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Abstract

High frequency (HF) band has both military and civilian uses. It can be used either as a primary or backup

communication link. Automatic modulation classification (AMC) is of an utmost importance in this band for the

purpose of communications monitoring; e.g., signal intelligence and spectrum management. A widely used

method for AMC is based on pattern recognition (PR). Such a method has two main steps: feature extraction and

classification. The first step is generally performed in the presence of channel noise. Recent studies show that HF

noise could be modeled by Gaussian or bi-kappa distributions, depending on day-time. Therefore, it is anticipated

that change in noise model will have impact on features extraction stage. In this article, we investigate the

robustness of well known digitally modulated signal features against variation in HF noise. Specifically, we consider

temporal time domain (TTD) features, higher order cumulants (HOC), and wavelet based features. In addition, we

propose new features extracted from the constellation diagram and evaluate their robustness against the change

in noise model. This study is targeting 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, and 64QAM modulations, as they are

commonly used in HF communications.

Keywords: Digital modulation features, temporal time domain features, higher order cumulants, wavelet decompo-

sition, constellation diagram, bi-kappa noise, HF band

Introduction
Automatic modulation classification (AMC) is the pro-

cess of identifying modulation type of a detected signal

without prior information. This technique has both

military and civilian applications, and is currently an

important research subject in the design of cognitive

radios [1-3]. AMC is a complex task especially in a

non co-operative environment as in high frequency

(HF) communications, where transmission is affected

by atmospheric conditions and other transmission

interferences [4].

AMC methods are grouped into two categories: likeli-

hood based (LB) and feature based (FB) methods. LB

methods have two steps: calculating the likelihood func-

tion of the received signal for all candidate modulations,

and then using maximum likelihood ratio test (MLRT)

for decision-making. In FB methods, features are first

extracted from the received signal and then applied to a

classifier in order to recognize the modulation type.

Most of the recent literatures use the FB methods due

to their low processing complexity and high perfor-

mance [5]. For more details about AMC methods with a

comprehensive literature review, the reader is referred

to [6].

Figure 1 shows the classification task in a smart

radio. The task of the signal detection block is to iden-

tify signal transmission, while the AMC contains a fea-

ture extractor followed by a classifier. The classifier

can be based on fixed threshold as in decision tree

methods, or based on pattern recognition (PR) meth-

ods as in artificial neural networks (ANNs) and sup-

port vector machines (SVM) [7,8]. Most of the features

used in literature are based on wavelet [9,10], temporal

time domain (TTD) analysis [11-13], and higher order

cumulants (HOC) [14-16]. These features are generally

extracted under the assumption that the modulated

signals are corrupted by additive white Gaussian noise

(AWGN). Although this assumption is valid in many

communication environments, recent studies show that

HF noise changes between AWG and bi-kappa
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distributions [17,18]. The effect of these two noise dis-

tributions has been taken into account during the

design of the AMC algorithms proposed in [19]. The

work shows that the change in noise model affects the

classification performance, especially at low signal-to-

noise ratio (SNR). Therefore, the robustness of com-

monly used features against variation in noise models

needs to be investigated so that more reliable AMC

algorithms can be designed for HF signals.

In this paper, we first examine the effect of Gaussian

and bi-kappa noise models on wavelet, HOC, and TTD

features, when these features are considered for the

classification of single carrier modulations commonly

used in HF band: 2PSK, 4PSK, 8PSK, 16QAM,

32QAM, and 64QAM [20]. Second, we propose new

features based on maximum dissimilarity measures

(MDM) in constellation diagram and evaluate their

robustness against the change in noise model. Note

that the contribution of this article is pertaining to the

features extraction stage; hence the results obtained

are independent of the classifier being used. However,

these results will greatly serve the classifier design

stage, as this stage can be based on features that are

robust with respect to noise models.

The organization of the article is as follows. ‘Signal

model’ and ‘Noise model’ sections present signal and

channel noise models, respectively. ‘Commonly used sig-

nal features’ section introduces the TTD, HOC, and

wavelet based features. ‘Proposed features’ section pre-

sents the proposed features. ‘Simulation results’ section

presents results showing the robustness of the different

features against the variation in noise model. ‘Conclu-

sion’ section presents concluding remarks.

