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ROBUSTNESS OF OPTION PRICES AND THEIR DELTAS IN

MARKETS MODELLED BY JUMP-DIFFUSIONS

FRED ESPEN BENTH, GIULIA DI NUNNO, AND ASMA KHEDHER

Abstract. We study the robustness of option prices to model variation within a jump-
diffusion framework. In particular we consider models in which the small variations in
price dynamics are modeled with a Poisson random measure with infinite activity and
models in which these small variations are modeled with a Brownian motion. We show
that option prices are robust. Moreover we study the computation of the deltas in this
framework with two approaches, the Malliavin method and the Fourier method. We show
robustness of the deltas to the model variation.

1. Introduction

The delta of an option is defined as the sensitivity of the option price with respect to
the state of the underlying asset. In mathematical terms, this is given as the derivative of
E[f(X(t))] with respect to X(0) = x, where X(t) is the price dynamics of the underlying
asset. In complete markets, the delta is known to be the number of assets X(t) to hold in a
self-financing portfolio exactly replicating the option f(X(t)). This is known as the delta-
hedge. This is important also in incomplete markets for the construction of partial hedges
(see for instance Cont and Tankov [4] for more on incomplete markets and partial hedging).
Moreover, the delta being a sensitivity evaluation of the option price to variations in the
underlying, it gives important information of the risk associated to an investment in the
option both in complete and incomplete markets.

In general it is not possible to obtain analytical expressions for deltas. Thus, numerical
approaches are called for, and we refer to Glasserman [11] for an overview of such methods.
In this paper we apply the Malliavin approach proposed in Fournié et al. [10], which is
a technique yielding expectation functionals suitable for Monte Carlo simulation. The
approach has the advantage of not differentiating the payoff function f of the option.
Indeed, options like digitals have non-differentiable payoff functions. However, different
from Fournié et al. [10], we consider a jump-diffusion framework.

The Malliavin approach is well-developed for the Brownian motion case, but for jump-
diffusion models it is not straightforwardly generalized due to the lack of a classical chain
rule. Davis and Johansson [5] propose to use the Malliavin approach only on the Wiener
term in the jump-diffusion dynamics where the jump part is driven by a Poisson process.
We extend this idea to substantially more general jump-diffusion processes. Our results are
based on the Malliavin calculus for jump processes developed by Solé, Utzet, and Vives [20]

Date: January 13, 2010.
Key words and phrases. Option pricing, delta hedging, Malliavin Calculus, jump-diffusions, robustness.

1



2 BENTH, DI NUNNO, AND KHEDHER

and Di Nunno [6] (see also Di Nunno, Øksendal, and Proske [7] ). We demonstrate that
one may use the Malliavin approach also in cases where there are no continuous martingale
components in the jump-diffusion dynamics. In this situation, one can approximate the
small jumps by a continuous martingale with appropriately scaled variance (see Proposition
3.3) and it turns out that the derived delta based on this approximation is close to the
true one (see Theorem 4.2). This idea was first initiated by Rydelberg [18], and Asmussen
and Rosinski [1] who studied the approximation of small jumps in a Lévy process with an
approximately scaled Brownian motion. This opens up for applying Monte Carlo methods
to compute deltas for a rich class of models. Our results also show that the deltas in jump-
diffusion models are robust towards small changes in the underlying dynamics. Hence, the
Malliavin approach can be used to derive approximative deltas in the case when we face a
jump-diffusion model without any continuous martingale part present in the dynamics.This
is an important consideration also from the modeling point of view, in fact it is very hard
from the point of view of statistics, if at all possible, to decide which model for price
dynamics is best between one where the small variations in the asset dynamics come from
a jump process with infinite activity or from a continuous martingale. Our results show
that, for what option pricing is concerned, the difference is for practical purposes negligible.
We remark that there are different ways of applying the same Malliavin method, with the
result that there are several equivalent expressions of the same delta.

Besides the Malliavin approach, this paper deals also with another method for comput-
ing the deltas, this is the Fourier approach. This method, in fact, has the advantage that
it can be directly applied to models with or without continuous martingale part. However,
it is actually difficult to implement since it requires an explicit solution of the stochastic
differential equation describing the first variation process (see (4.15)). Within this method-
ology we again study the expressions for the deltas and prove robustness. Some examples
are also detailed.

The paper is organized as follows. In Section 2 we introduce the notation and give a
short introduction to the Malliavin calculus for mixtures of Gaussian and compensated
Poisson random measures. Section 3 is dedicated to jump-diffusions and results about
the robustness of the models and the option prices. Section 4 deals directly with the
computation of the deltas and the related analysis of robustness to the model. Here, both
the Malliavin and the Fourier approaches are introduced.

2. Some mathematical preliminaries

Let (Ω,F ,P) be a complete probability space equipped with a filtration {Ft}t∈[0,T ] (T >
0) satisfying the usual conditions (see Karatzas and Shreve [14]). We introduce the generic
notation L(t) for a Lévy process on the given probability space and denote by B(t) a
Brownian motion independent of L(t), with t ∈ [0, T ] and L(0) = B(0) = 0 by convention.
We work with the RCLL1 version of the Lévy process and let △L(t) := L(t) − L(t−).
Denote the Lévy measure of L(t) by ℓ(dz). Recall that ℓ(dz), z ∈ R0, is a σ-finite Borel
measure on R0 := R − {0}.

1Right-continuous with left limits, also called càdlàg.
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We also recall the Lévy-Itô decomposition of a Lévy process (see Sato [19]):

Theorem 2.1. For t ≥ 0, let L(t) be a Lévy process on R and ℓ its Lévy measure. Then
we have:

• ℓ verifies ∫

R0

min(1, z2) ℓ(dz) <∞.

• The jump measure of L(t), denoted by N(dt, dz), is a Poisson random measure on
[0,∞[×R0 with intensity measure ℓ(dz) dt.

• There exists a Brownian motion W (t) and two constants a, b ∈ R such that

(2.1) L(t) = at+ bW (t) + Z(t) + lim
ε↓0

Z̃ε(t),

where

Z(t) :=
∑

s∈[0,t]

△L(s)1{|△L(s)|≥1} =

∫ t

0

∫

|z|≥1

z N(ds, dz)

and

Z̃ε(t) :=
∑

s∈[0,t]

△L(s)1{ε≤|△L(s)|<1} − t

∫

ε≤|z|<1

z ℓ(dz) =

∫ t

0

∫

ε≤|z|<1

z Ñ(ds, dz) ,

where Ñ is the compensated Poisson random measure of L(t). The convergence of Z̃ε(t)

in (2.1) is almost sure and uniform on t ∈ [0, T ]. The components W , Z and Z̃ε are
independent.

