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Abstract 

Calcium imaging is a powerful method to record the activity of neural populations, but inferring 

spike times from calcium signals is a challenging problem.  We compared multiple approaches 

using multiple datasets with ground truth electrophysiology, and found that simple non-negative 

deconvolution (NND) outperformed all other algorithms. We introduce a novel benchmark 

applicable to recordings without electrophysiological ground truth, based on the correlation of 

responses to two stimulus repeats, and used this to show that unconstrained NND also 

outperformed the other algorithms when run on “zoomed out” datasets of ~10,000 cell recordings. 
Finally, we show that NND-based methods match the performance of a supervised method based 

on convolutional neural networks, while avoiding some of the biases of such methods, and at 

much faster running times. We therefore recommend that spikes be inferred from calcium traces 

using simple NND, due to its simplicity, efficiency and accuracy.  

Introduction 

Two-photon calcium imaging can be used to monitor the activity of populations of up to 10,000 

neurons1. Nevertheless, calcium-sensitive fluorescence signals are an indirect readout of cellular 

activity. Therefore, accurate and well-calibrated data processing methods will be required to make 

optimal use of this activity2–10. One important problem is developing methods for spike detection: 

inferring the times of action potentials from the fluorescence traces. The earliest such methods 

rely on spike deconvolution algorithms, which infer a spike train under the assumption that the 

fluorescence trace represents an approximate convolution of the underlying spike train with the 

cell’s calcium response10. This is often a good approximation11, though situations exist when it 

breaks down. More complex spike deconvolution algorithms take these extreme cases into 

account3.  

Recently, a new approach to spike detection, based on supervised learning, has been claimed to 

outperform several existing deconvolution algorithms9. Supervised algorithms learn to solve the 

spike detection problem by training on “ground truth” data where spike times are also measured 
electrophysiologically. In principle, such methods should give the most accurate results: however, 

they may generalize poorly to “out-of-sample” data, i.e. recordings made under different 

conditions to the available training data.  

Since the supervised approach was first introduced, ground truth data released as a public 

benchmark (“spikefinder”) has allowed the comparison of several old and new algorithms. All 
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three winning algorithms (called “Elephant”, “Purgatorio”, “convi6”) employ supervised methods 
based on convolutional neural networks, and appear to outperform all NND-based methods 

(“oopsi”, “Suite2p”, “MLspike”). However, this performance may be due to specific design features 

of the spikefinder challenge, rather than true improvements in spike deconvolution quality. First, 

the spikefinder benchmarks are run on in-sample data, and may thus not reflect generalization 

performance to new recordings. Second, multiple metrics for the similarity of decoded and actual 

spike trains are possible; because supervised methods can be trained to optimize the particular 

benchmark used, they will have an advantage over unsupervised methods, unless the latter are 

also optimized for the particular quality metric used. 

We show here that non-negative deconvolution (NND) – with very simple parameter settings, and 

using the fast OASIS implementation4 – outperforms supervised algorithms, when it is: 1) 

evaluated on out-of-sample data, and 2) adapted to the performance metric of the spikefinder 

challenge. In addition, we find that NND is highly robust to assumptions on the assumed shape 

of the calcium response to single spikes (henceforth called a "kernel"), such that a simple 

decaying exponential kernel performs better than more biologically accurate kernels that include 

a rising time segment, and even performs better than kernels estimated directly from ground truth 

data. Moreover, large changes to the timescale of the exponential kernels did not affect 

performance significantly, and optimizing these timescales for each cell actually hurts 

performance. Finally, we propose a new benchmark that can be used without electrophysiological 

ground truth, and show that simple NND again outperforms other algorithms on this benchmark.    

Results 

For the first set of benchmarks, we considered two main classes of datasets with simultaneously-

recorded ground truth electrophysiology, which we will refer to in short as “GENIE” and 
“SPIKEFINDER”. The GENIE collection consists of five datasets recorded by the GENIE project11–

14, that have been used in the original descriptions of the GCaMP calcium sensors and their red 

variants and are available on CRCNS.org14. The SPIKEFINDER collection consists of the five 

datasets analyzed in Theis et al, 2016, made publically available as part of the “spikefinder” 
challenge (spikefinder.codeneuro.org). Surprisingly, the two state-of-the-art algorithms, “oopsi” 
and “stm”9,10, have different performance on the two GT datasets, with oopsi winning on GENIE 

and stm winning on SPIKEFINDER.  

