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Real-world network datasets often contain a wealth of complex topological information. In the face of

these data, researchers often employ methods to extract reduced networks containing the most important

structures or pathways, sometimes known as ‘skeletons’ or ‘backbones’. Numerous such methods have

been developed. Yet data are often noisy or incomplete, with unknown numbers of missing or spurious

links. Relatively little effort has gone into understanding how salient network extraction methods perform

in the face of noisy or incomplete networks. We study this problem by comparing how the salient features

extracted by two popular methods change when networks are perturbed, either by deleting nodes or

links, or by randomly rewiring links. Our results indicate that simple, global statistics for skeletons can

be accurately inferred even for noisy and incomplete network data, but it is crucial to have complete,

reliable data to use the exact topologies of skeletons or backbones. These results also help us understand

how skeletons respond to damage to the network itself, as in an attack scenario.

Keywords: mathematical and numerical analysis of networks; network stability under perturbation and

duress; network percolation; centrality measures; network skeletons and backbones.

1. Introduction

Many systems consist of discrete elements that are coupled to one another in complex ways. Modelling

these systems as networks often exposes more clearly the fundamental properties of the dataset [1–5].

While modelling systems as networks is not a new approach, it has become more prevalent due to the

c© The authors 2014. Published by Oxford University Press. All rights reserved.
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2 of 11 L. SHEKHTMAN ET AL.

Table 1 Summary of the networks. Presented here: N , the number of nodes in the network;

L, the number of links; 〈k〉, the average degree; CV(k) the coefficient of variation of degree;

CV(w), the coefficient of variation of weight; ρ = L/
(

N

2

)

, the network density and r, the degree

assortativity coefficient. The coefficients of variation CV(w) and CV(k) are defined as the ratio

of the standard deviation, σ , to the mean, µ, of the weight and degree populations, respectively

Network N L 〈k〉 ρ CV(k) CV(w) r

Airport 1227 18050 29.42 0.024 1.29 2.25 −0.06
Migration 3056 71551 46.83 0.015 1.94 6.13 −0.06
Cargo 951 25819 54.30 0.057 1.22 6.85 −0.14
Neural 297 2141 14.46 0.049 0.89 1.35 −0.16
Food Web 121 1763 29.14 0.24 0.45 11.77 −0.10
Metabolic 311 1304 8.39 0.027 1.79 7.91 −0.25
Random 1000 15028 30.06 0.03 0.177 1.44 −0.005

greater availability of large datasets [6]. The brain’s neurons have been mapped using these methods

[7], as have air traffic patterns [8], and the flow of cargo throughout the world [9].

The explosion of research on complex networks in recent years has led to the discovery of various

properties of networks and has allowed us to find ways of reducing the complexity while preserving

certain key features. Many of these methods focus on reducing the number of nodes in the network.

Aside from simple thresholding, more sophisticated coarse-graining techniques have also been used

[10] to reduce the number of distinct entities in the network. Here, we will focus on methods of reducing

the number of links in the network while preserving the nodes. This is advantageous since it reduces the

complexity of the system while still preserving scale-free properties.

Further, there has been considerable effort in understanding how networks as a whole respond to

damage [11–14]. These studies have explored different methods of perturbing the network such as

intentional attack and random failure.

Despite the significant amount of research in both of these areas separately, there has been little

work in combining the study of backbone and skeleton methods with stress applied to the system. Here,

we examine how skeletons and backbones respond to different methods of stress applied to the system.

1.1 Network data

In exploring the response of network skeletons to perturbations to the network as a whole, we use three

different transportation networks, three biological networks and one network model. The transportation

networks used are the world air transportation network from 1995 (Airport), the network of global cargo

shipments (Cargo) and the network of human migrations provided by the Internal Revenue Service

(Migration). The Airport network was taken from OAG Worldwide Ltd and has been examined in

various previous studies [8,15,16]. The Cargo network comes from the IHS Fairplay data and contains

information about 16323 container ships [9].

For biological networks, we examine the network containing the neural interactions of Caenorhab-

ditis elegans (Neural), the Florida Bay food web (Food Web) and the metabolic network of Escherichia

coli (Metabolic). The Neural network comes from work by White et al. [17] and was explored in Watts

and Strogatz [18]. The Food Web is from a collection of public datasets available online [19]. Finally,

the Metabolic network comes from experimental research and has also been previously analysed [20].
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ROBUSTNESS OF SKELETONS 3 of 11

Fig. 1. The salience distribution of the networks used in the analysis. For all the networks which use real data the distribution

displays a bimodal characteristic. Notably, the curve of the Random network does not have the same shape. Values not shown are

at zero.

Lastly, we analyse an Erdös–Rényi network with link weights drawn from a power-law distribution

(Random). Basic summary statistics for the networks, such as the number of nodes N and links L, is

provided in Table 1.

