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Energy transport and confinement in tokamak fusion plasmas is usually determined by the

coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear

structures, such as zonal flows, together with free energy sources such as temperature gradients.

Zero-dimensional models, designed to embody plausible physical narratives for these interactions,

can help to identify the origin of enhanced energy confinement and of transitions between

confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra.

Here, we extend a successful three-variable (temperature gradient; microturbulence level; one

class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas

16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure.

This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree

of invariance of the phenomenology generated by the model of Malkov and Diamond, given

this additional physics. We study and compare the long-time behaviour of the three-equation and

four-equation systems, their evolution towards the final state, and their attractive fixed points and

limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an

attractive fixed point of the three-equation system can become a limit cycle of the four-equation

system. Addressing these questions which we together refer to as “robustness” for convenience is

particularly important for models which, as here, generate sharp transitions in the values of

system variables which may replicate some key features of confinement transitions. Our results

help to establish the robustness of the zero-dimensional model approach to capturing observed

confinement phenomenology in tokamak fusion plasmas.VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4800009]

I. INTRODUCTION

Energy transport in toroidal magnetically confined

fusion plasmas is determined, in most cases, by the effects of

small-scale turbulence and larger scale coherent nonlinear

structures, together with their mutual interactions. These

structures include zonal flows and geodesic acoustic

modes,1–7 which are radially localised poloidal flows, and

streamers,8 which are radially highly elongated and poloi-

dally localised. The importance of these structures for energy

transport was highlighted in large scale numerical simula-

tions,9,10 and the first direct experimental observation of

streamers was reported in 2008.8 Zonal flows have been the

subject of extensive theoretical and observational work.1–7

There is now substantial experimental support for the long-

standing hypothesis11 that the growth of zonal flows is driven

by the averaged Reynolds stress of small scale turbulence.

The latter can be locally suppressed by the resultant shear

flow, thereby generating a temporally quasi-discontinuous

enhancement of global energy confinement: the L-H transi-

tion.12 Whether zonal flows or streamers are preferentially

formed under specific plasma conditions, and how they

compete, has been addressed from various perspectives,13–15

and remains an open question. For a recent review of

experimental observations of the interaction between meso-

scale structures (such as zonal flows and streamers) and

microscale structures (such as drift turbulence), see Ref. 16;

of drift turbulence, particularly in relation to transitions in

global confinement, see Ref. 17; and of the L-H transition,

see Ref. 18. A recent review of these physics issues in a

broad context is provided by Ref. 19. As emphasised in Refs.

16–19 and references therein, recent diagnostic advances are

transforming the experimental study of time evolving micro-

turbulence and coherent nonlinear mesoscale structures dur-

ing confinement transitions. This generates fresh theoretical

challenges. In addition, the ability to understand and control

this plasma physics phenomenology will be central to the

successful operation of the next step magnetic confinement

fusion experiment ITER.20

It is remarked by Malkov and Diamond in Ref. 21, here-

after referred to as MD, that transport models derived from

the fundamental equations of plasma physics continue to add

much to our understanding but “tend to be increasingly, if

not excessively, detailed. Therefore, there is high demand

for a simple, illustrative theoretical model with a minimal

number of critical quantities responsible for the transition.

Such models usually yield or encapsulate basic insight into

complicated phenomena.” One approach in fusion plasmas is
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that of zero-dimensional models for the interaction between

microturbulence and coherent nonlinear structures, in partic-

ular predator-prey or Lotka-Volterra.22,23 The properties of

Lotka-Volterra systems, both mathematically and from the

perspective of fusion plasma physics, are by no means fully

explored and remain an active field of research.24–29 For

fusion applications, a key step is to establish agreement

between the outputs of such models and the observed con-

finement phenomenology, which should ideally extend to the

character of measured time traces of key properties near tran-

sitions, for example. Recent experimental results31,32 are

encouraging in this respect. There is an important additional

requirement. The zero-dimensional models used for this

application should be robust, in the sense that the character

of their outputs remains largely invariant against minor

changes in the formulations of the models. This requirement

for robustness has been explicitly noted33 in the other main

class of zero-dimensional heuristic model for magnetised

plasma confinement, namely, sandpiles, both in fusion34–40

and in solar-terrestrial33,41–43 contexts, and requires investi-

gation for predator-prey and Lotka-Volterra applications to

fusion plasmas.

