ρ − ∆(ρ)‖22
‖∆(ρ)‖∞

≥
‖ρ − ∆(ρ)‖22
‖∆(ρ)‖2

≥ ‖ρ − ∆(ρ)]‖22, (9)

since Tr[(∆(ρ)−ρ)ρ] = Tr[∆(ρ)2]−Tr[ρ2] = ‖ρ−∆(ρ)‖22. Here,
‖ · ‖2 is the 2-norm, and ‖ · ‖∞ is the operator norm. The quan-
tity on the rightmost-hand side of (9) is: (i) nonzero on all
but incoherent states; (ii) itself a monotone under genuinely
incoherent operations ΛG [27], but not under the larger sets
of incoherent operations [13]; (iii) accessible via the measure-
ment of the purities Tr[ρ2] and Tr[∆(ρ)2] (notably, the same
holds for the tighter second-to-last bound in (9)). The latter
two quantities can be measured directly on two copies of the
state ρ (assumed unknown), as Tr[ρ⊗2V] and Tr[ρ⊗2∆⊗2(V)],
respectively, with V being the swap operator [41, 56], defined
by its action V |ψ〉 |φ〉 = |φ〉 |ψ〉, for all |ψ〉 , |φ〉 ∈ Cd.

We now show that an analytical evaluation of RoC can
be obtained for a relevant class of d-dimensional states. Let
ρ ∈ D(Cd) be a state for which there exists a unitary U =
∑

j eiφ j | j〉〈 j|, belonging to the set of genuinely incoherent
operations [27], such that (UρU†)kl = |ρkl|. One has then
CR(ρ) = Cℓ1 (ρ) [34], where Cℓ1 (ρ) =

∑

k,l |ρkl|−1 = 2
∑

k<l |ρkl|
is the ℓ1 norm of coherence [13]. The class of states for which
this equality holds includes, for instance, all one-qubit states
(d = 2, see Fig. 1), all d-dimensional states with X-shaped
density matrix [57–59] (which contain in particular Bell diag-
onal states of two qubits [37, 60]), and all pure states |ψ〉 ∈ Cd.
For the latter, writing in general |ψ〉 = ∑d−1

j=0 ψ j | j〉, we get ex-

plicitly CR(|ψ〉〈ψ|) = Cℓ1 (|ψ〉〈ψ|) = (∑

j |ψ j|
)2 − 1 [13].

In particular, maximally coherent states |ψ+〉, character-
ized by |ψ j| = 1√

d
∀ j = 0, . . . , d − 1, have CR(|ψ+〉〈ψ+|) =

Cℓ1 (|ψ+〉〈ψ+|) = d − 1, that is the maximum possible value
for the RoC of any d-dimensional state. One can show [34]
in fact that these are the only states which can reach maximal
RoC, which positively settles another requirement recently ad-
vocated for bona fide measures of coherence [26].

The equivalence between RoC and ℓ1 norm of coherence
breaks down already in dimension d = 3. One can prove how-
ever the existence of general upper and lower bounds [34],

(d − 1)−1
Cℓ1 (ρ) ≤ CR(ρ) ≤ Cℓ1 (ρ) , ∀ ρ ∈ D(Cd) . (10)

Both bounds can be tight. Examples of states saturating the
upper bound have been provided already (for instance, all pure
states). A family of states saturating the lower bound is in-
stead given by ρp = (1+ p)11/d− p |ψ+〉〈ψ+|, with 0 ≤ p ≤ 1

d−1 ,
for which Cℓ1 (ρp) = p(d − 1) and CR(ρp) = p. Nonetheless,
the lower bound becomes looser for large values of Cℓ1 , and
one finds CR(ρ)→ d−1 for all ρ such that Cℓ1 (ρ)→ d−1 [34].

We are finally ready to provide a direct operational inter-
pretation for the RoC in a metrology context. Consider the
following phase discrimination (PD) game. Alice prepares
a quantum state ρ ∈ D(Cd), which then enters a black box.
The black box encodes a phase on ρ by implementing a uni-
tary Uφ = exp(iNφ), with N =

∑d−1
j=0 j | j〉〈 j| and φ ∈ R, so
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that the output state is determined by the action of the unitary
channel Uφ(ρ) := UφρU

†
φ. We can think of N as a Hamil-

tonian for the system with equispaced spectrum, assuming
unit spacing without loss of generality. In this way, the ref-
erence basis {| j〉}, with respect to which coherence is defined
and measured, is physically identified by the choice of the
Hamiltonian. Suppose one of m phases {φk}m−1

k=0 can be ap-
plied, each with a prior probability pk. Any collection of
pairs {(pk, φk)}m−1

k=0 =: Θ defines a PD game, where Alice’s
goal is that of guessing correctly the phase that was actually
imprinted on the state. To this end, she performs a gener-
alized measurement with elements {Mk} (satisfying Mk ≥ 0,
∑

k Mk = 11) on the output state Uφ(ρ) after the black box.
Optimizing over all measurements, the maximal probability
of success depends on the game Θ and the input state ρ, and
is given by psucc

Θ
(ρ) = max{Mk}

∑

k pkTr[Uφk
ρU
†
φk

Mk] .
Suppose now Alice’s input state is incoherent, ρ ≡ δ ∈ I .