1.2 Skeleton methods

While there are many ways to extract the most central links, the two methods explored here are the

salience skeleton of Grady et al. [21] and the disparity backbone of Serrano et al. [22]. The disparity

filter backbone was chosen since it is a well-established method and has been employed in many studies

[23,24], whereas the salience skeleton is a more recent method with significant prospects. Further, these

methods represent two fundamental classes of methods. The disparity filter is a representative statistical

method, whereas the salience is a representative topological method. While these two methods do not

cover all of the current possibilities they are two unique and significant methods of extracting skeletons.

Both of these methods use the weights on the network links and therefore require that the data be pre-

sented as a weighted network. Note that while the terms ’backbone’ and ’skeleton’ are generally synony-

mous, for clarity we will refer to the salience skeleton and disparity filter backbone for these methods.

The salience skeleton is an analysis based on the shortest path trees (SPTs) of a network and is

similar to the method used by Wu et al. [25] to find superhighways. First we compute the SPT, Ti,

rooted at each node, i, of the network using Dijkstra’s algorithm. The tree contains the collection of

links that are present in at least one shortest path from node i to another node in the network. This tree

can be represented as a matrix Ti with elements Tnm,i such that Tnm,i = 1 if link nm is part of the tree of

node i and Tnm,i = 0 otherwise. The salience is defined as the expected SPT, i.e. S = 〈T〉, explicitly

Snm =
1

N

N
∑

i

Tnm,i. (1.1)

In real networks salience is distributed bimodally (Fig. 1), meaning that links occur in nearly all SPTs

(S ≈ 1) or in almost none (S ≈ 0). This makes it a natural way of extracting a network skeleton without

having to choose an arbitrary cutoff for S. Note that Equation (1.1) is very similar to edge betweenness

but subtly distinct in that it counts each tree whereas betweenness counts each path [21].
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4 of 11 L. SHEKHTMAN ET AL.

Fig. 2. The GCC under link percolation. We observe that the fraction of nodes in the GCC, NGCC, of the network is robust under

link percolation meaning most links must be removed before the network fragments. This holds for all networks studied here.

The disparity backbone method focuses on statistically significant deviations in link weight. One

begins by defining a null model that determines the expected distribution of link weights around a node

with k links if those weights were distributed randomly. The method then compares the actual link

weights around the node to the null model. A significance level α ∈ (0, 1) is chosen and all links that

are statistically significant at α belong to the disparity backbone [22]. More explicitly, we examine for

each node, i and j, of an edge ij, if

αij = 1 − (k − 1)

∫ pij

0

(1 − x)k−2 dx = (1 − pij)
k−1 < α, (1.2)

where k is the degree of the node examined, pij = wij/
∑

i wij is the weight of the edge normalized by

the strength of the node and α is a chosen significance level. In this case, αij is the p-value of the edge

which is then compared with the significance level desired. If αij < α for either node i or j, then the edge

ij is kept in the skeleton, otherwise the edge is left out [22].

1.3 Robustness methods

In perturbing the networks, we explore (i) node percolation, (ii) link percolation and (iii) link switching.

We define the percolation either of links or nodes by the number pperc which is the fraction of links

or nodes removed from the network. The classic result from percolation involves a phase transition in

the size of the giant connected component (GCC) for random networks. For most real networks, there

is no phase transition (while pperc < 1) and the size of the GCC is robust. We repeat this experiment

and examine how the GCC changes under link percolation for our datasets. In Fig. 2, we confirm the

previous results, which have shown that real networks are robust to link percolation.

There are a variety of methods of performing link rewiring and the process is somewhat subtle.

We use the method introduced by Karrer et al. [26], which involves rewiring in such a way that the

expectation value of the degree of each node is preserved. This is done by defining the probability of an

edge, eij, existing between nodes i and j according to their degrees:

eij =
kikj

2L
, (1.3)
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ROBUSTNESS OF SKELETONS 5 of 11

Fig. 3. How site (or node) percolation changes the size of the (left) salience skeleton and the (right) disparity backbone. The linear

decrease in the size of the skeleton as pperc increases shows that the size of the skeleton is proportional to N , the number of nodes

in the network. (The noise in the Neural and Metabolic networks is likely due to the smaller size of those networks.) Meanwhile,

the disparity backbone decreases in size more quickly than the salience skeleton for pperc < 1
2

. The disparity backbone is more

sensitive to site percolation than the salience skeleton, especially for small amounts of percolation.

where ki is the degree of node i. To rewire, we go through each edge in the network and with some

probability ps we remove that edge and insert a new edge between nodes i and j, with i and j chosen

with probability eij/L. Otherwise, with probability 1 − ps, we leave that original edge in place. Karrer

et al. show that this rewiring scheme preserves the expected degree of each node in the network while

allowing us to tune the quantity of randomness with the parameter ps.