Signal model
The general form of received signal encompassing all

modulation schemes under consideration is given by [21]:

r(t) = Re
{

C(t)ej2π fct
}

+ n(t) (1)

where C(t)is the complex envelope of modulated sig-

nal, n(t) is band limited noise, fc is the carrier frequency,

and Re{} denotes the real part. The complex envelope is

characterized by the constellation points Ck, signal

power E, and pulse shaping functionp(t). For Nsymbols

with periodicity T, the general form of complex envel-

ope can be expressed as:

C(t) =
√

E
∑N

k
Ckp(t − kT) (2)

For MPSK modulation, Ck Î {e-j2πm/M}, where m = 0,

1, ..., m-1. For MQAM modulations, Ck Î ak + jbk, m =

0, 1, ..., (M)1/2/2, and

Noise model

Noise model assumed in most of the research related to

AMC is AWGN. This research focuses on AMC in HF

band, where the AWGN assumption no longer remains

valid for all transmission times [17,18]. Instead, the

noise varies between AWGN and bi-kappa distributions.

Intercepted signal 
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Automatic Modulation 

Classification Process
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Demodulated
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Figure 1 AMC based receiver architecture using feature based methods.
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The bi-Kappa distribution is characterized by the follow-

ing probability distribution function:

p(x, k) =
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(3)

where s and k are the shaping parameter and tuning

factor, respectively. Practical values of these parameters

are s = 46, k = 1.1, and s = 20, k = 1 [17]. Figure 2

shows the probability distribution function, p(x, k), for

different values of s and k. The figure shows that

decreasing the shaping parameter produces a shaper

peak and that the bi-kappa distribution approaches the

AWG distribution when the tuning parameter is

increased. In this work, the parameters of bi-kappa dis-

tribution are set to s = 20, k = 1.

A more realistic noise model can be constructed by

passing the bi-kappa noise through a band-limiting fil-

ter. The bandwidth of this filter is set to 8gs where gs is

the symbol rate. This filter is practically used to mini-

mize the transmission bandwidth. Figure 3 shows the

constellation diagram of an intercepted 2PSK signal

down converted to baseband for different SNR. This fig-

ure shows clearly the spiky nature of bi-kappa noise as

compared to AWGN, especially at low SNR.

Commonly used signal features

This section gives the general formulas and description

of commonly used signal features. Specifically, we con-

sider the TTD, HOS, and wavelet based features.

TTD features

The variations in modulated waveforms can be

described by three instantaneous values: frequency,

phase, and amplitude [11,12]. All values related to

these variations are defined as the TTD features. Two

features will be investigated in our study. The first fea-

ture is the standard deviation of the absolute value of

the centered non-linear component of the instanta-

neous phase defined as

σap =

√

√

√

√

√

1

L

⎡
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∑

a(i)t0tth

ϕ2
NL (i)
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⎦ −
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L
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2

(4)

where jNL is the centered non-linear component of

the instantaneous phase, tth is the threshold value of

the non weak signal, L is the number of samples in

jNL.

The second feature is the standard deviation of the

absolute value of the normalized-centered instantaneous

amplitude; that is,

σaa =

√

√

√

√

√

1

Ns

[

Ns
∑

i=1

a2
cn (i)

]

−

[

Ns
∑

i=1

|acn (i)|

]2

(5)

where Ns is the number of samples, acn = a/ma-1,a is

the absolute value of the analytic form of the received

signal, and ma is its sample mean value.

HOC features

The HOC are used to extract hidden information from

non-Gaussian signals. In presence of AWGN, all the

HOC are zero for orders greater than two. This makes

these features attractive to classify modulated signals

Figure 2 Probability distribution function of bi-kappa noise for different values of parameters.
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corrupted by AWGN. Fourth and sixth HOC considered

in this study are defined as follows [14-16]:

C42 = M42 − |M20|2 − 2M21
2 (6)

C63 = M63 − 9C42C21 − 6C21
3 (7)

where C21 is the average power and Mpq is the joint

moment. The later can be calculated for any values of p

and q using the following equation:

Mpq = E
{

xp−q(x∗)q} (8)

where x* denotes complex conjugate and E{} is the

expectation operation. Table 1 shows the theoretical

cumulants for the considered modulation schemes.