Since every unitary channel Uφ leaves any such state invari-
ant, Uφ(δ) = δ, the best strategy for Alice is always to cast
the guess kmax corresponding to the phase with the highest
prior probability pkmax := maxk pk. This results in an opti-
mal probability of success for any incoherent state given by
psucc
Θ

(I ) := pkmax , which can be achieved even without actu-
ally probing the channel, just by a fixed guess.

It is clear that, by preparing a coherent state ρ < I , Alice
can expect to do better. What is less obvious yet more remark-
able, is that the maximum advantage achievable by using ρ as
opposed to any incoherent probe δ, in all possible PD games,
is quantified exactly by the RoC of ρ. More precisely [34]:

max
Θ

psucc
Θ

(ρ)

psucc
Θ

(I )
= 1 + CR(ρ) . (11)

The maximum is achieved for the PD game Θ⋆ ≡
{( 1

d
, 2πk

d

)}d−1
k=0 . Therefore CR(ρ) exactly quantifies, in particu-

lar, how useful the state ρ is for reliable decoding and trans-
mission of messages encoded by generalized phase channels
ρ 7→ ZkρZ†k, with Z | j〉 = exp

(

i 2π
d

j
) | j〉. These channels fea-

ture in several quantum information tasks such as quantum
error correction [61], cloning [62], and dense coding [63, 64].
This suggests a prominent role of coherence, specifically mea-
sured by the RoC, in quantum communication.

We notice that one can consider more general channel dis-
crimination (CD) games, where each game is associated with
a set of pairs {(pk,Λk)}m−1

k=0 =: Υ, with {Λk} a set of m (gener-
ally nonunitary) channels. For each CD game Υ, Alice’s goal
is still that of discriminating which Λk gets applied by a black
box to an input ρ, and she succeeds with optimal probabil-
ity psucc

Υ
(ρ) = max{Mk}

∑

k pkTr[Λk(ρ)Mk], where we optimize
over measurements similarly as before. By virtue of Eq. (2),
for any CD game Υ it holds psucc

Υ
(ρ) ≤ (1 + CR(ρ))psucc

Υ
(I ),

where psucc
Υ

(I ) is the best probability of success by using as
input any incoherent state. In general, psucc

Υ
(I ) can be higher

than pkmax , because the channels Λk may act nontrivially on
incoherent states. Nonetheless, if one focuses on a subclass of
CD games {Υ⋆} ∋ Θ⋆ containing the PD game Θ⋆, one gets

maxΥ∈{Υ⋆}
psucc
Υ

(ρ)
psucc
Υ

(I ) = 1+CR(ρ). The RoC CR(ρ) thus quantifies
the maximum achievable advantage in any CD task in which
the phase channels Zk are some of the possible channels ap-
plied to a probe ρ. It will be a worthy development to extend
this analysis to the scenario of assisted CD games, where the
collaboration of a correlated party Bob may further increase
Alice’s probability of success in the discrimination [65].

We conclude by remarking that the definition (1) can be ex-
tended to a more abstract notion of robustness of asymmetry

[34], in which the free states (symmetric states) are those in-
variant under the action of a group [18]. Specifically, given
a symmetry group G with associated unitary representation
{Ug}g∈G on the Hilbert space H , and defining the action of Ug

on a state ρ ∈ D(H ) as Ug(ρ) = UgρU
†
g , a state σ ∈ D(H )

is symmetric with respect to G if and only if Ug(σ) = σ for
all g ∈ G. Denoting by S the convex set of all symmetric
states, the robustness of asymmetry of a state ρ is then defined
as AR(ρ) = minτ∈D(H )

{

s ≥ 0
∣

∣

∣

ρ+s τ
1+s
=: σ ∈ S

}

, i.e., as the
minimum weight of another state τ such that its convex mix-
ture with ρ yields a symmetric state σ. Then, suitable adap-
tations of all the properties demonstrated above in Eqs. (3)–
(9) carry over to the robustness of asymmetry, including the
SDP evaluation and an operational interpretation in the con-
text of channel discrimination games [34]. Coherence can be
recovered as a special case of asymmetry with respect to the
d-dimensional representation of the compact group U(1).

The approach pursued in this Letter, based on the gener-
alized notion of robustness, appears accordingly quite versa-
tile to define and validate insightful quantifiers of resources in
quantum physics [36] and beyond [35, 66], as demonstrated
here for the fundamental case of quantum coherence.
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