To determine deconvolution performance, we need to establish a set of comparison metrics 

between the ground truth spike trains and each algorithm’s output. Standard metrics compute the 

similarity of the true and inferred spike trains after binning both in a preset window size, which is 

typically small (i.e. 40ms in the spikefinder challenge). After binning, one typically computes the 

correlation between the true and inferred spike train. Such metrics may not be well suited for spike 

trains, which are very sparse quantities. For example, if an inferred spike is offset by just one bin 

from a GT spike, it will be counted as a complete miss by the correlation metric, similar to temporal 

mismatches of several bins. Supervised algorithms, unlike unsupervised ones, have automatic 

protection from this effect, as they are directly trained to minimize the correlation metric. 

Unsupervised algorithms can be adapted to perform well by the correlation metric by smoothing 

their output temporally, which reduces the effect of temporal mismatches between true spikes 

and deconvolved spikes. In addition, a temporal offset might be required for some datasets (for 

example due to hardware synchronization issues), which can be learnt automatically by the 

supervised methods, but has to be inferred post-hoc in the unsupervised algorithms.  
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A short segment of fluorescence from a cell recorded with ground truth is shown in Figure 1a, 

together with the reconstructions obtained with three unsupervised models (the quantity 𝒔 ∗ 𝒌 in 

equation 1). All three models track the large fluorescence changes, but some of the smallest 

changes are only tracked by the unconstrained model (NND), which is relatively less constrained 

than the L0- or L1- penalized methods. For example, the L1-penalized model overly penalizes 

single spike events in some cases, reducing their amplitude relative to other single or multi spike 

events (Figure 1b). Nonetheless, for this cell, all three deconvolution methods returned roughly 

similar spike trains, which correlated well with the known ground truth electrophysiology (Figure 

1c).  

Simple non-negative deconvolution outperforms the state-of-the-art results 

There has recently been a proliferation of calcium deconvolution algorithms2–10 some of which 

have provided their code publicly. However, little effort has been made to compare the 

performance of these algorithms to each other, with the notable exception of Ref. 9, who 

concluded that supervised algorithms, trained on available ground truth data, perform better than 

the more routinely used unsupervised algorithms.  

We investigated this claim on the same datasets used by Ref. 9, which were since made available 

publicly in the “spikefinder” challenge. We indeed found that the supervised algorithms performed 

better than the L0 and L1-penalized algorithms, when evaluated by the correlation metric (Figure 

2c, “original”). However, we found that unsupervised algorithms became superior after very simple 

modifications.  

First, we chose an appropriate timelag parameter for a subset of datasets where the timing of the 

ground truth spikes was not perfectly synchronized with the fluorescence (Figure 1c, “+time lag”). 
This parameter was chosen to maximize the correlation with the ground truth spikes, for each of 

the ten datasets separately. The inferred timelag was 0 for all GENIE datasets, and ranged 

between -2 and 3 for SPIKEFINDER datasets. 

Second, we applied smoothing to the deconvolved traces, which reduced the effect of the 

correlation metric (Figure 1c, “+smoothing”). The smoothing was performed with a Gaussian-

shaped kernel with a standard deviation of two samples for all GENIE datasets, and 8 samples 

for all SPIKEFINDER datasets. These values were empirically found to perform well. Note that all 

datasets have been upsampled at 100Hz, and are benchmarked at 25Hz.  

Finally, we did not allow the algorithms to estimate the best fit calcium kernels, or the kernel’s 
decay timescale, as we found that all methods failed to recover appropriate parameters. Instead, 

we fixed the timescales of the calcium kernel to be approximately the measured values from the 

literature11–13 (Figure 1c, “+fixed taus”). For simplicity, we divided all sensors into a fast, a medium 

and a slow category, and used timescales of 0.5, 1 and 2 seconds for the three categories. As we 

show below, the precise values for these timescales were not critical.   