2. Results

We now study how our skeleton methods perform in the face of noisy and missing data by applying

them to perturbed versions of our networks and comparing their results to those obtained for the original

networks. For each value of pperc with a given skeleton and perturbation method, we average the results

over 100 trials and plot the mean and standard deviation. We note that rather than plotting |S| vs. pperc we

plot d|S|/dpperc vs. pperc in order to more closely reveal changes in the size of the skeleton. Numerically,

we calculate this quantity as the discrete derivative

d|S|

dpperc

=
|S(pperc2

)| − |S(pperc2
)|

∆pperc

, (2.1)

where |S(pperc2
)| − |S(pperc2

)| represents the change in the size of the skeleton between two values

of pperc.

In the case of node percolation, we observe that the size or fraction of links in the skeleton, |S|,

is roughly proportional to N , the number of nodes in the network. This can be seen by the fact that

d|S|/dpperc ≈ −1. For the salience skeleton, this is true for all values of pperc while for the disparity

backbone the linear regime terminates earlier. This is shown in Fig. 3. This suggests that for the salience

skeleton it is mainly the path to the removed node that is affected by the percolation while paths to other

nodes may change slightly but contain about the same number of links as the original path. For the

disparity backbone, the decrease is faster than for the salience skeleton which shows that the size of

the disparity backbone is more sensitive to the number of nodes in the network.

In examining changes to the links in the network, we look at several other quantities. First the skele-

ton GCC, SGCC is intuitively defined as the fraction of the network that is connected when the network is
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Original Network Original Skeleton

|S|=3

Perturbed Network Perturbed Skeleton

|S|=3

Fig. 4. The skeleton of the original network is computed with |S| being defined as the number of links in the skeleton. After this,

the original network is perturbed either through percolation or link switching and the new skeleton is calculated. In the bottom

right network, the upper dotted link represents a link present in the original skeleton that was deleted in the new skeleton, so

LD = 1 for this example. In contrast, the bottom link represents a link present in the new skeleton but not the old skeleton, i.e. a

link added so LA = 1.

reduced to its skeleton. Secondly, we examine how many links are added to the skeleton, LA, after per-

turbation, and how many links are deleted from the skeleton, LD, after perturbation. An explanation of

the quantities LA and LD is shown graphically in Fig. 4. It is also important to note that the comparisons

for LA and LD are always made to the original skeleton.

For link percolation, we observe in Fig. 5 that for the salience skeleton both the size of the skeleton

and the size of the skeleton GCC (SGCC) are robust to change. However, the plots of LA and LD make

clear that the salience skeleton itself is undergoing significant changes. Essentially this suggests that

under link percolation the salience skeleton is able to find replacement pathways and those paths are

not considerably longer than the original paths. Links are being added and deleted, yet the skeleton is

simply rerouted and maintains its connectivity and size.

The one exception to this is the simulated Random network which has a very fragmented skeleton.

This behaviour corresponds to the fact that in the Random network there is a weaker preference for

shortest paths, i.e. the salience is not bimodal as shown in Fig. 1. However, after we remove a large

fraction of the links each node only has a couple of links and the shortest paths all go through the same

links.

To analyse this hypothesis and confirm that this is not an artefact of the specific salience cutoff

value chosen (0.5), we examine the SGCC of the Random network with different salience cutoff values.

In Fig. 6, we observe that the SGCC vs. pperc curve has the same shape until the salience cutoff is very low.

At that point the SGCC of the Random network is also robust to percolation and increasing the amount

of percolation never leads to a larger SGCC. The different behaviour of the Random network shows that

real networks have intrinsic properties which lead the SGCC to be robust under link percolation.

Meanwhile, in Fig. 7 we consider how link percolation affects the disparity backbone. The backbone

size decreases, yet its GCC remains robust. Comparing LA with LD shows that many links are deleted
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ROBUSTNESS OF SKELETONS 7 of 11

Fig. 5. Changes to the salience skeleton under link percolation. (top left) The size of the skeleton is robust to link percolation

since d|S|/dpperc ≈ 0 until pperc → 1. (bottom left) The GCC of the skeleton itself is also robust to link percolation (except in the

case of the random network). This is similar to the giant component of the network as a whole which was previously shown to be

robust to link percolation. (top right) Despite the robustness of the size of the skeleton, there are many new links that are added

to the skeleton as we increase pperc. (bottom right) Further, we observe that an equivalent number of links are removed from the

skeleton which leads to the lack of change in its size. This demonstrates that the skeleton performs a balancing act where removed

links are compensated with new links. New shortest paths are found and these new paths contain approximately the same number

of links as the old ones.