In various applications involving statistical and numerical methods, it is often useful
to approximate the small jumps by a scaled Brownian motion. This approximation was
advocated in Rydberg [18] as a way to simulate the path of a Lévy process with NIG
distributed increments, and later studied in detail by Asmussen and Rosinski [1]. We shall
make use of it to study robustness of option prices and their deltas based on jump-diffusion
models.

We introduce the following notation for the variation of the Lévy process L(t) close to
the origin:

(2.2) σ2(ε) :=

∫

|z|<ε

z2 ℓ(dz), 0 < ε ≤ 1.

Since every Lévy measure ℓ(dz) integrates z2 in an open interval around zero, we have that
σ2(ε) is finite for any ε > 0. Note that the σ2(ε) is the variance of the jumps smaller than
ε of L(t) in the case it is symmetric and has mean zero. By dominated convergence σ2(ε)
converges to zero when ε ↓ 0.

Recall the Lévy-Itô decomposition of a Lévy process L(t) and introduce now an approx-
imative Lévy process (in law)

(2.3) Lε(t) := at+ bW (t) + σ(ε)B(t) + Z(t) + Z̃ε(t) ,
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with σ2(ε) as in (2.2), and B(t) being a Brownian motion independent of L(t) (which in

particular means independent of W (t)). From the definition of Z̃ε, we see that we have
substituted the small jumps (compensated by their expectation) in L(t) by a Brownian
motion scaled with σ(ε), the standard deviation of the compensated small jumps. We have
the following result taken from Benth, Di Nunno, and Khedher [2]. We include here the
proof for the convenience of the reader:

Proposition 2.2. Let the process L(t) respectively Lε(t) be defined as in equation (2.1),
respectively (2.3). Then, for every t ≥ 0,

lim
ε→0

Lε(t) = L(t) P − a.s.

In fact, the limit above also holds in L1(Ω,F ,P) with

E [|Lε(t) − L(t)|] ≤ 2σ(ε)
√
t .

Proof. The P-a.s. convergence follows directly from the proof of the Lévy-Kintchine formula
(See Thm. 19.2 in Sato [19]). Concerning the L1-convergence, we argue as follows. The
combined application of the triangle and Cauchy-Schwarz inequalities give

E [|Lε(t) − L(t)|] = E

[
|σ(ε)B(t) −

∫ t

0

∫

0<|z|<ε

z Ñ(ds, dz)|
]

≤ σ(ε)E [|B(t)|] + E

[
|
∫ t

0

∫

0<|z|<ε

z Ñ(ds, dz)|
]

≤ σ(ε)E
[
B2(t)

]1/2
+ E

[( ∫ t

0

∫

0<|z|<ε

z Ñ(ds, dz)
)2

]1/2

≤ 2σ(ε)
√
t .

This proves the proposition. �

We shall make use of the approximation and its convergence properties in our analysis.

2.1. Chaotic representation for Lévy processes and Malliavin derivative. In Itô [13],
multiple stochastic integrals with respect to a Poisson random measure are defined (see
Di Nunno [6] for an extension to general random measures with independent values). We
recall the construction, which follows the same steps as in the Wiener case (see Kuo [15]).

Here and in the sequel we assume that the Lévy measure satisfies

(2.4) σ2(∞) :=

∫

R0

z2 ℓ(dz) <∞ .

Consider a Lévy process L having a representation as in (2.1) with b = 1. Introduce the
measure M on the Borel σ-algebra B(R+ × R) such that for E ∈ B(R+ × R),

M(E) =

∫

E(0)

dt+

∫

E′

z2 dt ℓ(dz) ,
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where E(0) = {t ∈ R+; (t, 0) ∈ E} and E ′ = E − {(t, 0) ∈ E}. Define

µ(E) =

∫

E(0)

dW (t) + lim
n→∞

∫

{(t,z)∈E; 1

n
<|z|<n}

z Ñ(dt, dz) ,

where the convergence is in L2(Ω). We denote by L2(Ω) := L2(Ω,F ,P) the Hilbert space
of square-integrable random variables, equipped with the norm ‖F‖2 = (E[F 2])1/2 < ∞.
The set function µ is a centered random measure such that for E1, E2 ∈ B(R+ × R) with
M(E1) <∞ and M(E2) <∞,

E[µ(E1)µ(E2)] = M(E1 ∩ E2) .

Denote by L2
n = L2((R+ × R)n,B((R+ × R))n,M⊗n), with the standard norm | · |n. Let

f = 1E1×...×En
,

where the sets E1, ..., En ∈ B(R+ ×R) are pairwise disjoint and M(E1) <∞, ...,M(En) <
∞. The multiple stochastic integral of the elementary function f is an element in L2(Ω)
defined as follows

In(f) :=

∫

(R+×R)n

fµ⊗n := µ(E1) · · ·µ(En) .

By standard arguments, In can be extended to the symmetric function in L2
n by appealing

to linearity and continuity. Moreover, for any symmetric functions f ∈ L2
n and g ∈ L2

m we
have

E[In(f)Im(g)] = δn,mn!

∫

(R+×R)n

f̃ g̃ dµ⊗n ,

where δn,m = 1, if n = m and 0 otherwise. Itô [13] proves the following chaos expansion
for elements of L2(Ω):

Theorem 2.3. For any F ∈ L2(Ω) there exists a unique sequence (fn)∞n=0 of symmetric
functions fn ∈ L2

n such that

F =
∞∑

n=0

In(fn),

(with convergence in L2(Ω)). Moreover, it holds

‖F‖2
2 =

∞∑

n=0

n!|fn|2n .

Note that, among all the stochastic measures with independent values in L2(Ω) it is
only in the case of mixtures of Gaussian and Poisson measures that it is possible to achieve
chaos representation type of results. This is proved in Theorem 2.2 in Di Nunno [6].

In Solé, Utzet and Vives [20] (see also Di Nunno [6] for random measures with inde-
pendent values) a stochastic derivative is defined on a subspace of L2(Ω). The idea is to
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exploit chaos expansion representations much in the same manner as done for the Malli-
avin derivative in the Wiener space (see Nualart [16]). Suppose F ∈ L2(Ω) has a chaotic
representation F =

∑∞
n=0 In(fn) such that

(2.5)
∞∑

n=1

nn!|fn|2n <∞ .

Then, the Malliavin derivative DF : R+ × R × Ω 7→ R of F is the random field defined as

(2.6) DζF :=
∞∑

n=1

nIn−1(fn(ζ, .)) , ζ ∈ R+ × R,

with convergence in L2(R+ × R × Ω,M ⊗ P). Note that the Malliavin derivative can be
viewed as an annihilation operator, shifting the chaos expansion of F by one to the left.