These improvements, together, increased the benchmark performance for nearly all cells (Figure

 1d), and surpassed both the supervised and unsupervised “state-of-the-art” approaches
 submitted on the website spikefinder by their developers (stm and oopsi). Furthermore, the best

 performing model in the benchmark was unconstrained NND, with the L0- and L1-based methods

 slightly lagging behind (Figure 1d). 
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Robustness of non-negative deconvolution 

These results suggest similar performance levels from different regularization methods for 

unsupervised deconvolution. We tested the relation between the algorithms more systematically, 

by varying the regularization parameter 𝜆. When 𝜆 = 0, both the L0 and L1-based algorithms are 

equivalent to the unconstrained approach. We found that for both algorithms, performance was 

best when 𝜆 = 0, corresponding to unconstrained NND (Figure 2ab).  

All three unsupervised algorithms were robust to large changes in the shapes of the calcium 

kernels. Lengthening or shortening the assumed timescale of the calcium indicators by a factor 

of 2 did not significantly affect performance (Figure 2cd). Furthermore, adding another component 

to the kernel (a “rising” timescale) did not improve performance (Figure 2ef). Finally, performance 

was not improved by using the “ground truth” kernel, obtained directly by regressing the 

fluorescence onto the ground truth spikes (Figure 2ef, dotted lines).  

Ground truth -free benchmarks using stimulus responses 

The GENIE and SPIKEFINDER datasets contain several tens of cells each. However, the 

conditions in which these cells were recorded might be different from conditions in many 

experiments.  To assess how spike deconvolution methods perform in such circumstances, we 

developed a novel benchmark that does not require ground truth electrophysiology (Figure 3a). 

Our new benchmark is to maximize the Spearman correlation 𝜎𝑠𝑡𝑖𝑚 of deconvolved responses to Our new benchmark is to maximize the Spearman correlation 𝜎𝑠𝑡𝑖𝑚 of deconvolved responses to 

two repeats of an ensemble of stimuli: 𝜎𝑠𝑡𝑖𝑚 = corr(�̂�𝑟𝑒𝑝𝑒𝑎𝑡1, �̂�𝑟𝑒𝑝𝑒𝑎𝑡2), where �̂�𝑟𝑒𝑝𝑒𝑎𝑡1 and �̂�𝑟𝑒𝑝𝑒𝑎𝑡2 

are the binned responses to 𝑁 stimuli. The 𝑁 stimuli cannot be identical, and must be presented 

in randomized order on each of the two repeats. It can be shown that 𝜎𝑠𝑡𝑖𝑚 approximates the 

proportion of signal-related variance contained in the trial-averaged responses to this stimulus 

ensemble, with 1-𝜎𝑠𝑡𝑖𝑚 representing the proportion of noise variance (reflecting a sum of biological 

and measurement noise; see Methods). Since the signal can only originate in the true spiking 𝑠, 𝜎𝑠𝑡𝑖𝑚 captures the ability of the deconvolution to reconstruct the true spiking. Deconvolution can 

fail to capture the signal variance in 𝑠 in one of two ways: 1) failing to distinguish spikes from 

noise, or 2) failing to temporally localize spikes to the correct stimulus bins.  

For this analysis, we used some of our own datasets, in which the responses to an ensemble of 

full field drifting grating stimuli were simultaneously-recorded in ∼ 10,000 cells from primary visual 

cortex of awake mice. A raster plot of these responses (deconvolved by NND) is shown in Figure 

3b. Responses of single cells were noisy (Figure 3c), but most cells had positive Spearman 

correlations 𝜎𝑠𝑡𝑖𝑚 between the two stimulus repeats (Figure 3d). Taking 𝜎𝑠𝑡𝑖𝑚 as a measure of 

deconvolution performance (higher is better), we repeated the types of analyses from Figure 2, 

for 6 datasets recorded from 4 mice. Again we find that NND without constraints performs better 

than the constrained versions, and again outperforms the supervised algorithm introduced by 

Theis et al, 2016 (Figure 3e). We also find that the unsupervised deconvolution methods are 

robust to the kernel timescale up to a factor of 2 (Figure 3f), and that the AR(2) kernel does not 

help performance (Figure 3g). We conclude that this new benchmark reinforces the results 

obtained on data with simultaneous electrophysiology. In addition, we note that this method can 

be easily applied to other recordings, allowing users to benchmark multiple approaches on their 

own data. 
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Comparisons with convolutional neural networks 