There are several aspects to the degree of invariance of

the phenomenology generated by a zero-dimensional model

when aspects of the model are changed. First, what is the

long-time behaviour of the system and how sensitive is this

to variation in the model parameters?44,45 Second, how sen-

sitively does the nature of the system’s evolution towards its

final state depend on the initial conditions? Is there an attrac-

tive fixed point or limit cycle towards which the system

flows as time passes? If so, what is its basin of attraction?

Third, how sensitive is the path to this attractor? This is par-

ticularly important for models which, as here, generate sharp

transitions in the values of system variables which may repli-

cate some key features of confinement transitions in toka-

maks. If the initial conditions are varied, is the time at which

the transition occurs delayed or brought forward, or does its

character change, for example? Further, given two zero-

dimensional models which are schematically distinct but ad-

jacent, how similar is the phenomenology of their solutions?

An example is provided here by our extension of the model

of MD21 to incorporate two variables, rather than one, repre-

senting different classes of large scale coherent nonlinear

field, in a four-variable system. The case of two predators

and one prey was considered theoretically in the model of

Itoh and Itoh,29 hereafter referred to as II, and by Miki and

Diamond,30 and there is recent experimental motivation.31,32

Insofar as a zero-dimensional model turns out to be robust

with respect to the considerations outlined (attractors; initial

conditions; structural adjacency), confidence is strengthened

in the mapping from model variables to specific plasma

properties, and from the time evolving behaviour of the

model to that of the plasma system.

In the present paper, we focus from this perspective on

the interesting and successful mathematical model proposed

in MD. This is constructed in terms of variables representing

the magnitude of the plasma temperature gradient and the

amplitudes of small scale drift turbulence and of large scale

coherent nonlinear structures such as zonal flows. Malkov

and Diamond proposed21 certain mappings between different

solution regimes of their model and different confinement

regimes of tokamak plasmas. In the interest of continuity, we

follow the confinement regime nomenclature of MD in rela-

tion to model outputs in the present paper. We investigate

the robustness of the phenomenology of the MD model

extended as described, for parameter regimes identical, or

adjacent, to those used in the key figures of MD. Where

robustness is demonstrated and, if possible, explained, this

reinforces confidence that models in the genre of MD and II

may capture key features of the physics of confinement tran-

sitions in tokamak plasmas.

II. MODEL EQUATIONS

Specifically, the MD model is a closed system of nonlin-

ear differential equations which couple the time evolution of

three variables: the drift wave-driving temperature gradient

N, the energy density of drift wave turbulence E, and the

zonal flow velocity U. The three variables of the II model

exclude N, retain drift turbulence energy density denoted by

W, and incorporate the energy densities of two competing

classes of coherent nonlinear structure, zonal flows Z and

zonal fields (e.g., streamers) M. Miki and Diamond30 intro-

duced a zero-dimensional three-variable two-predator, one

prey model, where the predators are identified with zonal

flows and geodesic acoustic modes. The aspect of robustness

which we first address can therefore be expressed in physical

terms as follows. We adopt the philosophy of II and of Ref.

30 by introducing two competing classes of coherent nonlin-

ear structure, here identified with zonal flows and streamers,

which replace the single class in MD. The other two MD

equations are adjusted only so far as necessary to accommo-

date these two fields, instead of one, in a mathematically

symmetrical way as in II. We investigate how far the model

outputs of our new four-variable system differ from those of

the three-variable system of MD. A good focus for this study

is provided by the time traces captured in Figs. 2–4 of MD,

which have been mapped to transitions observed between

tokamak confinement regimes. How are these traces altered

by the inclusion of a second competing class of coherent

nonlinear structure? The answers to these questions are con-

ditioned by the underlying phase space structure of families

of solutions to the models, as plotted in Fig. 5 of MD, for

example. In addition to studying time traces, therefore, we

seek to characterise the limit cycles and fixed points of our

system of equations. We first generalize the un-normalized

MD equations to

dE

ds
¼ ðN � a1E � a2d

2N 4 � a3V
2
ZF � a3V

2
SFÞE; (1)

dVZF

ds
¼

b1ZE

1þ b2Zd2N
4
� b3Z

� �

VZF; (2)

dVSF

ds
¼

b1SE

1þ b2Sd2N
4
� b3S

� �

VSF; (3)