Denote by DomD the set of functionals F ∈ L2(Ω) that satisfy (2.5). This becomes a
Hilbert space equipped with the scalar product

< F,G >= E[FG] + E[

∫

R+×R

DζFDζGM(dζ)] ,

on which D is a closed operator from DomD to L2(R+ ×R×Ω,M ⊗ P). Furthermore, let
DomD0 be the set of random variables F =

∑∞
n=0 In(fn) ∈ L2(Ω) such that

∞∑

n=1

nn!

∫

R+×(R+×R)n−1

f 2
n((t, 0), ζ1, ..., ζn−1) dt dM

⊗(n−1)(ζ1, ..., ζn−1) <∞ ,

For F ∈ DomD0 we define the square integrable stochastic process

Dt,0F :=
∞∑

n=1

nIn−1(fn((t, 0), .)) ,

where the convergence is in L2(R+ ×Ω, dt⊗P). Analogously, for ℓ(dz) 6= 0, let DomDJ be
the set of F =

∑∞
n=0 In(fn) ∈ L2(Ω) such that

∞∑

n=1

nn!

∫

(R+×R0)×(R+×R)n−1

f 2
n((t, z), ζ1, ..., ζn−1) dM

⊗(n)(ζ1, ..., ζn−1) <∞ .

For F ∈ DomDJ , define the random field DJ
t,zF : R+ × R × Ω 7→ R such that

Dt,zF :=
∞∑

n=1

nIn−1(fn((t, z), ·)) ,

where the convergence is in L2(R+ × R0 × Ω, z2 dt dℓ(x) ⊗ P). We remark that the deriv-
ative Dt,0 is essentially a derivative with respect to the Brownian part of L, and in many
situations the usual rules of classical Malliavin calculus on Wiener space apply.

Let (ΩW ,FW ,PW ) and (ΩJ ,FJ ,PJ) be the canonical spaces for the Brownian motion
and pure jump Lévy process, resp. We can interpret

Ω = ΩW × ΩJ , F = FW ⊗FJ , P = PW ⊗ PJ .
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The following chain rule for Dt,0 is proved by Solé, Utzet and Vives [20].

Proposition 2.4. Assume F = f(Z,Z ′) ∈ L2(ΩW ×ΩJ), with Z ∈ DomDW , Z ′ ∈ L2(ΩJ),
and f(x, y) being a continuously differentiable function with bounded partial derivative in
the first variable. Then F ∈ DomD0, and

Dt,0F =
∂f

∂x
(Z,Z ′)DW

t Z ,

where DW is the Malliavin derivative in (ΩW ,FW ,PW ) and DomDW its domain.

In Solé, Utzet and Vives [20] the Skorohod integral with respect to a mixture of Gaussian
and Poisson random measures is also defined (see Di Nunno [6] and Di Nunno and Rozanov
[8] for the treatment with respect to general stochastic measures in L2(Ω)). Let us consider

G(ζ) =
∞∑

n=0

In(f̂n(ζ, .)) , ζ ∈ R+ × R,

where fn ∈ L2
n+1 is symmetric in the last n variables. We denote f̂n the symmetrization of

fn in all n+ 1 variables. If

(2.7)
∞∑

n=0

(n+ 1)!|f̂n|2n+1 <∞ ,

the Skorohod integral of G(ζ), ζ ∈ R+ × R, is defined by

δ(G) :=
∞∑

n=0

In+1(f̂n) ,

where the convergence of the series on the right-hand side is in L2(Ω). Denote by Domδ
the set of random fields G(ζ) satisfying (2.7). The following is a duality formula proven
by Solé, Utzet and Vives [20]:

Proposition 2.5. Let G ∈ L2(R+ × R × Ω, µ⊗ P). The random field G belongs to Domδ
if and only if there is a constant C such that for all F ∈ DomD,

|E[

∫

R+×R

G(ζ)DζF M(dζ)]| ≤ C‖F‖2 .

If G ∈ Domδ, then δ(G) is the element of L2(Ω) characterized by

E[δ(G)F ] = E[

∫

R+×R

G(ζ)DζF M(dζ)] ,

for any F ∈ DomD.

The Malliavin derivatives introduced above will become useful when we analyze the delta
of option prices based on jump-diffusion models, see Section 4.
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3. Robustness of jump-diffusions and option prices

In this Section we consider the robustness of jump-diffusions given by the solution of
stochastic differential equations of the form

X(t) = x+

∫ t

0

α(X(s−)) ds+

∫ t

0

β(X(s−)) dW (s) +

∫ t

0

∫

R0

γ(X(s−), z) Ñ(ds, dz) .

(3.1)

We assume that the coefficient functions α(x) and β(x) have linear growth and are Lipschitz
continuous and that γ is of the form γ(x, z) = γ1(x)g(z), x ∈ R, z ∈ R0, where the (sto-
chastic) factor γ1(x) has linear growth and is Lipschitz continuous and the (deterministic)
factor g(z) satisfies

G2(∞) =

∫

R0

g2(z) ℓ(dz) <∞,

which will ensure that X(t) has finite variance. We also define

G2(ε) =

∫

|z|<ε

g2(z) ℓ(dz),

for later use. Notice that G2(ε) converges to zero when ε ↓ 0. A jump-diffusion of type
(3.1) is, e.g., considered in Example 4.1.

Note that we consider a stochastic differential equation with the roles of W and Ñ
separated, that is, we do not consider an equation using L as the integrator, but rather
split the roles of the continuous martingale and the pure-jump parts. This is more in line
with common formulations of such stochastic differential equations (see for example Davis
and Johansson [5]). Introduce the approximative jump-diffusion dynamics where the small
jumps part in (3.1) has been substituted by a Brownian motion B independent of W and
appropriately scaled, namely

Xε(t) = x+

∫ t

0

α(Xε(s−)) ds+

∫ t

0

β(Xε(s−)) dW (s)

+

∫ t

0

( ∫

|z|<ε

(γ2(Xε(s−), z) ℓ(dz)
)1/2

dB(s) +

∫ t

0

∫

|z|≥ε

γ(Xε(s−), z) Ñ(ds, dz)

= x+

∫ t

0

α(Xε(s−)) ds+

∫ t

0

β(Xε(s−)) dW (s) +

∫ t

0

G(ε)γ1(Xε(s−))dB(s)

+

∫ t

0

∫

|z|≥ε

γ(Xε(s−), z) Ñ(ds, dz) .(3.2)

The existence and uniqueness of the solutions X(t) and Xε(t) are ensured by the following
theorem collected from Ikeda and Watanabe [12] (Thm 9.1. Chap IV):
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Theorem 3.1. Let U be an open set in R0, α and β be two measurable functions R −→ R

and γ be a measurable function R × U −→ R such that, for some positive constant K ,

(3.3) |α(x)|2 + |β(x)|2 +

∫

U

|γ(x, z)|2l(dz) ≤ K(1 + |x|2), x ∈ R,

(3.4) |α(x)−α(y)|2 + |β(x)−β(y)|2 +

∫

U

|γ(x, z)−γ(y, z)|2 ℓ(dz) ≤ K|x−y|2, x, y ∈ R.