We have shown that unsupervised methods, when adapted to the correlation benchmark, 

outperform the supervised approach described in Theis et al., 2016, on the same ground truth 

data used there. However, it is possible that more advanced supervised methods perform better 

still. In the recent “spikefinder” challenge, convolutional neural networks (CNNs) appear to 
outperform all other methods. However, to successfully apply CNNs on standard recordings 

without ground truth, it must be shown that CNNs generalize to datasets not included in the 

training set. We thought this generalization might be imperfect, because CNNs, like all supervised 

methods, can overfit to the specific statistics of the ground truth datasets.  

We evaluated the generalization performance of CNNs, by training the “Elephant” method on nine 

of the ten available datasets, and testing it on the tenth. We found that under this testing protocol, 

the performance of supervised CNNs and unsupervised NND was nearly identical, both on the 

GENIE datasets (CNN: 0.44, NND: 0.45) and on the SPIKEFINDER datasets (CNN: 0.59, NND: 

0.60), although there were slight variations in performance from neuron to neuron (Figure 4a). 

We also found very similar performance in the ground-truth free benchmarks we just introduced 

above (CNN: 0.067 vs NND: 0.071), with some variation from neuron to neuron (Figure 4b).  

The similarity in performance might appear at odds with the results of the spikefinder challenge, 

where the CNN methods outperformed unsupervised approaches by ~10% (CNN: ~0.46 vs 

NND+L0: ~0.43). However, for that challenge the CNN was tested on within-class data, thus being 

able to take advantage of the particular statistics of spiking and fluorescence for each recording. 

One such statistic is the autocorrelogram structure of the spike trains, which was far from Poisson, 

reflected either stimuli were presented during some of the recordings, or the structure of 

spontaneous activity in the recorded neurons. The autocorrelogram structure can be used by 

supervised approaches to perform better spike prediction. However, this strategy is undesirable, 

because it will enforce the properties of the training data on new data, potentially leading to an 

erroneous scientific conclusion that all recorded neurons share the same temporal dynamics as 

the neurons used to train the algorithm. 

To demonstrate this transfer of constraints between training and test data, we simulated spike 

trains with Poisson statistics (flat auto-correlograms), and generated fluorescence traces from 

them with a calcium decay timescale of 1 second. The deconvolved spike trains using CNNs had 

a large, spurious auto-correlation at short timelags, which was much less pronounced in methods 

based on OASIS (NND and NND+L1) and absent using the L0-based method (Figure 4c). The 

“black-box” nature of CNN algorithms raises a further concern that other features of the training 
data may be erroneously imposed on new data, in ways that are unknown to the user.  

Finally, another disadvantage of complex CNNs is speed: even using a high-performance GPU 

(GTX 1080), the method is two orders of magnitude slower than all unsupervised methods we 

tested, which can run efficiently on standard CPUs (Figure 4d).  

Discussion 

We conclude that the performance of simple NND-based deconvolution algorithms matches or 

exceeds all tested alternatives, and that L0/L1 penalties provided no advantage. NND was robust 

to changes in kernel timescale or shape, with values taken from the literature providing close to 

optimal performance. Automated identification of kernel parameters appeared to be 
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counterproductive, resulting in significantly mismatched parameters that impaired performance. 

While supervised methods gave apparently superior performance in previously reported 

benchmarks, this reflected their ability to optimize particular evaluation metrics, and compensate 

for phenomena such as synchronization lags within single example datasets; when tested out-of-

sample, against unsupervised methods with appropriate compensatory mechanisms, we found 

their performance to be inferior. We therefore recommend unconstrained NND, with fixed calcium 

decay timescale.  

OASIS provides a very efficient algorithm for performing this deconvolution4. In Suite2p, the 

calcium processing pipeline that we maintain, we provide wrappers for the OASIS toolbox, and 

additionally include the L0-based deconvolution code, which may provide advantages for some 

cases, such as avoidance of auto-correlation bias (Figure 4c). It remains to be seen if new 

methods can significantly outperform simple NND. However, marginal improvements of future 

approaches might be overshadowed by the simplicity and interpretability of the NND approach. 

