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Robustness of stochastic discrete-time switched

linear systems with application to control with

shared resources
Luca Greco, Member, IEEE, Antoine Chaillet, Member, IEEE, and Elena Panteley

Abstract—Motivated by control applications relying on shared
resources (such as computation time or bandwidth), we analyze
the stability and robustness of discrete-time switched linear
systems with stochastic commutations. We show that a wide
class of shared resources control strategies can be modeled
by a stochastic jump linear system involving two stochastic
processes. The class of systems we study encompasses Markov
chains and independent and identically distributed switching
processes. For these systems, we recall existing definitions of
stability and robustness, by relying on the input-to-state stability
(ISS) property. We show that, for the class of systems under
concern, δ-moment stability is equivalent to δ-moment ISS and
that they both imply almost sure ISS. Several sufficient conditions
are provided to guarantee these properties. Anytime control
design for a Translational Oscillator/Rotational Actuator (TORA)
system is used to illustrate all these concepts.

I. INTRODUCTION

The increasing demand of control functionalities from

modern embedded systems (e.g. in the automotive domain

[1]) calls for an increasingly heavy utilization of hardware

resources. On the other hand, the need for keeping under

control both hardware costs and system complexity clearly

asks for an intense resource sharing. The same trend can

be recognized in networked control systems (NCS), where

economical concerns and ease of maintenance are forcing

the adoption of a unique Ethernet-like network for the whole

industrial plant, progressively eliminating specific subnets or

fieldbuses [2]. The price to pay for resource sharing is a

reduced predictability of the timing behavior: an application

receives a different availability of resources and suffers time-

varying delays depending on the interference suffered from

other applications. This aspect becomes particularly apparent

when the shared resource is the computation time provided by

an embedded platform to many concurrent tasks. Traditional

hard real-time approaches, based on worst case execution time

(WCET) estimates, fall short of catching the large variability

in computation time required by each task. Moreover, they

suffer from an intrinsic conservativeness leading to poor per-

formance, hardware underexploitation, and cost inefficiencies.

A current trend in embedded system design is to relax hard

schedulability constraints and introduce “softer” models of
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computation. Probabilistic modeling of real-time systems is by

now a widely accepted approach to avoid overconservatism of

deterministic (WCET-based) models, and it is the subject of

an ample and growing literature [3], [4], [5]. Within stochastic

models of Real-Time systems, the use of Markov chains (MC)

(cf. e.g. [6], [7], [8]) is one of the most promising avenues to

accurately compute the response time distribution and deadline

miss probabilities of different tasks. This direction is also

followed by a series of papers [9], [7], [10] of Lemmon and

co-workers, where they consider performance of NCSs and

embedded systems in a Firm Real-Time systems framework

and introduce a stochastic model to describe the task dropout

process based on MCs.

All the previous models belong to the class of Stochas-

tic Jump Systems (SJS), namely switching systems whose

commutations are ruled by a stochastic process. Commonly

adopted stochastic processes are MCs and independent and

identically distributed (i.i.d.) processes. Recently the need for

a more general model has also emerged. In many practical

cases (cf. e.g. [11], [12], [13], [14], [15], [16]), the evolution

of a system involving shared resources cannot be adequately

described in terms of a unique stochastic source. For instance,

let us consider a system where different dynamics switch ac-

cording to which (control) task is executed on a computational

platform. The commutations among the different dynamics

are induced by two distinct stochastic sources: the available

computation time and the execution time of each task. Whence

the need for a model accounting for the two stochastic sources.

As customary in control domain, finding conditions for

ensuring the stability is the first concern for SJSs. There exists

a wide gamut of stability definitions for stochastic systems (see

for instance [17], [18], [19], [20]), whose precise comparison

is usually a problematic task. Since our interest is mainly

devoted to stochastic jump linear systems (SJLS) we will

refer to the widely adopted stability definitions in [21], [22],

[23], [24], [25], [26], [27]. However, these definitions do not

explicitly take into account a prominent problem in control:

ensuring robustness of the stability property with respect to

perturbations or model inaccuracies. Input-to-state stability

(ISS [28]) is a powerful tool to that aim. Traditional extensions

of the deterministic ISS approach to stochastic systems mainly

focus on continuous-time systems with a stochastic input (see

for instance [29], [30], [31], [32]). Recently an important

first step towards stochastic ISS for continuous-time SJS with

stochastic commutations has appeared in [33], even if the

general nonlinear framework there considered prevents from
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obtaining tight results for linear systems. A related robustness

problem is addressed in [34], where a state feedback control

is designed to ensure the almost sure stability of a continuous-

time Markov jump linear system (MJLS) affected by structured

uncertainties.