Then there exists a unique Ft-adapted right-continuous process X(t) with left-hand limits
which satisfies the following stochastic differential equation

X(t) = x+

∫ t

0

α(X(s−)) ds+

∫ t

0

β(X(s−)) dW (s) +

∫ t

0

∫

U

γ(X(s−), z) Ñ(ds, dz) .

(3.5)

Before proving that Xε(t) converges to X(t) in L2(Ω), we need a lemma which shows
the boundedness of X in L2([0, T ] × Ω) for T <∞.

Lemma 3.2. Let X(t) and Xε(t), t ∈ [0, T ], be the unique solutions of (3.1) and (3.2),
respectively. For every 0 ≤ t ≤ T < ∞, we have the following type of estimate for the
respective norms

‖X(t)‖2
2, ‖Xε(t)‖2

2 ≤ aebt ,

where a and b are positive constants depending on T but independent of ε in the case of
Xε.

Proof. By the Cauchy-Schwartz inequality and the application of the Itô isometry, we find
that

‖X(t)‖2
2 ≤ C|x|2 + CTE

[∫ t

0

α2(X(s)) ds

]
+ CE

[∫ t

0

β2(X(s)) ds

]

+ CG2(∞)E

[∫ t

0

γ2
1(X(s)) ds

]
,

for some positive constant C. By linear growth, it follows that |α(x)|2 ≤ K(1 + |x|2) for
some positive constant K. Hence, by using the same property for β and γ1, it follows that

‖X(t)‖2
2 ≤ C1 + C2

∫ t

0

‖X(s)‖2
2 ds ,

for two positive constants C1, C2, which depend only on K, T , G2(∞) and x. By Gronwall’s
inequality, the lemma follows for X(t).

Concerning the estimate for Xε(t), we proceed in the way as for X(t). In this case,

however, we get an additional contribution from the term
∫ t

0
G(ε)γ1(Xε(s)) dB(s), whereas

the jump-term is including only jumps in absolute value greater than ε. However, after
applying the Itô isometry, we can merge the contributions from these two terms into
G2(∞)E[

∫ t

0
γ2

1(Xε(s)) ds]. Hence, we are back to the same estimation type as for X(t).
This completes the proof.

�
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We use the lemma to prove the following robustness result:

Proposition 3.3. For every 0 ≤ t ≤ T <∞, we have

‖X(t) −Xε(t)‖2
2 ≤ CG2(ε) ,

where X and Xε are solutions of (3.1) and (3.2), respectively and C is a positive constant
depending on T , but independent of ε.

Proof. We have

X(t) −Xε(t) =

∫ t

0

(α(X(s−)) − α(Xε(s−))) ds+

∫ t

0

(β(X(s−)) − β(Xε(s−))) dW (s)

+

∫ t

0

∫

0<|z|<ε

γ(X(s−), z) Ñ(ds, dz) −
∫ t

0

G(ε)γ1(X(s−))dB(s)

+

∫ t

0

G(ε)
(
γ1(X(s−)) − γ1(Xε(s−))

)
dB(s)

+

∫ t

0

∫

|z|≥ε

(γ(X(s−), z) − γ(Xε(s−), z)) Ñ(ds, dz) .

Therefore, using the Hölder inequality and the Itô isometry, we get

‖X(t) −Xε(t)‖2
2 ≤ TE

[∫ t

0

(α(X(s)) − α(Xε(s)))
2 ds

]
+ E

[∫ t

0

(β(X(s)) − β(Xε(s)))
2 ds

]

+ 2G2(ε)E

[∫ t

0

γ2
1(X(s)) ds

]

+G2(ε)E

[∫ t

0

(γ1(X(s)) − γ1(Xε(s)))
2 ds

]

+
(
G2(∞) −G2(ε)

)
E

[∫ t

0

(γ1(X(s)) − γ1(Xε(s)))
2 ds

]
.

Hence, by the Lipschitz continuity of the three coefficient functions and the triangle in-
equality, we find

‖X(t) −Xε(t)‖2
2 ≤ K

(
T + 1 +G2(∞)

) ∫ t

0

‖X(s) −Xε(s)‖2
2 ds

+ 2G2(ε)K

∫ t

0

(
1 + ‖X(s)‖2

2

)
ds.

Applying Gronwall’s inequality and Lemma 3.2, we prove the Proposition. �

This result has various applications, one of which is the numerical simulations of the
solution of (3.1). First, we observe that the speed of convergence is explicitly given by
G(ε), which in many situations will be a rate of ε. See e.g. Asmussen and Rosinski [1] for
examples in the case g(z) = z. In practice, it may be difficult to simulate from a Lévy
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process L(t) directly. One may in such circumstances approximate the small jumps by an
appropriate scaled Brownian motion and observe that the remaining process is a compound
Poisson process. Brownian motion and compound Poisson processes are simple to simulate
on a computer, and the approximative dynamics may next be discretized for instance, by
an Euler scheme. Our result in Prop. 3.3 provides the mathematical foundation for such
a procedure, ensuring for instance that expectation functionals of the type E[f(Xε(t))]
converge to E[f(X(t))] under mild assumptions on f . We have the following corollary:

Corollary 3.4. Suppose f is a Lipschitz continuous function and X and Xε solve (3.1)
and (3.2), resp. Then, for every 0 ≤ t ≤ T < ∞, there exists a positive constant C
depending on T but independent of ε such that

|E[f(Xε(t))] − E[f(X(t))]| ≤ CG2(ε) .