Wavelet features

Wavelet transform preserves the time information while

providing the frequency information of an analyzed sig-

nal. This makes it a good candidate for AMC. As shown

in Figure 4, features extraction using wavelet transform

passes through three steps: wavelet decomposition using

Haar mother waveform, median filtering, and finally cal-

culation of standard deviation [22]. Robustness of

wavelet features against noise model has been tested at

level three and four.

Proposed features

The PSK and QAM modulations are represented by a

constellation diagram in which the modulation symbols

are depicted in terms of phase and amplitude variations.

This diagram is extracted from the analytic form of the

IF signal by multiplication with the complex conjugate

of the carrier frequency. Many AMC algorithms are

designed using features based on constellation diagram.

These algorithms use different classification techniques

that include maximum likelihood [23], genetic

algorithms [24,25], modified Chi-squared test [26], and

subtractive clustering [27]. In this article, we propose a

different use of constellation diagram by extracting fea-

tures based on maximum dissimilarity measures

(MDM), firstly to distinguish between different modula-

tion types, such as QAM and PSK signals, and secondly

to find the order of a particular modulation. MDM fea-

tures depend on calculating the dissimilarity between

different constellation diagrams after signals normaliza-

tion. That is, features are extracted from the distance

(or dissimilarity measures) between the complex envel-

ope of the received signal and set of reference constella-

tion points for a particular modulation scheme. These

reference constellation points are defined by their ampli-

tudes and phases [21]. MDM are computed after nor-

malizing both the received and reference constellation

points to their mean values. The dissimilarity function is

defined as [28]:

dmax(x, p) = max
x∈x,p∈p

(d(x, p)) (9)

Figure 3 Effect of HF noise models on the intercepted signals.

Table 1 Theoretical values of HOC for digital modulations

Signal C42 C63

2PSK -2 13

4PSK -1 4

8PSK -1 4

16QAM -0.68 2.08

32QAM -0.69 2.11

64QAM -0.62 1.8
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where d is the Euclidian distance between the complex

envelope of intercepted signal × and reference constella-

tion points p. For feature extraction, the signal × is ran-

domly generated at a particular SNR. A dissimilarity

vector d, whose entries are the distance between a ran-

domly generated constellation point of x and M reference

constellation points p, can be obtained. The element of

maximum value of vector d is averaged over several inde-

pendent runs, and then selected as the desired feature. In

practice, the mean and/or standard deviation of dmax(x,

p) will have values based on the noise level.

Table 2 shows five proposed features related to the

MDM, each of which is responsible for discriminating a

specific modulation type or modulation order. As shown

in Table 1, the first feature d1 is used to discriminate

between QAM and PSK signals, while d2 is used to dis-

criminate between 2PSK and other PSK signals of higher

orders. For further details see Table 2.

Figures 5, 6, 7, 8, and 9 show relevant variations of

proposed features as a function of SNR. The results

are averaged over 100 independent realizations and

displayed for AWGN. Clearly, these figures show that

the proposed features have potential applications in

AMC, as they can be used in conjunction with deci-

sion tree or machine learning techniques for signal

classification.

Effect of noise model on the proposed features will be

discussed in the next section.

Simulation results

To evaluate the robustness of presented features, all the

modulations schemes under test were generated in pre-

sence of band-limited AWGN and bi-kappa noise,

where the bandwidth of the band-limiting filter is 8gs;

this process is practically used to avoid high bandwidth

Standard Deviation
Median

Filtering

|       |
Wavelet Decomposition 

Level (4) and (3)

Extracted

Features

Received

Signal

 

Figure 4 Steps for wavelet features extraction.

Table 2 Proposed features

Feature p x Suggested use

d1 = std(dmax(x, p)) 8PSK 2PSK
4PSK
8PSK
16QAM
32QAM
64QAM

Discrimination between MPSK and MQAM

d2 = meandmax(x, p)) 2PSK 2PSK
4PSK
8PSK

Discrimination between 2PSK and (4PSK, 8PSK)

d3 = mean(dmax(x, p)) 4PSK 4PSK
8PSK

Discrimination between 4PSK and 8PSK

d4 = mean(dmax(x, p)) 16QAM 16QAM
32QAM
64QAM

Discrimination between 16QAM and (32QAM, 64QAM)

d5 = std(dmax(x, p)) 64QAM 32QAM
64QAM

Discrimination between 64QAM and 32MQAM
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Figure 5 d1 for the discrimination between MPSK and MQAM signals.
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Figure 6 d2 for the discrimination between 2PSK and higher PSK signals.
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Figure 7 d3 for the discrimination between 4PSK and 8PSK signals.
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Figure 8 d4for the discrimination between 16QAM and higher QAM signals.
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transmission [13]. SNR is adjusted by multiplying the

output noise by the following factor:

Rsnr =

√

E

N0
10−SNR/20 (10)

where E, N0, SNR are the signal power, noise power,

and desired SNR, respectively. All constellation points

are normalized to zero mean and unity variance. The

simulation parameters are given in Table 3.

For evaluation purposes, we measure the absolute

value of the percentage deviation of each feature when

noise model is changed from AWGN to bi-kappa. This

percentage is evaluated using SNR ranging between 0

and 30 dB, and is defined as follows

η =

∣

∣

∣

∣

FAWGN − FBi - kappa

FAWGN

∣

∣

∣

∣

× 100 (11)

where FAWGN and FBi-kappa are the values of feature

under consideration computed in the presence of

AWGN and bi-kappa noise, respectively, at a particular

SNR. Figures 10, 11, 12, 13, 14, and 15 show the results,

averaged over 100 independent realizations, for the fol-

lowing set of modulations: 2PSK, 4PSK, 8PSK, 16QAM,

32QAM, and 64QAM.

The above figures show that at SNR <10 dB, TTD and

MDM are more robust than HOC against the change in

HF noise model. It is true in general that h decreases as

SNR increases. However, for MPSK signals, the instanta-

neous amplitude feature has lower deviation for SNR

<30 dB. This is intuitively not surprising because the

difference between FAWGN and Fbi-kappa relative to

FAWGN in this SNR range is smaller than that of higher

SNR values. Another observation is that the wavelet

based features have maintained almost the same values

of h for all considered modulations. In addition, the

proposed MDM have shown excellent performance in

the sense that they have the lowest deviation as com-

pared to other features.

Conclusions

In this article, we have investigated the robustness of

four features categories for the classification of digitally

modulated signals in the presence of HF noise models;

AWGN and bi-kappa noise. Specifically, the TTD, HOC,

wavelets, and MDM features are considered, where the

last feature is proposed in this work. It has been shown

through computer simulations that HOC are sensitive to

the change in noise model especially at low SNR (<10

dB), while TTD, wavelets, and MDM show good robust-

ness (h < 25%) in the investigated range of SNR. Note
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0.9
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1

SNR

d
5

32QAM

64QAM

Figure 9 d5 for the discrimination between 32QAM and 64QAM.

Table 3 Simulation parameters

Parameter Value

Carrier frequency fc = 24 kHz

Symbol rate rs = 2400 Hz

Sampling rate fs = 153.6 kHz

No. of symbols for testing 512

Total number of samples 32768
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Figure 10 Features deviations computed from 2PSK signal.

Figure 11 Features deviations computed from 4PSK signals.
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that the proposed MDM features have the lowest values

of h, i.e., highest robustness against variation in noise

model, as compared to other features. The results of

this article have potential values for the design of a clas-

sifier, as they identify the features that of higher

robustness with respect to HF noise models. Note that

the performance of an AMC designed under the

assumption of AWGN noise model cannot be ensured

when considering HF communications. Classifiers

employing features sensitive to variation in noise model

Figure 12 Features deviations computed from 8PSK signals.

Figure 13 Features deviations computed from 16QAM signals.
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Figure 14 Features deviations computed from 32QAM signal.

Figure 15 Features deviations computed from 64QAM modulation.
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should take this variation into consideration. For exam-

ple, SVM or ANNs based classifiers need to be designed

by training with signals corrupted by both HF noise

models.

List of Abbreviations

AMC: Automatic modulation classification; ANNs: artificial neural networks;

AWGN: additive white Gaussian noise; FB: feature based; HF: high frequency;

HOC: higher order cumulants; LB: likelihood based; MDM: maximum

dissimilarity measures; MLRT: maximum likelihood ratio test; PR: pattern

recognition; SNR: signal-to-noise ratio; SVM: support vector machines; TTD:

temporal time domain.
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