Fig. 6. The skeleton GCC, SGCC, of the Random network with different salience cutoffs. For salience cutoff values > 0.3, the

SGCC increases at pperc ≈ 0.8 and then begins decreasing at pperc ≈ 0.95. The unique shape of the salience distribution of the

Random network leads to different cutoffs being required for robustness.

and very few are added to compensate for those removed. We also observe that the backbone of the

Random network is less robust than the backbones of the real networks, as it was for the salience

skeleton.

Similarly, upon switching links using the method of Karrer et al. [26], we observe that S and SGCC

are robust for both the salience skeleton (Fig. 8) and the disparity backbone (Fig. 9). The significant

decrease and large variation in the Airport network’s salience skeleton giant component are likely due
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Fig. 7. Changes to the disparity backbone under link percolation. (top left) The size of the backbone is not robust to link percolation

which is in contrast to the salience skeleton. (bottom left) In agreement with the salience skeleton, the GCC of the disparity

backbone is also robust to link percolation, yet not quite to the same extent. (top right) Relatively few links are added to the

disparity backbone as links are deleted. Again, this is in contrast to the salience skeleton where enough links were added to

compensate for the links deleted from the skeleton. (bottom right) The rate at which links are deleted from the backbone is similar

to that for the salience skeleton. The main difference, however, is that this removal of links is not compensated for by the addition

of new links.

Fig. 8. Changes to the salience skeleton under link switching. (top left) The size of the skeleton is again robust. (bottom left)

The skeleton giant component of most of the networks is robust to link switching, yet the Airport network’s skeleton becomes

dramatically fragmented. This is likely due to a specific, unstable hierarchical (or hub-spoke) structure present in the Airport

network that dictates the paths for the salience skeleton. Such a hub-spoke structure may also account for the slight decrease in

the skeleton size for the neural network. (top and bottom right) Many links are added and removed from the skeleton, once again

in a way that maintains its size. Further, this reveals that while the size of the skeleton can be determined by the number of nodes

and the degree distribution, knowing which particular links will be present in the skeleton requires having the complete dataset.
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Fig. 9. Changes to the disparity backbone under link switching. (top left) As was true for the salience skeleton under link switching

and link percolation, we find the size of the disparity backbone to be robust under link switching. (bottom left) The GCC of the

disparity backbone is similarly robust. (top and bottom right) Again there are a significant number of links added and deleted yet

they once again balance to maintain the size of the skeleton.

to a specific, unstable hierarchical structure present in that network which, when altered, leads to frag-

mentation. Further work is needed to determine the exact nature of this structure. The Neural network

exhibits similar behaviour likely due to this. The low SGCC of the Random network occurs for the same

reason as seen under link percolation. Once again, we observe that similar to link percolation, despite

the robustness of the skeleton size and GCC, there are significant changes in the links that actually make

up the skeleton. Specifically, we see large changes in LA and LD just as we did with link percolation.

3. Conclusion

These results show that global summary statistics of skeletons, such as the size of the skeleton and

the size of the skeleton GCC, are robust to changes in the network structure. In contrast, the specific

details of the skeleton, such as the exact links it contains, will vary, potentially greatly, as the network is

perturbed. This suggests that while skeleton extraction methods are useful for understanding the global

properties of a network, caution should be applied when attempting to understand local properties based

on extraction methods.

We further showed that different methods of computing the skeleton respond quite differently under

perturbation in many cases. This suggests that caution must be applied before applying these results to

yet untested methods. Nonetheless, these results do suggest that basic global statistics can be extracted

regardless of the method. Lastly, the response of skeletons of real networks is significantly different

than the response of a random network. The methods used to compute network skeletons and backbones

exploit properties of real networks and these properties are not present in the simulated network. This

leads the skeleton of the Random network to respond quite differently under perturbation.

An obvious application of this work is to damage or change in transportation networks, where skele-

tons will be responsible for carrying the majority of the system’s traffic. This change often occurs in

the real-world scenario of transport reroutings and cancellations. The results here show that as these

changes occur the specific composition of the backbone or skeleton changes significantly. Nonetheless

global properties can still often be extracted from the skeleton.
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A second application is in protein–protein networks. These networks often contain noisy data and

are considered incomplete in the interactions they show [27,28]. Significant work to map these networks

entirely and obtain a full set of all the connections present is ongoing [29]. Despite the lack of the full

dataset, much analysis has already been done on the data that is available [30,31]. Our results suggests

that caution should be applied when looking at structural skeletons or backbones for many biological

datasets that contain noisy data because the errors will have a profound impact on the resulting skeleton

and backbone structures.

Lastly, these results have implications for temporal networks. In this case, it is not that our knowl-

edge is lacking about the network, but that the links change as time progresses [32]. Social networks

often display this sort of time dependence [33] and many neural networks also change through time

[34,35]. For these networks caution must be taken before applying methods of extracting skeletons or

backbones since their changing states will lead to different results.
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