Materials and methods 

Imaging in visual cortex 

All experimental procedures were conducted according to the UK Animals Scientific Procedures 

Act (1986). Experiments were performed at University College London under personal and project 

licenses released by the Home Office following appropriate ethics review.  

The experimental methods were similar to those described elsewhere15. Briefly, surgeries were 

performed in adult mice (P35–P125) in a stereotaxic frame and under isoflurane anesthesia (5% 

for induction, 0.5-1% during the surgery). During the surgery we implanted a head-plate for later 

head-fixation, made a craniotomy with a cranial window implant for optical access, and, on 

relevant experiments, performed injections of the GCaMP6m virus with a beveled micropipette 

using a Nanoject II injector (Drummond Scientific Company, Broomall, PA 1) attached to a 

stereotaxic micromanipulator. Viruses were acquired from University of Pennsylvania Viral Vector 

Core. Injections of 50-200 nl virus (1-3 x1012 GC/ml) were targeted to monocular V1, 2.1-3.3 mm 

laterally and 3.5-4.0mm posteriorly from Bregma and at a depth of L2/3 (200-400 μm). Some mice 
were transgenic and expressed tdtomato in certain cell classes. However, we did not use that 

information here.   

NND Model 

 

NND models infer the most likely spike train 𝐬(𝑡), given the fluorescence timecourse 𝐅(𝑡), and a 

response kernel 𝐤. Models based on deconvolution define a cost function of the form 𝑪(𝐬) =  ‖𝐅 − 𝐬 ∗ 𝐤‖𝟐 + 𝜆 ⋅ 𝐿(𝐬) such that 𝒔(𝑡) ≥ 0, for all 𝑡. 
Here, 𝐬 ∗ 𝐤 describes a temporal convolution of a positive timecourse 𝒔 and the kernel 𝒌, and  𝐿(𝒔) 

describes a penalty function on the inferred spike trains.  

We tested a suite of three unsupervised spike detection methods. The first is an approximate 

optimization algorithm where 𝐿(𝐬) = ‖𝐬‖0 is the L0 norm, i.e. the number of non-zero entries in 𝐬 

(code available at github.com/cortex-lab/Suite2P). The L0 penalty enforces the constraint that the 
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inferred spike trains should be very sparse, because neurons fire rarely. The second method has 𝐿(𝐬) = ‖𝐬‖1, the L1 norm, and chooses the kernel from a parametrized class of functions4. The 

third unsupervised model is unconstrained non-negative deconvolution (NND), with 𝐿(𝐬) = 0. For 

our initial analysis, we chose the sparsity penalty 𝜆 for both the L0 and L1 methods in such a way 

as to output spike trains with similar levels of sparsity: only ~5% of the deconvolved samples were 

non-zero, for data sampled at 100Hz. We then varied the sparsity penalties, as well as several 

other parameters, to understand how they influence performance. We compared performance of 

these algorithms against two supervised methods: the method of Theis et al9, and also a publicly 

available convolutional neural network algorithm (code from 

https://github.com/PTRRupprecht/Spikefinder-Elephant/tree/master/elephant). 

L0-based spike deconvolution 

We obtained a fast deconvolution algorithm by developing a novel optimization procedure for a 

standard spike generation model. Our optimization is an extension of a well-known algorithm 

called “matching pursuit”16. Briefly, the matching pursuit algorithm identifies putative spikes by 

their similarity to the calcium kernel. It then subtracts the kernel scaled with an appropriate factor 

(the “spike amplitude”) from the location of the identified spikes. On successive iterations, more 

putative spike locations are identified greedily, and their activity subtracted off. This continues 

until no new spikes can be introduced, because they do not have large enough amplitudes to 

explain a significant portion of the variance.  