The goal of the present paper is twofold. First, we provide a

formal description of a model of SJLS encompassing as special

cases switching systems whose commutations are governed

by MCs and i.i.d. processes. We enlighten the tight relation

bonding the stochastic process adopted in the presented SJLS

and the well known Hidden Markov Models (HMMs). We

briefly present some concrete cases, where such model turns

out essential to catch the complex and varying behavior of

shared resource availability. Second, we make a connection

between deterministic ISS results and the stochastic stabil-

ity definitions in [21], [22], [23], [24], [25], [26], [27]. In

particular we provide stochastic ISS definitions and easily

testable conditions for the aforementioned more general model

of discrete-time SJLSs. These definitions and conditions enjoy

the nice property to coincide with the classical definitions and

conditions in [21], [22], [23], [24], [25], [26], [27], when they

are specialized to SJLSs governed by MCs or i.i.d. processes in

the absence of disturbances. We finally show the effectiveness

of our robust stability conditions on an interesting SJLS taken

from anytime control literature.

We stress that, in this paper, we focus on discrete-time

SJLSs with deterministic disturbances and stochastic commu-

tations, while some classical MJLS models (see for instance

[35], [19], [29], [30], [32]) consider both stochastic inputs and

a stochastic source of commutations.

NOTATION: A function γ : R≥0 → R≥0 is said to be of

class K if it is continuous, zero at zero and strictly increasing.

It is said of class K∞ if it is also unbounded. A function

β : R≥0×R≥0 → R≥0 is said to be of class KL if, given any

t ≥ 0, β(·, t) ∈ K and, given any s ≥ 0, β(s, ·) is continuous,

non–increasing and tends to zero as its argument tends to

infinity. Given a symmetric positive definite matrix M ∈ R
n×n

we denote with λmin(M) and λmax(M) the smallest and

the largest eigenvalue of M respectively. Throughout the

paper, ‖ · ‖ denotes both the Euclidean norm and the induced

matrix norm: for x ∈ R
n, ‖x‖ =

√

x2
1 + . . .+ x2

n and, for

A ∈ R
n×m, ‖A‖ = max‖x‖=1 ‖Ax‖. Given a locally bounded

signal d : Z≥0 → R
n, we define ‖d‖∞ := supk∈Z≥0

‖d(k)‖.

II. BASIC DEFINITIONS AND MOTIVATIONS

A. System studied in this paper

In this note we focus on the following stochastic jump linear

system (SJLS)

x(k + 1) = Aϕ(k)x(k) +B(x(k), k)d(k), (1)

where k ∈ Z≥0, x(0) = x0 ∈ R
n, Ai ∈ R

n×n for each

i ∈ Jϕ , {1, . . . , N}, N ∈ Z>0 and d : Z≥0 → R
p is a

deterministic, unknown but locally bounded disturbance. We

assume that B(x(k), k) ∈ R
n×p is a time-varying vector field

for which1 there exists b̄ > 0 such that

‖B(x(k), k)‖ ≤ b̄, ∀k ∈ Z≥0, ∀x ∈ R
n. (2)

The stochastic process {ϕ(·)}, governing the index switch-

ing, takes values in the set Jϕ and is defined on the probability

space (Ωϕ,Fϕ,Pϕ) where Ωϕ is the space of elementary

events, Fϕ is the associated sigma-algebra and Pϕ is the

probability measure. In order to fully describe the process

{ϕ(·)} and motivated by several applications that we de-

scribe below (see Section II-B), let us introduce a discrete-

time finite-state time-homogeneous2 Markov Chain (FSH-

MC) {σ(·)} taking values in the set Jσ , {1, . . . ,M},

and defined on the probability space (Ωσ,Fσ,Pσ). Due to

the finite cardinality of the sets Jσ and Jϕ, the probability

distributions associated to the processes {ϕ(·)} and {σ(·)}
can be compactly represented at each step k ∈ Z≥0 by the