Proof. Letting K be the Lipschitz constant of f , we have from the Jensen inequality,

|E[f(Xε(t))] − E[f(X(t))]| ≤ KE[|Xε(t) −X(t)|] .
Hence, from the Cauchy-Schwarz inequality and Prop. 3.3 the result follows. �

This result has an immediate interpretation in terms of robustness of option prices. If
we assume that X(t) represents the dynamics of some asset on which there is written an
option with payoff f(X(t)) at an exercise time t, then the discounted risk-neutral expected
value of f(X(t)) is the option price. Supposing that we model X(t) directly under the
risk-neutral probability (i.e., assuming P is the risk-neutral probability), the discounted
asset dynamics must be a martingale, that is, α(x) = rx, with r being the risk-free interest
rate. But the approximative dynamics Xε is also a martingale after discounting when
α(x) = rx, and henceforth, we obtain from the Corollary above that option prices are
stable with respect to perturbation in the underlying dynamics when we substitute small
jumps with an appropriate continuous martingale. In practical terms, we may interpret this
as having two competing models, one where we suppose that small variations in the asset
dynamics come from a jump process of infinite activity, and another where we model this
by continuous martingale. It is very hard, if possible, to decide which model is better from
a statistical point of view. However, the result above shows that the effect on option prices
is very small. From a different perspective, if we want to perform a numerical evaluation
of the option price, we may apply the above result in order to quantify the error if we
approximate small jumps by a Brownian motion dynamics. The error is explicit in terms
of G(ε), the volatility of the jumps smaller than ε.

4. Computation of the Delta using the Malliavin method and robustness

In this Section we present the Malliavin approach to computing the delta for option prices
based on a jump-diffusion market model. Our approach extends the method proposed in
Davis and Johansson [5]. We apply the results to study robustness of the delta to small-
jump approximations in the underlying jump-diffusion model. These results explain to us
that we may use the Malliavin approach to approximate the delta in cases when there are
no continuous martingale part in the jump-diffusion dynamics.
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Let F eN
t = σ

{ ∫ s

0

∫
A
Ñ(du, dz); s ≤ t, A ∈ B(R0)

}
. Assume that α, β and γ are

continuously differentiable functions with bounded derivatives and consider Markov jump
diffusions, X of the form (3.1), for which we have a continuously differentiable function h
with bounded derivative in the first argument such that

(4.1) X(t) = h(Xc(t), Xd(t)), X(0) = x .

Here Xc satisfies a stochastic differential equation

dXc(t) = αc(X
c(t))dt+ βc(X

c(t))dW (t),

Xc(0) = x = h(Xc(0), Xd(0)),(4.2)

with continuously differentiable coefficients αc, βc, while Xd is adapted to the natural

filtration F eN of the compensated compound Poisson process Ñ . In particular, Xd does
not depend on x. The jump-diffusion process of type (4.1) is called separable.
We associate to the process Xc, a process V given by

(4.3) V (t) = 1 +

∫ t

0

α′
c(X

c(s))V (s)ds+

∫ t

0

β′
c(X

c(s))V (s)dW (s),

The process V is called the first variation process for Xc and we have

V (t) =
∂Xc(t)

∂x
.

We provide an example of a jump-diffusion dynamics satisfying our assumptions:

Example 4.1. Consider a jump-diffusion of the form

dX(t) = αX(t−)dt+ βX(t−)dW (t) +

∫

R0

(ez − 1)X(t−)Ñ(dt, dz),

where α and β are constants. We introduce the process Xc(t) defined by

dXc(t) =
{
α+

∫

R0

(1 + z − ez)ℓ(dz)
}
Xc(t)dt+ βXc(t)dW (t),

X(0) = x.

Then by applying the Itô formula to X̂(t) = e
eZ(t)Xc(t), where Z̃(t) =

∫
R0
zÑ(dt, dz),we get,

dX̂(t) = e
eZ(t−)dXc(t) +

∫

R0

(e
eZ(t−)+zXc(t) − e

eZ(t−)Xc(t))Ñ(dt, dz)

+ Xc(t)e
eZ(t−)

∫

R0

(−1 − z + ez)ℓ(dz)dt

= αX̂(t−)dt+ βX̂(t−)dW (t) +

∫

R0

(ez − 1)X̂(t−)Ñ(dt, dz),(4.4)

Therefore, X̂(t) = X(t), a.e.
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Theorem 4.2. Let X be a diffusion of the form (3.1). We assume that it is separable.
Define

Γ =
{
a ∈ L2[0, T ]|

∫ T

0

a(t)dt = 1
}
.

Then for a ∈ Γ and f(X(T )) ∈ L2(Ω),

∆ = E

[
f(X(T ))

∫ T

0

a(t)β−1
c (Xc(t))V (t)dW (t)

]
,

where V is given by (4.3).

Proof. Assume that f ∈ C∞
K (R), the set of infinitely differentiable functions with compact

support. Then

(4.5)
∂

∂x
E

[
f(X(T ))

]
= E

[
f ′(X(T ))

∂X(T )

∂x

]
= E

[
f ′(X(T ))

∂X(T )

∂Xc(T )
V (T )

]
,

where V is the first variation process for Xc. By the chain rule (Proposition 2.4), we have

Dt,0X(T ) =
∂X(T )

∂Xc(T )
DW

t X
c(T ) =

∂X(T )

∂Xc(T )
V (T )(V (t))−1βc(X

c(t)).

See Proposition A.1 in the Appendix for more details. Therefore,

∂X(T )

∂Xc(T )
V (T ) = Dt,0X(T )V (t)β−1

c (Xc(t)).

Multiply by a(t) and integrate,

(4.6)
∂X(T )

∂Xc(T )
V (T ) =

∫ T

0

Dt,0X(T )a(t)β−1
c (Xc(t))V (t)dt.

Inserting (4.6) in (4.5), the chain rule (Proposition 2.4) and the Duality formula (Propo-
sition 2.5) yield

∂

∂x
E

[
f(X(T ))

]
= E

[ ∫ T

0

f ′(X(T ))Dt,0X(T )a(t)β−1
c (Xc(t))V (t)dt

]

= E

[ ∫ T

0

Dt,0f(X(T ))a(t)β−1
c (Xc(t))V (t)dt

]

= E

[
f(X(T ))

∫ T

0

a(t)β−1
c (Xc(t))V (t)dW (t)

]
.

Then we can extend this formula to f(X(T )) ∈ L2(Ω) following the Proposition A.2 in the
Appendix. �

Let Xε be a jump diffusion of the form (3.2). We assume that it is separable. Then the
process Xc

ε is given by

Xc
ε(t) = x+

∫ t

0

αc(X
c
ε(s))ds+

∫ t

0

βc(X
c
ε(s))dW (s) +

∫ t

0

G(ε)γ1,c(X
c
ε(s))dB(s)
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and the first variation process Vε of Xc
ε is given by

Vε(t) = x+

∫ t

0

α′
c(X

c
ε(s))Vε(s)ds+

∫ t

0

β′
c(X

c
ε(s))Vε(s)dW (s)+

∫ t

0

G(ε)γ′1,c(X
c
ε(s))Vε(s)dB(s).