dN

ds
¼ �ðc1E þ c2ÞN þ qðsÞ: (4)
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This model encompasses drift wave turbulence level E,
drift wave driving temperature gradient N , zonal flow veloc-

ity VZF, streamer flow velocity VSF, and the heating rate q

which is a control parameter of the system. This model thus

extends, to the case when zonal flows are joined by stream-

ers, the key physics encapsulated in the description in

Ref. 46: “When the drift wave turbulence drive becomes suf-

ficiently strong to overcome flow damping, it generates zonal

flows by Reynolds stress. Drift wave turbulence and zonal

flows then form a self-regulating system as the shearing by

zonal flows damps the drift wave turbulence.” We note that

this model follows the approach expressed in Eq. (17) of

MD,21 in that the zonal flows and streamers do not explicitly

enter the time evolution equation for the temperature gradi-

ent, Eq. (4). The zonal flows and streamers are indirectly

coupled to each other through the evolving temperature gra-

dient and microturbulence level. To maximise mathematical

congruence with the model of MD, there is no direct cross

term in VSFVZF. We note that our introduction of streamers

into this model is mathematically symmetric with the

approach to zonal flows expressed in the model of Ref. 21.

This reflects our emphasis in this paper on the question of

mathematical robustness: we have two predators rather than

one, operating on the same mathematical footing. A corol-

lary is that in the present model, neither the zonal flows nor

the streamers explicitly enter the time evolution equation for

the temperature gradient, Eq. (4). In reality, one might

assume that the streamers, unlike the zonal flows, when

active can relax the temperature gradient to some extent.

The corresponding normalized equations are

dE

dt
¼ ðN � N4 � E� U1 � U2ÞE; (5)

dU1

dt
¼ �1

E

1þ fN4
� g1

� �

U1; (6)

dU2

dt
¼ �2

E

1þ fN4
� g2

� �

U2; (7)

dN

dt
¼ q� ðqþ rEÞN: (8)

Here, we have defined normalized variables

N ¼ a
1=3
2 N ; E ¼ a1a

1=3
2 E; U1 ¼ a

1=3
2 a3V

2
ZF;

U2 ¼ a
1=3
2 a3V

2
SF; t ¼ a

�1=3
2 s;

and the transformed model parameters are

�1 ¼
2b1Z

a1
; �2 ¼

2b1S

a1
; g1 ¼

b3Z

b1Z
a1a

1=3
2 ; g2 ¼

b3S

b1S
a1a

1=3
2 ;

q¼ c2a
1=3
2 ; r¼

c1

a1
; f¼

b2Z

a
4=3
2

; b2Z ¼ b2S;

qðtÞ ¼ a
2=3
2 qðsÞ; d¼ 1:

This rescaling of variables differs from that in MD,

where Eqs. (13) and (14) are rescaled using t ¼ a
1=3
2 s as indi-

cated in MD, whereas Eq. (12) appears to have been rescaled

inconsistently, using t ¼ a
�1=3
2 s, which is the scaling applied

to all four model equations in the present paper. There

appear to be no consequences for the results in MD. The sys-

tem of Eqs. (5)–(8) thus generalizes the system of Eqs.

(15)–(17) of MD by introducing two distinct flow variables,

U1 and U2, to replace the single zonal flow variable U. We

refer to U1 as zonal flow, U2 as streamer flow.

Section III of this paper addresses transition phenome-

nology given time-independent coefficients, as characterised

primarily by time traces. This requires careful comparison

with the specific scenarios identified in Figs. 2–4 of MD.

The MD scenarios predetermine the choice of parameter val-

ues and initial conditions that we consider. We typically

probe neighbouring phase space by considering in addition

eighty-one (three to the fourth power) nearby phase trajecto-

ries. In Sec. IV, we consider the phase space evolution of our

system and establish comparisons between the MD model

and ours. In Sec. V, we analyse possible links to the phenom-

enology of tokamak plasmas, in the spirit of MD and II.

III. MODELLING CONFINEMENT TRANSITIONS

In the limit where either one of the two parameters that

represent distinct classes of coherent nonlinear structures

(zonal flows or streamers) in our model vanishes, it reprodu-

ces exactly the results shown in Fig. 2 of MD, as required.