row vectors πσ(k) ∈ SM−1 and πϕ(k) ∈ SN−1, where

SN−1 ,

{

s = (s1, . . . , sN ) ∈ [0, 1]
N

|
∑N

i=1 si = 1
}

is the

(N − 1)-dimensional canonical stochastic simplex (and simi-

larly for M ). The joint process {σ(·), ϕ(·)}, taking values in

the set Jσ ×Jϕ, is defined on the probability space (Ω,F ,P),
where Ω , Ωσ × Ωϕ, F is the sigma-algebra generated

by the measurable rectangles Hσ × Hϕ with Hσ ∈ Fσ

and Hϕ ∈ Fϕ and P is a probability measure guaranteeing

P{Hσ×Hϕ} = Pσ{Hσ}Pϕ{Hϕ} (see [36] page 231). Let us

also denote with E {·} the associated expectation operator.

By the Markov property we have that P{σ(k + 1) |
σ(k), . . . , σ(0)} = P{σ(k + 1) | σ(k)}, hence a complete

description of the FSH-MC {σ(·)} is given in terms of

its transition probability matrix P = (pli)l,i=1,...,M , with

pli , P{σ(k + 1) = i | σ(k) = l}, and its initial

probability distribution πσ(0) = πσ0. We consider a process

{ϕ(·)} whose probability distribution πϕ ∈ SN−1 is linearly

related to the probability distribution πσ ∈ SM−1 of {σ(·)}
by means of a row stochastic matrix L = (ℓlj)l=1,...,M

j=1,...,N
,

with ℓlj , P{ϕ(k) = j | σ(k) = l}. Actually, we are

assuming that the distribution of the process {ϕ(·)} at any

step k ∈ Z≥0 depends only on σ(k) and not on the previous

values of {σ(·)} (σ(i), i < k) or {ϕ(·)} (ϕ(i), i < k). This

means that P{ϕ(k) | ϕ(k − 1), . . . , ϕ(0), σ(k), . . . , σ(0)} =
P{ϕ(k) | σ(k)}. Therefore, the probability distribution of the

joint process {σ(·), ϕ(·)} evolves according to the following

dynamics

πσ(k + 1) = πσ(k)P (3)

πϕ(k) = πσ(k)L. (4)

The equations (3)-(4) can be regarded as the description of

a discrete-time LTI system without control, where πσ is the

state vector and πϕ is the output. The present stochastic model

encompasses as special cases both FSH-MCs (if Jϕ = Jσ and

1An interesting case is obtained when the input matrix switches in the
same way as the A matrix, namely for B(x(k), k) = Bϕ(k), in which case

b̄ = maxi∈Jϕ
‖Bi‖.

2Time-homogeneous Markov Chains (sometimes referred to as stationary
Markov Chains) are characterized by transition probabilities which are inde-
pendent of time.
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L is chosen as the identity matrix) and, in particular, indepen-

dent and identically distributed (i.i.d.) processes. It is worth

noting that the model (3)-(4) can be readily interpreted as a

Hidden Markov Model (HMM) [37], where the (hidden) state

of the MC {σ(·)} is not directly observable and the observation

process {ϕ(·)} is used to reconstruct such state. We stress,

however, that our interest here is not about the estimation

and reconstruction problems, which are already widely studied

in literature (see for instance [38], [39], [40]), but rather in

robust stability problems arising when the commutations of a

switching system are ruled by a HMM.

If the FSH-MC {σ(·)} is also irreducible and aperiodic

(FSHIA-MC) (see [41, Section 8.4] and [36, Section 8]), then

there exists a unique invariant probability distribution (i.p.d.)

πσ such that limk→∞ πσ(k) = πσ for any πσ(0). Namely,

{σ(·)} is an ergodic process with a unique ergodic class (see

[36, Section 24] and [41, Section 8.4]). In this case the process

{ϕ(·)} inherits the ergodic property of {σ(·)} and a unique

i.p.d. πϕ , πσL exists for that process.