We are now ready to study the delta related to the approximating model. We propose four
ways of applying the Malliavin approach with related assumptions. The first two (4.7) and
(4.8) are completely equivalent in the sense that the computations can be carried out either
with respect to the original Brownian component W or with respect to the additional one
B. The expression (4.9) derived from the fact that the evaluation of the delta depends on

the distribution and we consider a Brownain motion W̃ε that merges W and B. In the
last case, (4.10), the delta is computed starting from an approximating model created by
modifying the coefficients of the original Brownian component W instead of considering a
new independent Brownian motion B.

Theorem 4.3. Let Xε be a diffusion of the form (3.2) and assume that it is separable. Let
a ∈ Γ, Vε the first variation process of Xc

ε and f(Xε(T )) ∈ L2(Ω). Then

(4.7) ∆ε = E

[
f(Xε(T ))

∫ T

0

a(t)β−1
c (Xc

ε(t))Vε(t)dW (t)
]
,

(4.8) ∆ε = E

[
f(Xε(T ))

∫ T

0

a(t)γ−1
1,c (X

c
ε(t))

Vε(t)

G(ε)
dB(t)

]
.

We assume β(x) = γ1(x). Then

(4.9) ∆ε = E

[
f(Xε(T ))

∫ T

0

a(t)γ−1
1,c (X

c
ε(t))

Vε(t)√
G2(ε) + 1

dW̃ε(t)
]
,

where W̃ε(t) = 1√
G2(ε)+1

W (t) + G(ε)√
G2(ε)+1

B(t).

If we approximate the small jumps of X(t) (equation (3.1) ) by Xε(t), where B(t) = W (t),
then

(4.10) ∆ε = E

[
f(Xε(T ))

∫ T

0

a(t){G(ε)γ1,c(X
c
ε(t)) + βc(X

c
ε(t))}−1Vε(t)dW (t)

]
.

Proof. By the chain rule (Proposition 2.4), we have

Dt,0Xε(T ) =
∂Xε(T )

∂Xc
ε(T )

DW
t X

c
ε(T ).

Here, DW is the Malliavin derivative with respect to the Brownian motion W . By Thm
2.2.1 in Nualart [16],

DW
t X

c
ε(T ) = βc(X

c
ε(t)) +

∫ T

t

α′
c(X

c
ε(s))D

W
t X

c
ε(s)ds+

∫ T

t

β′
c(X

c
ε(s))D

W
t X

c
ε(s)dW (s)

+

∫ T

t

G(ε)γ′1,c(X
c
ε(s))D

W
t X

c
ε(s)dB(s).
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Then

DW
t X

c
ε(T ) = Vε(T )(Vε(t))

−1βc(X
c
ε(t)).

However, we find the expression (4.7) for the ∆ε following the same steps of the Thm 4.2.
We can apply the chain rule again with differentiation taken with respect to B (Proposition
2.4), then we get

Dt,0Xε(T ) =
∂Xε(T )

∂Xc
ε(T )

DB
t X

c
ε(T ),

where DB is the Malliavin derivative with respect to the Brownian motion B. Then,
following the same steps as above we obtain the expression (4.8) for the ∆ε.
We assume now that we are in the case of the approximation (3.2), with β(x) = γ1(x).
Then the process Xc

ε is given by

Xc
ε(t) = x+

∫ t

0

αc(X
c
ε(s))ds+

∫ t

0

γ1,c(X
c
ε(s))

√
G2(ε) + 1dW̃ε(t).

By Thm 4.2, expression (4.9) follows. The last case (4.10) also follows by application of
Thm 4.2. �

Note that if ε = 0, we are in the case of no-approximation, and we have the same method
as proposed in Davis and Johansson [5] , except for more general jump parts. This shows
to us how to use the Malliavin approach for these jump diffusions of general type. Next,
in the case of jump-diffusions with no continuous component, i.e. β = 0, we have an ex-
pression which can be used as the approximation for the delta.

We next address the question of robustness of the delta with respect to approximations
of the small jumps by an appropriately scaled continuous martingale. It turns out that
this question can be efficiently answered by means of Fourier transform. The methods of
Fourier transform will translate the question of convergence of the delta to a question of
convergence of the derivative of the characteristic function of the approximating dynamics.
One may ask why we do not study the expression derived above for the delta directly. The
reason is that in the singular case of β = 0, the expressions inside the expectation for the
delta in Thm 4.3 will involve singular weights which in general are hard to study in the
limit (see Benth, Di Nunno and Khedher [2] for simple examples of such singular weights).
The Fourier approach avoids this problem.

The approach we choose can be used also for efficient computations of the delta, however,
only for those cases where the characteristic function is easily computable which is in
general not the case for stochastic differential equations like (3.1) and (3.2). We also note
that the application of the Fourier transform requires also the explicit solution of the first
variation process dynamics (4.15).

Assume that f ∈ L1(R), the space of integrable functions on the real line. The Fourier
transform of f is defined by

(4.11) f̂(u) =

∫

R

f(y)eiuy dy .
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Suppose in addition that f̂ ∈ L1(R). Then the inverse Fourier transform is well-defined,
and we have

(4.12) f(y) =
1

2π

∫

R

e−iuyf̂(u) du .

We refer to Folland [9] for definitions and results on the Fourier transform. Following Carr
and Madan [3], we calculate,

E[f(Xx
ε (t))] =

∫

R

{ 1

2π

∫

R

e−iyuf̂(u)du}PXx
ε
(t)(dy)

=
1

2π

∫

R

{
∫

R

e−iuy PXx
ε
(t)(dy)}f̂(u)du

=
1

2π

∫

R

f̂(u)E
[
e−iuXx

ε
(t)

]
du ,(4.13)

where PXx
ε
(t)(dy) is the distribution of Xε(t) = Xx

ε (t), the solution of (3.2) with Xε(0) =
Xx

ε (0) = x. Fubini-Tonelli’s Theorem (see Folland [9]) is applied to commute the integra-
tions. Similarily, we get for X(t) = Xx(t) being the solution of (3.1) with X(0) = Xx(0) =
x,

(4.14) E[f(Xx(t))] =
1

2π

∫

R

f̂(u)E
[
e−iuXx(t)

]
du .

Thus, in order to study the delta, we need to be able to move differentiation inside the
inverse Fourier transform. But, furthermore, we must have accessible the derivative of
Xx

ε (t) and Xx(t) with respect to x. Before moving on with the robustness of deltas, we
study this.