Figure 1 displays the corresponding results for the case

where both streamers and zonal flows exist. In the nomencla-

ture of MD, the system starts from an overpowered state near

H-mode, with negligible turbulence E and large scale struc-

tures U1; U2. The eventual growth of turbulence accompa-

nies a sharp drop in N to unstable L-mode, while also

providing energy for U1 and U2. Drift wave turbulence is

later suppressed and the maximum amplitude of large scale

flows declines, leaving only the mean flow to support the

transport barrier.19 Finally, the stable T-mode, which com-

bines a steady-state level of E with lower N than H-mode,

appears after the oscillating transition regime. During this

transition, energy is extracted from the initially dominant

oscillating streamer flow U2 to the zonal flow U1 until the

former vanishes.

In Fig. 2, we plot the system evolution for the case

where the values of �2 and g2 are different from Fig. 1, while

all other parameter values are identical. Specifically, in

Fig. 1 �2=�1 ¼ g2=g1 ¼ 1:01, whereas in Fig. 2 �2=�1 ¼
0:01 and g2=g1 ¼ 0:1. This weakens both the drive and the

damping of structures U2 compared to zonal flows U1 in

Fig. 2, with respect to the case of Fig. 1. Before time reaches

t � 6000, the evolution is very similar to Fig. 2 of MD.

However, at t � 6500 we find a dramatic change. A limit

cycle appears after the long-term fixed point time series. The

amplitudes of U1 and U2 exchange rather fast compared to

Fig. 1. Furthermore, the period of the limit cycle is rather

long: several hundred time units. With the appearance of

zonal flows and streamers, the T-mode becomes unstable.

Figure 3 shows the case where the heating rate is higher

than for Fig. 1, q ¼ 0:58, but all other model parameters are

the same. At each pulsed occurrence of zonal flows U1 and

streamers U2, the former extract energy from the latter,
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FIG. 1. Upper panel: From overpowered

H-mode to unstable L-mode then to

T-mode. Lower panel: Transition to

T-mode for U1 and U2 showing intersec-

tion at t ’ 750 followed by energy rever-

sal. The parameters are �1 ¼ 19;
�2 ¼ 1:01�1; g1 ¼ 0:12; g2 ¼ 1:01g1; q
¼ 0:47; q ¼ 0:55; r ¼ 0:6; f ¼ 1:7.

FIG. 2. Upper panel: Transition from

stable fixed point state to unstable oscil-

latory limit cycle state. Lower panel:

Zoom in version from t ¼ 300 to

t ¼ 800. The parameters are �1 ¼ 19;
�2 ¼ 0:01�1; g1 ¼ 0:12; g2 ¼ 0:1g1;
q ¼ 0:47; q ¼ 0:55; r ¼ 0:6; f ¼ 1:7.

FIG. 3. Energy transfer from U2 to U1

during pulses of strong nonlinear oscilla-

tion, followed by limit cycle oscillation in

N; E and U1. The parameters are �1 ¼ 19;
�2 ¼ 1:01�1; g1 ¼ 0:12; g2 ¼ 1:01g1;
q ¼ 0:58; q ¼ 0:55; r ¼ 0:6; f ¼ 1:7.

042302-4 Zhu, Chapman, and Dendy Phys. Plasmas 20, 042302 (2013)



which become extinct after the sixth pulse. Thereafter, there

are limit cycle oscillations in E, N, and U1 equivalent to the

limit cycle for E, N, and U in the case in MD.

Figure 4 shows time traces for the case where all param-

eters, except the heating rate q ¼ 0:58 which is the same as

in Fig. 3, are those of Fig. 2. Together with Fig. 5, where the

heating rate q is slightly increased to q ¼ 0:582 instead of

q ¼ 0:58, this enables us to relate our model to Fig. 4 of

MD, which showed that if in MD q ¼ 0:582 instead of 0.58,

the limit cycle eventually collapses after many oscillations.

The final state has N finite and the remaining variables are

zero; this is designated the QH-mode fixed point in MD. The

corresponding cases for our model Eqs. (5)–(8) are shown in

Figs. 4 and 5. A precursor to limit cycle collapse is apparent

in Fig. 4 in the growth of the streamer field U2 during the

episodes of zonal flow quiescence in the last few oscillations

of the system.

For the slightly different parameter set used to generate

Fig. 5, the pulses of U1 and U2 grow and die together. Their

peak amplitude increases at each successive cycle, as does

the time interval between them. At the final oscillation, U1

and U2 collapse promptly together, whereas E survives lon-

ger until it is extinguished by damping. The phenomenology

of Fig. 5 thus corresponds more closely to that of Fig. 4 of

MD, compared to our Fig. 4.