This basic matching pursuit algorithm is limited by local minima, because the greedy procedure 

cannot always resolve nearby spikes that have overlapping calcium activity. To mitigate this 

problem, we add an extra step at each iteration, where we allow existing spikes to change their 

location and/or magnitude to better account for the calcium trace. The optimal changes can be 

calculated exactly and efficiently, allowing “old” spikes to adjust their locations and activity in the 
context of “new” spikes, thus reaching more accurate solutions. We note that another algorithm 

for solving a similar problem has recently been proposed5. Although this algorithm does not 

impose positivity, and is slower than our approach, it obtains an exact solution for their respective 

problem.  

Stimulus-related variance from two repeats 

Here we show that the correlation 𝜎𝑠𝑡𝑖𝑚 of a neuron’s responses to two stimulus repeats is equal 

to an unbiased estimate of the signal variance of that neuron, as a fraction of its total variance. 

Define a neuron 𝑛’s responses to stimulus 𝑘 as 𝑟1(𝑘, 𝑛) on the first repeat and 𝑟2(𝑘, 𝑛) on the 

second repeat. These responses contain a stimulus component 𝑠(𝑘, 𝑛) and some noise, where 

the stimulus component is defined as the trial-averaged response of neuron 𝑛 to stimulus 𝑘, for 

an infinite number of repeated identical trials. We can thus write 𝑟1,2(𝑘, 𝑛) = 𝑠(𝑘, 𝑛) + 𝜈1,2(𝑘, 𝑛) 
where 𝜈1,2 is the independent single trial variance. We compute a measure of stimulus tuning 

defined as the variance of 𝑠(𝑘, 𝑛) over 𝑘, which we write Vark(𝑠(𝑘, 𝑛)). We can obtain this 

quantity by observing that 𝑉𝑎𝑟𝑘 (𝑟1,2(𝑘, 𝑛)) ≈ 𝑉𝑎𝑟𝑘(𝑠(𝑘, 𝑛)) + 𝑉𝑎𝑟 (𝜈1,2(𝑘, 𝑛)) 
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because the variance can be taken first over the random noise variable, and then over the 

stimulus dimension. We also have 𝑉𝑎𝑟𝑘(𝑟1(𝑘, 𝑛) − 𝑟2(𝑘, 𝑛)) = 𝑉𝑎𝑟𝑘(𝜈1(𝑘, 𝑛)) + 𝑉𝑎𝑟𝑘(𝜈2(𝑘, 𝑛)) ≈ 2𝑉𝑎𝑟𝑘(𝜈1(𝑘, 𝑛))  
because the random variables 𝜈1,2 are independent of each other, have mean zero, and have 

the same variance.  It follows that the fraction stimulus-related variance 𝑉𝑎𝑟𝑘(𝑠(𝑘, 𝑛)) can be 

computed by  𝑉𝑎𝑟𝑘(𝑠(𝑘, 𝑛))12 (𝑉𝑎𝑟𝑘(𝑟1(𝑘, 𝑛)) + 𝑉𝑎𝑟𝑘(𝑟2(𝑘, 𝑛)))
≈ 12 (𝑉𝑎𝑟𝑘(𝑟1(𝑘, 𝑛)) + 𝑉𝑎𝑟𝑘(𝑟2(𝑘, 𝑛))) − 12 𝑉𝑎𝑟𝑘(𝑟1(𝑘, 𝑛) − 𝑟2(𝑘, 𝑛))12 (𝑉𝑎𝑟𝑘(𝑟1(𝑘, 𝑛)) + 𝑉𝑎𝑟𝑘(𝑟2(𝑘, 𝑛)))  

This latter quantity is approximately equal to the Pearson correlation 𝜎𝑠𝑡𝑖𝑚 of 𝑟1(𝑘, 𝑛) and 𝑟2(𝑘, 𝑛), allowing for the replacement of the arithmetic mean at the denominator with the 

geometric mean of the two variances that are in the limit equal to each other, and in practice 

very nearly so.  

Note also that in practice we compute the rank correlation (Spearman) rather than the Pearson 

correlation, to avoid potential biases introduced by nonlinearities in the spike deconvolution 

process. For example, if the result of deconvolution to both repeats is transformed through the 

same nonlinearity, the Pearson correlation may be artificially increased, while the Spearman 

correlation remains the same.  