Introduce the stochastic differential equation

Y y(t) = y +

∫ t

0

α′(Xx(s−))Y y(s−) ds+

∫ t

0

β′(Xx(s−))Y y(s−) dW (s)

+

∫ t

0

∫

R0

γ′(Xx(s−), z)Y y(s−) Ñ(ds, dz) .(4.15)

Since the derivatives of α, β and γ are assumed to be bounded, it follows from Thm. 3.1
that there exists a unique solution Y y(t) of (4.15). From Thm 40 in Chapter V of Protter
[17], it follows that Xx(t) is differentiable with respect to x, and that

(4.16)
∂Xx(t)

∂x
= Y 1(t) (i.e. y = 1) .

By the same considerations, Xx
ε (t) is differentiable with respect to x, and

(4.17)
∂Xx

ε (t)

∂x
= Y 1

ε (t) ,

with Y y
ε (t) being the unique solution of the stochastic differential equation

Y y
ε (t) = y +

∫ t

0

α′(Xx
ε (s−))Y y

ε (s−) ds+

∫ t

0

β′(Xx
ε (s−))Y y

ε (s−) dW (s)
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+

∫ t

0

G(ε)γ′1(X
x
ε (s−))Y y

ε (s−) dB(s) +

∫ t

0

∫

|z|≥ε

γ′(Xx
ε (s−), z)Y y

ε (s−) Ñ(ds, dz) .

(4.18)

We have the following regularity of Y and Yε:

Proposition 4.4. Let Y (t) and Yε(t) be the solutions of (4.15) and (4.18), resp. For
0 ≤ t ≤ T <∞ it holds that

‖Y y(t)‖2
2, ‖Y y

ε (t)‖2
2 < aebt ,

for positive constants a and b depending on T but independent of ε in the case of Yε.
Moreover,

‖Y y(t) − Y y
ε (t)‖2

2 ≤ CG2(ε) ,

for a positive constant C independent of ε.

Proof. The proof follows the same lines as the arguments for Lemma 3.2 and Prop. 3.3.
The only modification is that we use the boundedness of the derivatives α′(x), β′(x) and
γ′(x) rather than the Lipschitz continuity of α, β and γ. �

In the next Propostion we derive the expressions for the delta based on X and Xε using
the Fourier method.

Proposition 4.5. Let Xx(t) and Y y(t) be solutions of (3.1) and (4.15), resp., and Xx
ε (t)

and Y y
ε (t) of (3.2) and (4.18), resp. Let uf̂(u) ∈ L1(R). Then, for 0 ≤ t ≤ T ,

∂

∂x
E [f(Xx(t))] =

1

2π

∫

R

(−iu)f̂(u)E
[
Y 1(t)e−iuXx(t)

]
du

∂

∂x
E [f(Xx

ε (t))] =
1

2π

∫

R

(−iu)f̂(u)E
[
Y 1

ε (t)e−iuXx
ε
(t)

]
du .

Proof. First, by dominated convergence (or appropriate result in Folland [9], Proposition
2.27), we can move the differentiation inside the integral and inside the expectation operator
on the right-hand side in (4.14). Next, differentiating, we obtain straightforwardly the
results since Y 1(t) = ∂Xx(t)/∂x. We follow exactly the same argument for Xx

ε (t). This
proves the result. �

Finally, we state our result on robustness:

Proposition 4.6. Let uf̂(u) ∈ L1(R). For 0 ≤ t ≤ T , it holds that

lim
ε↓0

∂

∂x
E [f(Xx

ε (t))] =
∂

∂x
E [f(Xx(t))] .

Proof. Cauchy-Schwarz gives:

|E
[
Y 1

ε (t)e−iuXx
ε
(t) − Y 1(t)e−iuXx(t)

]
|

≤ E
[
|Y 1

ε (t) − Y 1(t)|
]
+ E

[
|Y 1(t)||e−iuXx

ε
(t) − e−iuXx(t)|

]

≤ E
[
|Y 1

ε (t) − Y 1(t)|2
]1/2

+ E
[
|Y 1(t)|2

]1/2
E

[
|e−iuXx

ε
(t) − e−iuXx(t)|2

]1/2
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≤ CG2(ε) + C̃E
[
|e−iuXx

ε
(t) − e−iuXx(t)|2

]1/2

In the last estimation, we have used Prop. 4.4 where C, C̃ are two positive constants
independent of ε. Moreover, the function exp(−iux) is Lipschitz continuous, which is seen
from the polar coordinate representation, and thus the final term is also majorised by a
constant times G2(ε) by Prop 3.3. Hence,

lim
ε↓0

E
[
Y 1

ε (t)e−iuXx
ε
(t)

]
= E

[
Y 1(t)e−iuXx(t)

]
.

By appealing to Prop. 4.4 again, we see that E[Y 1
ε (t) exp(−iuXx

ε (t))] can be bounded
uniformly in ε, and hence by dominated convergence the Proposition follows. �

Note that the above results applying the Fourier method hold also for the case β = 0.
In particular, this tells that even in the singular case, i.e. when the process X(t) does not
have any continuous martingale part, the delta for the approximative option price based
on Xx

ε (t) and calculated based on Malliavin differentiation with respect to the Brownian
component will converge to the true value.

We remark that there is no requirement of continuity of f in the above arguments.
However, the integrability restriction excludes unbounded functions f , like for instance
those coming from option pricing. However, we can easily deal with such situation by
introducing a damped function f in the following manner. Define for d > 0, the function

(4.19) gd(y) = e−dyf(y) .

Assuming that gd ∈ L1(R) and ĝd ∈ L1(R) for some d > 0, we can apply the above results
to gd. To translate to f , observe that

f(y) =
1

2π

∫

R

ed−iuĝd(u)du

and

ĝd(u) = f̂(u+ id) .

Hence, Prop. 4.6 holds for any f such that there exists d > 0 for which we have the
following assumptions

(d− iu)f̂(u− id) ∈ L1(R), edyPXε(t)(dy) ∈ L1(R) and edyPX(t)(dy) ∈ L1(R).

We consider two examples.

Example 4.7. Let f be the payoff from a call option written on an asset with price defined
as S(t) = S(0) exp(X(t)), (S(0) > 0). Then, with x = lnS(0), we have

f(y) = max(ey −K, 0)

where K > 0 is the strike price at expiration time T . For d > 1, we have that gd ∈ L1(R).
Moreover,

ĝd(u) =
Ke(iu−d) ln K

(iu− d)(iu− d+ 1)
,



OPTION ROBUSTNESS IN JUMP-DIFFUSION MARKETS 19

which is in L1(R). By a direct calculation, we find that

(d− iu)f̂(u+ id) =
K1+iu−d

1 + iu− d
,

which belongs to L1(R). Hence, Prop. 4.6 ensures that the approximation Xε(T ) gives a
delta which converges to the delta resulting from the model with X(T ).