Figure 6 illustrates how system evolution towards the

finite- N final state of Fig. 5 depends on the damping rate g2
of streamers. We fix all parameters except g2 and find that,

with increasing g2, there are more peaks of U2 correlating

with cyclic growth of E, which acts as a damping sink of N.

Successive peaks increase in height prior to extinction,

which results in a final state similar to Fig. 5.

IV. PHASE SPACE EVOLUTION

The time traces of the individual variables, plotted in

Figs. 1–6, represent projections of the evolution in four-

dimensional phase space of the system defined by Eqs.

(5)–(8). In the present section, we capture the global phase

space explored by this system, for parameter values corre-

sponding, or adjacent, to those used to generate Figs. 1–6.

This approach enables us to identify and characterise the

FIG. 4. Upper panel: Collapse of limit

cycle in N, E, and U1. Lower panel:

Stair increasing of U2. The parameters

are �1 ¼ 19; �2 ¼ 0:01�1; g1 ¼ 0:12;
g2 ¼ 0:01g1; q¼ 0:58; q¼ 0:55; r¼ 0:6;
f¼ 1:7.

FIG. 5. Upper panel: Collapse of limit

cycle with positively correlated growth

of pulses of U1 and U2. Lower panel:

Zoom in version from t ¼ 240 to

t ¼ 400. The parameters are �1 ¼ 19;
�2 ¼ 1:0001�1; g1 ¼ 0:12; g2 ¼ 1:0001g1;
q¼ 0:582; q¼ 0:55; r¼ 0:6; f¼ 1:7.
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nature of initial and final states and of the transitional

behaviour between them. The relationship between these

figures is summarized in Table I. These results are supple-

mented in the Appendix by stability studies. At issue are

two main physical concerns, which map directly to the prop-

erties of different energy confinement regimes in tokamaks,

insofar as the zero-dimensional approach and the identifica-

tions made in MD, for example, may be valid. First, what is

the nature of the final state that is reached at long times? For

example, is it an attractive fixed point or a limit cycle

(implying a nearby repulsive fixed point)? Second, there is

the question, discussed previously, of robustness of three-

variable models against the inclusion of a fourth variable

(here, streamers) in the model. For example, the pioneering

work of MD includes identification of a limit cycle (Fig. 3

of MD) with a specific confinement regime. Is this limit

cycle—and, proceeding by analogy, the confinement regime

that it represents—stable against the presence of streamers

in addition to zonal flows?

Figure 7 displays the generalisation, to the four-variable

system, of the case of the three-variable system addressed in

Fig. 2 of MD. To fix ideas, the two left-hand plots correspond

to the three-variable case for the parameters of Fig. 2 of MD,

showing the attractive fixed point which has finite values of E,

N, and U. The inward spiral path of the system from a random

initial position is shown, both in (E, N, U) space and projected

onto the (E, U) plane. It is evident that this path lies on a topo-

logical structure in phase space, whose dimensionality is

lower by one than that of the full phase space. The two right-

hand plots of Fig. 7 show how this system changes when the

two variables U1 and U2 replace U, for the parameter values

used to generate the traces in Fig. 1, which are adjacent to

those for Fig. 2 of MD, as discussed above. The centre right-

hand plot shows initial spiral convergence in (E; U2) which

closely resembles that in the (E, U) plane displayed at centre

left. Whereas with three variables this convergence is towards

a fixed point, the existence of a fourth variable renders this

attractive fixed point unstable. In consequence, the final stage

of system evolution consists of injection in the U1 direction to

a fixed point at finite (E, N, U1) with U2 ¼ 0. The far right

plot in Fig. 7 demonstrates that this is indeed a fixed point,

towards which phase space evolution originating from eighty-

one different initial points converges. In each case, there is

spiral convergence on a manifold followed by injection along

U1. The choice of initial condition affects only the orientation

of this convergence manifold with respect to U1 and U2. We

note also that the final state with finite U1 differs from the

MD final state for which U ¼ 0.

Figure 8 illustrates the phase space evolution of the sys-

tem whose time traces are plotted in Fig. 2, which like Fig. 7

is a case with parameters adjacent to those used to generate

Fig. 2 of MD. The initial spiral convergence in the (E; U1)

plane, shown in the centre panel, resembles that in the (E, U)

plane for the MD case plotted in the left panel, which is iden-

tical to the centre-left panel of Fig. 7. As in Fig. 7, the stable

fixed point of the three-variable system is unstable for the

four-variable system, for which there is injection along U2.