Convolutional neural networks 

Of the SPIKEFINDER challenge winners, one team has so far made their code publicly available 

(https://github.com/PTRRupprecht/Spikefinder-Elephant/tree/master/elephant), so we used their 

CNN configuration, called “Elephant”, which has >100,000 free parameters. 
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Figure captions 
 

Figure 1. Performance with ground-truth electrophysiology.  

(a) Example fluorescence recording of a neuron recorded by the GENIE project. The model 

trace reconstructions are shown in color (blue is NN, red is NN + L0, yellow is NN + L1).  

(b) Simultaneous ground truth electrophysiology for the neuron shown in a.  

(c) Deconvolved traces using three NND models.  

(d) Correlation 𝜎𝐺𝑇 between deconvolved and ground truth spike trains, with various processing 
stages included, averaged over cells separately for datasets from the GENIE project (Chen et 

al., 2013) and for SPIKEFINDER datasets (Theis et al., 2016). The average values for stm and 

oopsi are taken from the spikefinder challenge (http://spikefinder.codeneuro.org).  

(e) Distribution across cells of the total improvement provided by the post-processing of outputs 

from unconstrained NND. 

 

Figure 2. Robustness to changes in parameters. 

Effect of parameter values on mean correlation 𝜎𝐺𝑇 between deconvolved spike trains and 

ground truth electrophysiology.  

(ab) The penalty on sparsity was varied, for both L0 and L1-penalized models. The optimal 

value of 0 corresponds to unconstrained NND. 

(cd) The kernel timescales were varied; this had little effect but did not significantly improve 

performance over values in the literature 

(ef) A second kernel timescale was introduced and varied, to model the rise time of the 

fluorescence following a spike. The kernels were defined as a difference of exponentials, which 

defines a subclass of AR(2) kernels. The AR(2) version of OASIS was used for the L1-penalized 

method. Performance with ground truth-derived kernels is also shown as dotted lines (see 

Methods). The optimal rising timescale was 0, corresponding to a simple exponential kernel. 
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Figure 3. Benchmarking without ground truth electrophysiology.  

(a) Example deconvolved neural responses (NND algorithm) from ~10,000 simultaneously 

recorded neurons, sorted by their preferred stimulus. The stimuli shown were drifting gratings 

with one of 8 directions, one of 3 spatial frequencies and one of four temporal frequencies.   

(b) Correlation between neural responses to half of the stimulus presentations, versus the other 

half of the stimulus presentations.  

(c) Distribution of correlation coefficients (Spearman; equivalently signal variance fraction, see 
Methods). The mean of these coefficients is used in d-f as a benchmark of deconvolution 

performance (higher is better).  

(d) Deconvolution performance as the penalty on sparseness was increased, for L0 and L1-

penalized models, as well as for raw non-deconvolved data, and for the stm model from Theis et 

al, 2016. 

(e) Deconvolution performance as the timescales are increased or decreased by a fractional 

amount.  

(f) Performance with AR(2) kernels that include a non-instantaneous rise with varying 

timescales.  

 

Figure 4. Non-negative deconvolution matches the performance of supervised, 

convolutional neural networks.  

(a) Spike detection performance for all cells with ground truth electrophysiology. The means for 

all GENIE and all Theis et al, 2015 datasets are shown as circles. Each CNN was trained on all 

but one of the 10 datasets, and tested on the remaining dataset. Compare with Figures 2,3.  

(b) Signal variance of CNN trained on all 10 datasets, and tested on our data using the repeat 

similarity benchmark (Figure 3).  

(c) Auto-correlograms of deconvolved spike trains from simulations with Poisson ground truth 

statistics. The CNN approach heavily biases the statistics of the inferred spike trains. The L0 

and L1 method were run with same parameters as in Figure 2 (𝜆 = 10 and 100 respectively).  

 (d) Runtimes of CNN on a high-end GPU (GTX 1080), compared with runtimes for OASIS 

(NND and L1) and the L0 method on a standard CPU (Core i7).   
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Figure 1. Rescuing ground truth performance.
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Figure 2. Robustness to changes in parameters.
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Figure 3. Benchmarking without ground truth electrophysiology.
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Figure 4. Non-negative deconvolution matches the performance of supervised,
convolutional neural networks.

https://doi.org/10.1101/156786
http://creativecommons.org/licenses/by/4.0/