Example 4.8. We consider now a digital option written on an asset with price defined as
S(t) = S(0) exp(X(t)). Then, with x = lnS(0), we have

f(y) = 1{ey>B}, B ∈ R+.

For d > 0, we have that gd ∈ L1(R). Moreover,

ĝd(u) =
−Biu−d

iu− d
,

which is in L1(R). By a direct calculation, we find that

(d− iu)f̂(u+ id) = Biu−d,

which belongs to L1(R).

Appendix A. Computation of the delta for diffusions driven by Brownian
motion

In this Section, we review the method of Fournié et. al [10] to derive the stochastic
weights for calculating the Greeks using Monte Carlo simulations. Let DomDW be the set
of Malliavin differentiable random variables for Gaussian processes and DW the Malliavin
operator. We consider the case when the underlying price process is a Markov diffusion
S(t) ∈ DomDW of the form

(A.1)

{
dS(t) = µ(S(t))dt+ σ(S(t))dW (t),
S(0) = x, x > 0,

where W (t) is a Brownian motion. Assume that µ and σ are continuously differentiable
functions with bounded derivatives. We associate to the process S(t), a process V (t) given
by:

(A.2)

{
dV (t) = µ′(S(t))V (t)dt+ σ′(S(t))V (t)dW (t),
V (0) = 1,

This V (t) is called the first variation process for S(t) and we have

V (t) =
∂S(t)

∂x
.

Proposition A.1. [10] Let S(t) be a process of the form (A.1). Then for all t ≥ 0,

DW
s S(t) = V (t)V (s)−1σ(S(s))1{s≤t}, s ≥ 0.
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Proof. We have

S(t) = x+

∫ t

0

µ(S(u))du+

∫ t

0

σ(S(u))dW (u).

Thus the derivative of S(t) at time s is given by

DW
s S(t) = DW

s

( ∫ t

0

µ(S(u))du
)

+DW
s

( ∫ t

0

σ(S(u))dW (u)
)

=

∫ t

s

DW
s

(
µ(S(u))

)
du+

∫ t

s

DW
s

(
σ(S(u))

)
dW (u) + σ(S(s))

=

∫ t

s

µ′(S(u))DW
s S(u)du+

∫ t

s

σ′(S(u))DW
s S(u)dW (u) + σ(S(s)).

Take Z(t) = DW
s S(t), this represents the equation of the derivative of S(t) at time s fixed.

For t ≥ s, {
dZ(t) = µ′(S(t))Z(t)dt+ σ′(S(t))Z(t)dW (t),
Z(s) = σ(S(s)).

The processes Z(t) and V (t) verify the same differential equations with different initial
conditions, therefore

Z(t) = λV (t)1{s≤t}, t ≥ s,

where λ = σ(S(s))V (s)−1. Then

DW
s S(t) = V (t)V (s)−1σ(S(s))1{s≤t}.

�

Proposition A.2. [10] Let f(S(T )) ∈ L2(Ω) and S(t) be a process of the form (A.1).
Define

Γ =
{
a ∈ L2[0, T ]|

∫ T

0

a(t)dt = 1
}

and

π =

∫ T

0

a(t)V (t)σ−1(S(t))dW (t).

If a ∈ Γ and (E[π2])1/2 <∞, then

∂

∂x
E

[
f(S(T ))

]
= E

[
f(S(T ))π

]
.

Proof. First, assume that f ∈ C∞
K (R), the set of infinitely differentiable functions with

compact support, then

△ =
∂

∂x
E

[
f(S(T ))

]
= E

[ ∂
∂x
f(S(T ))

]
= E

[
f ′(S(T ))

∂S(T )

∂x

]
= E

[
f ′(S(T ))V (T )

]
,

where Y (t) is the first variation process of S(t). We want to write the last expression

E

[
f ′(S(T ))V (T )

]
as E

[
f(S(T )δ(η)

]
, where δ(η) is the Skorohod integral of a certain η ∈
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L2(Ω × [0, T ]) with respect to the Brownian motion W (t). By the integration by parts
formula, we have

E

[
f(S(T ))δ(η)

]
= E

[ ∫ T

0

DW
s (f(S(T ))η(s)ds

]

= E

[ ∫ T

0

f ′(S(T ))DW
s (S(T ))η(s)ds

]

= E

[
f ′(S(T ))

∫ T

0

V (T )(V (s))−1σ(S(s))1{s≤t}η(s)ds
]
.

So η(s) should verify the following equation

(A.3) V (T ) =

∫ T

0

V (T )(V (s))−1σ(S(s))1{s≤t}η(s)ds.

Then, for some a ∈ Γ, we have

(A.4) η(t) = a(t)V (t)σ(S(t))−1.

Therefore

∆ = E

[
f(S(T ))

∫ T

0

a(t)V (t)σ−1(S(t))dW (t)
]
.

Now, let f(S(T )) ∈ L2(Ω). Then f(x) ∈ L2(R, PS(T )), where PS(T ) is the probability
density of S(T ). Therefore

∃(fn)n∈N ∈ C∞
K (R) such that lim

n→∞
fn = f, the limit is in L2(R, PS(T )).

We denote by
u(x) = E[f(S(T ))] and un(x) = E[fn(S(T ))].

As the convergence in L2 implies the convergence in L1, (un)n∈N converges point wise to u
and for x ∈ R, we have

lim
n→∞

un(x) = u(x).

As fn ∈ C∞
K (R), then

∂

∂x
E[fn(S(T ))] = E

[
fn(S(T ))π

]
.

We denote by g(x) = E

[
f(S(T ))π

]
. By Cauchy-Schwartz inequality, we have

(A.5) |g(x) − ∂

∂x
un(x)| = |E[(f − fn)π]| ≤

(
E

[
π2

])1/2

ψn(x).

where ψn(x) =
(
E

[
(f − fn)2

])1/2

. The convergence of un implies the convergence of ψn to

0 point wise when n tends to infinity. Therefore the sequence ( ∂
∂x
un(x))n∈N converges point

wise to g(x). As the function
(
E

[
π2

])1/2

is finite, then the equation (A.5) shows that the

convergence is uniform in every compact K ∈ R. Therefore the function u is differentiable
and it’s derivative is equal to g. Then the result holds for f(S(T )) ∈ L2(Ω). �
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measures. SMF Sminaires et Congrs, 16, pp. 55-70.
[7] Di Nunno, G., Øksendal, B., and Proske, F. (2008). Malliavin Calculus for Lévy Processes with
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[20] Solé, J. L., Utzet, F., and Vives, J.(2006). Canonical Lévy process and Malliavin calculus. Stochastic
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