Unlike Fig. 7, where this injection is towards a stable fixed

FIG. 6. Evolution to the finite N attractor

for different values of g2. Upper panel:

g2 ¼ 0:05. Middle upper panel: g2 ¼ 0:06.
Middle lower panel: g2 ¼ 0:10. Lower

panel: g2 ¼ 0:11. The remaining parame-

ters are the same: �1 ¼ 19; �2 ¼ 1:001�1;
g1 ¼ 0:12; q¼ 0:582; q¼ 0:55; r¼ 0:6;
f¼ 1:7.

FIG. 7. First panel: Fig. 2 in MD. The pa-

rameters are �¼ 19; g¼ 0:12; q¼ 0:47;
q¼ 0:55; r¼ 0:6; f¼ 1:7. Second panel:

Projection of first panel on E-U plane.

Third panel: Phase plot of Fig. 1. Last

panel: Phase plot of Fig. 1 with 81 initial

conditions. Stars denote initial values,

blue dots denote trajectories and red dia-

monds denote final states.
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point, in Fig. 8 the injection is onto a stable limit cycle that

has finite slow oscillations in (N; E; U2) with U1 ¼ 0 in the

four-variable system.

The three-variable MD system has a limit cycle in (N, E,

U) for the case shown in Fig. 3 of MD. This is re-plotted in

the two left panels of Fig. 9 and in the left panel of Fig. 10.

Figures 9 and 10 relate to the time traces shown in Figs. 3

and 4 of this paper, obtained for parameter sets for the four-

variable system which are adjacent to those used in MD for

the three-variable system. For the parameters of Fig. 9,

which is the phase space plot for Fig. 3, it is clear from the

two right-hand panels that the limit cycle behaviour is essen-

tially that of the MD system. The transient evolution towards

the limit cycle involves circulation on similar planes that

have successively lower peak values of U2. The final limit

cycle in (N; E;U1), with U2 ¼ 0, is essentially that in (N, E,

U) for the three-variable system.

The three-variable MD attractive limit cycle which mani-

fests in the four-variable system as shown in Fig. 9 is, how-

ever, unstable. Figure 10, which is the phase space plot for

Fig. 4, shows that the system leaves the former limit cycle

and transiently explores the additional phase space dimension

FIG. 8. First panel: Projection of Fig. 2

in MD on E-U plane. The parameters

are� ¼ 19; g ¼ 0:12; q ¼ 0:47; q ¼ 0:55;
r ¼ 0:6; f ¼ 1:7. Second panel: Phase

plot of Fig. 2. Last panel: Phase plot of

Fig. 2 with 81 initial conditions. Stars

denote initial values, blue dots denote

trajectories and red diamonds denote

final states.

FIG. 10. First panel: Projection of Fig. 3

in MD on E-U plane. The parameters

are� ¼ 19; g ¼ 0:12; q ¼ 0:58; q ¼ 0:55;
r ¼ 0:6; f ¼ 1:7. Middle panel: Phase

plot of Fig. 4 here. Last panel: Phase plot

of Fig. 4 here with 81 initial conditions.

Stars denote initial values, blue dots

denote trajectories and red diamonds

denote final states.

FIG. 11. First panel: Phase plot for Fig. 4 of MD. Second panel: Projection of Fig. 4 in MD on E-U plane. The parameters are � ¼ 19; g ¼ 0:12;
q ¼ 0:582; q ¼ 0:55; r ¼ 0:6; f ¼ 1:7. Third panel: Phase plot of Fig. 5 here. Last panel: Phase plot of Fig. 5 here with 81 initial conditions. Stars denote ini-

tial values, blue dots denote trajectories and red diamonds denote final states.

FIG. 9. First panel: Fig. 3 in MD. The parameters are � ¼ 19; g ¼ 0:12; q ¼ 0:58; q ¼ 0:55; r ¼ 0:6; f ¼ 1:7. Second panel: Projection of first panel on E-U

plane. Third panel: Phase plot of Fig. 3 here ZCD. Last panel: Phase plot of Fig. 3 here ZCD with 81 initial conditions. Stars denote initial values, blue dots

denote trajectories and red diamonds denote final states.
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associated with the additional variable, before converging to

a new fixed point that has N finite and all other variables

zero. This class of attractive fixed point is noted in Fig. 4 of

MD, shown in the far left panel of Fig. 11 and, projected on

the (E, U) plane, in the centre left panel. The two right-hand

panels of Fig. 11 are the phase space plots for Fig. 5, showing

convergence to the origin in (E; U1; U2) space while N

remains finite. The final step to the origin is preceded by cir-

culation around and away from an apparent repulsive fixed

point with finite values of E; U1 and U2. The far right panel

of Fig. 11 shows that the choice of initial conditions merely

affects the orientation in (U1; U2) space of the plane of this

transient circulation.

The phase space behaviour discussed thus far assists us

in re-visiting the time traces in Fig. 2, for which the corre-

sponding phase plot is given in Fig. 13. In Fig. 12, we anno-

tate Fig. 2 in light of Fig. 13. These two figures demonstrate

how, for the four-variable system, the T-mode of the three-

variable system becomes unstable at long times. The system

then evolves towards the newly identified attractive limit

cycle in (N; E; U2). Here, slow oscillations in N correlate

with those in U2, both of which remain finite throughout,

while bursts of E, feeding on U2, occur between extinctions.

V. CONCLUSIONS

Contemporary experimental results from the DIII-D31

and HL-2A tokamaks32 reinforce the relevance of zero-

dimensional predator-prey models to transitions between

energy confinement regimes. Understanding how the outputs

of related, but different, predator-prey models for plasma

confinement phenomenology may resemble or deviate from

each other is therefore important. In this paper, we have

focused on the consequences of adding a second predator,

and hence a fourth field variable, to the three-field MD21

model. Quantitative studies have been presented for parame-

ter sets that are maximally adjacent to those in MD, which

yield the time traces shown in Figs. 1–6 and 12. These are

projections of the phase space dynamics shown in Figs. 7–11

and 13 (Table I). It is found that both congruences and devia-

tions can occur between the three-field and four-field models.

For example, Fig. 10 shows how a limit cycle in the three-

field system is unstable for four fields in the relevant parame-

ter range, where the attractor is a fixed point. Conversely,

Fig. 8 shows a three-field fixed point mapping to a four-field

limit cycle. Figure 13 shows the complex, but resolved, phase

space dynamics underlying a generalisation to four fields

of the three-field scenario modelled in Fig. 2 of MD. We con-

clude that exploration of the linkages between different

FIG. 13. Phase plot of Fig. 2 in this paper.

TABLE I. Summary of Figs.1–11.

Case q �2=�1 g2=g1 Timetraces Phaseplot Manifold

1 0.47 1.01 1.01 Fig. 1 Fig. 7 Fixed point

2 0.47 0.01 0.1 Fig. 2 Fig. 8 Limit cycle

3 0.58 1.01 1.01 Fig. 3 Fig. 9 Limit cycle

4 0.58 0.01 0.01 Fig. 4 Fig. 10 Limit cycle

5 0.582 1.0001 1.0001 Fig. 5 Fig. 11 Fixed point

6 0.582 1.001 0.05; 0.06; 0.1; 0.11 Fig. 6 N/A N/A

FIG. 12. Time series of Fig. 2 in this pa-

per, annotated in light of Fig. 13.
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zero-dimensional models, capturing full phase space proper-

ties so far as computationally possible, needs to keep pace

with the continuing development and refinement of individual

zero-dimensional models in fusion plasma physics.

Zero-dimensional models remain attractive because they

embody physically motivated narratives that may account

for global fusion plasma confinement phenomenology.

Ideally, the end states (attractors) of zero-dimensional mod-

els, together with the transitional behaviour en route from

the initial configurations, should be robustly identifiable with

fusion plasma confinement states and transitions. Zero-

dimensional predator-prey models, constructed in terms of a

small number of variables representing global quantities

such as the drift wave turbulence level E, drift wave driving

temperature gradient N , zonal flow velocity VZF, streamer

flow velocity VSF, and the heating rate q in Eqs. (1)–(4), are

intrinsically nonlinear. This nonlinearity implies the poten-

tial for a rich and varied set of attractors and transitional

behaviour, together with strong dependence on the numerical

values of model parameters. The present paper has taken

steps to explore this potential for the model of interest in the

case of parameter sets close to those studied previously in

MD, with a view to strengthening the links between families

of zero-dimensional models on the one hand, and fusion

plasma confinement phenomenology on the other. We note

finally that some of the considerations addressed here may

carry over to other fields where it is hoped to develop zero-

dimensional models that have descriptive, or even predictive,

power for global phenomena in macroscopic multiscale

driven-dissipative systems. A topical instance is provided by

zero-dimensional modelling in climate science, see for

example Ref. 47 and references therein, where some general

circulation models incorporate Lotka-Volterra features.48
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APPENDIX: IDENTIFICATION AND STABILITYOF
FIXED POINTS

We start from Eqs. (5) to (8), and for simplicity define

the normalized equations as

dE=dt¼ðN�N4�E�U1�U2ÞE� f ðE; U1; U2; NÞ

dU1=dt¼�1
E

1þfN4
�g1

� �

U1�g1ðE; U1; NÞ

dU2=dt¼�2
E

1þfN4
�g2

� �

U2�g2ðE; U2; NÞ

dN=dt¼q�ðqþrEÞN�hðE; NÞ:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(A1)

We regard point ðN0;E0;U10;U20Þ as a fixed point of the

4D system and define

f0 � f ðE0;U10;U20;N0Þ;

g10 � g1ðE0;U10;N0Þ

g20 � g2ðE0;U20;N0Þ

h0 � hðE0;N0Þ:

8

>

>

>

<

>

>

>

:

(A2)

By construction f0 ¼ g10 ¼ g20 ¼ h0 ¼ 0. Near the fixed

point, we make a local linear expansion of the model

parameters

�E�E�E0; �U1 �U1�U10; �U2 �U2�U20;

�N�N�N0: (A3)

This gives rise to the linearized equations

f � f0 þ
@f

@E
�Eþ

@f

@U1

�U1 þ
@f

@U2

�U2 þ
@f

@N
�N

g1 � g10 þ
@g1
@E
�Eþ

@g1
@U1

�U1 þ
@g1
@N
�N

g2 � g20 þ
@g2
@E
�Eþ

@g2
@U2

�U2 þ
@g2
@N
�N

h� h0 þ
@h

@E
�Eþ

@h

@N
�N:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(A4)

To obtain the eigenvalues of the system, we calculate

the corresponding Jacobian matrix

J¼

@

@E
f

@

@U1

f
@

@U2

f
@

@N
f

@

@E
g1

@

@U1

g1
@

@U2

g1
@

@N
g1

@

@E
g2

@

@U1

g2
@

@U2

g2
@

@N
g2

@

@E
h

@

@U1

h
@

@U2

h
@

@N
h

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

ðE0; U10; U20; N0Þ

: (A5)

We now identify the fixed points.

‹ If E ¼ 0,

N � N4 � E� U1 � U2 ¼ K

U1 ¼ 0

U2 ¼ 0

N ¼
q

q
;

8

>

>

>

>

>

<

>

>

>

>

>

:

(A6)

where K is a constant that can take any value.

› If E 6¼ 0,

N � N4 � E� U1 � U2 ¼ 0

E

1þ fN4
� g1

� �

U1 ¼ 0

E

1þ fN4
� g2

� �

U2 ¼ 0

q� ðqþ rEÞN ¼ 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(A7)

From the second and third equations in this group, it fol-

lows that U1 and U2 cannot be non-zero simultaneously.
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(ii) If U1 ¼ 0; U2 6¼ 0; E 6¼ 0,

N � N4 � E� U1 � U2 ¼ 0

E

1þ fN4
� g1 ¼ K

E

1þ fN4
� g2 ¼ 0

q� ðqþ rEÞN ¼ 0;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(A8)

(ii) If U1 6¼ 0; U2 ¼ 0; E 6¼ 0,

N � N4 � E� U1 � U2 ¼ 0

E

1þ fN4
� g1 ¼ 0

E

1þ fN4
� g2 ¼ K

q� ðqþ rEÞN ¼ 0;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(A9)

where K is a constant that can take any value.

(iii) If U1 ¼ U2 ¼ 0; E 6¼ 0,

N � N4 � E ¼ 0

U1 ¼ 0

U2 ¼ 0

q� ðqþ rEÞN ¼ 0:

8

>

>

>

<

>

>

>

:

(A10)

Solutions for the specific cases of the MD and ZCD systems

considered in this paper are shown in Tables II and III.
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