B. Motivating examples

The stochastic model (3)-(4) describes a wide range of

different systems. It is especially relevant in modeling a limited

resource shared among competing users. The MC {σ(·)} can

represent the quantized amount of resource, in the finite set Jσ ,

available at each instant k ∈ Z≥0, while the process {ϕ(·)}
can represent the index of the user using the resource at that

instant. With such an interpretation πϕ(k) is the probability

of each user to exclusively use the resource at time k and the

(i, j)-th entry of L represents the probability of the j-th user

to need an amount of resource equal to the i-th value in the set

Jσ . We further illustrate this in practical examples in control

with shared resources.

Example 1. The following system, considered in [12], fits

the previous description. In this system, the shared resource

is the computation time offered by a multitasking embedded

unit for the execution of a periodic control task. In order

to cope with the fluctuations in the available computation

time, the control task is designed according to the anytime

paradigm. Namely, it is decomposed in a finite set of ordered

subroutines Γj , j ∈ Jϕ, guaranteeing, as j increases, an in-

creasing performance but requiring an increasing computation

time. Due to the lack of deterministic information on the

computation time availability in each period, the subroutines

are forced to execute sequentially, i.e. the computation of Γj

cannot start until the computation of Γj−1 has terminated. For

sake of clarity, let us focus on a particular implementation

of the anytime control paradigm involving a special modular

structure (see Figure 1 for the case of two subroutines). A

detailed case study is provided in section IV.

Fig. 1. Schematic representation of the system and the anytime control. When
the switches are in the i = 1 (i = 2) position the controller Γ1 (Γ2) and the
prefilter Φ1 (Φ2) are active.

In the present implementation the subroutine Γ1 coincides

with the controller K1, while the subroutine Γj is the sum of

all component controllers from K1 to Kj . In order to improve

the overall performance, some composite prefilters can be

added, that is Φ1 = F1 and, in general, Φj = F1+· · ·+Fj . The

computation starts with K1 and F1 and proceeds by progres-

sively adding modules according to the available computation

time. In case sufficient computation time is available, the

controller Γj and the prefilter Φj are executed, otherwise, in

case of premature interruption, an intermediate controller and

filter are executed (see [12, Sec. VII] for further information

on anytime control implementation and tracking problems).

The ensuing closed-loop system is described by the SJLS

(1), (3)-(4). In this setting the FSHIA-MC {σ(·)} describes

the amount of available computation time and the process

{ϕ(·)} the highest index of a schedulable controller, i.e. the

subroutine and prefilter whose execution time is the largest

among those shorter than the available time. The execution

time T j required to compute sequentially all component

controllers from K1 to Kj and all component prefilters from

F1 to Fj is modeled as a discrete time i.i.d. process taking

values in the set Jσ . If we represent the stationary probability

distribution of T j with the row vector πT j = [π
T

j
1
, · · · , π

T
j
M
]

and the associated cumulative probability distribution with

µT j = [π
T

j
1
, π

T
j
1
+ π

T
j
2
, · · · ,

∑M
h=1 πT

j
h
], we can derive the

matrix L in (4) as follows (see [12])

L =











µT 1 − µT 2

...

µTM−1 − µTM

µTM











T

.

Thus the (i, j)-th entry of L represents the probability of

executing all subroutines and prefilters until the j-th ones if an

amount i of computation time is available. As a consequence

if ϕ(k) = j then in the k-th period all controllers Γl and

prefilters Φl, l ≤ j, but no controller Γh and prefilter Φh,

h > j, can be executed.

The model (3)-(4) is open to a dual interpretation. Still in the

case of a shared resource among different users, the MC {σ(·)}
can represent the index of the user exploiting the resource at

any k ∈ Z≥0, while the process {ϕ(·)} may represent the

amount of resource used at time k.

Example 2. In Section IV of [13] this model is used to de-

scribe the overall computation time used by a set of concurrent

periodic tasks. For the sake of simplicity, let us focus on

a single task only. Such a task is assumed to have a finite
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number of working modes, which, in this description, play

the role of the users. In each period k the task can be in one

of M possible modes defined by the set Jσ . The change in

time of the modes is assumed to be ruled by a FSHIA-MC

{σ(·)}. According to each mode, the task can require a certain

amount of computation time assuming values in the finite set

Jϕ and described by an i.i.d. process. In this case, the (i, j)-th
entry of L represents the probability of the task to require an

amount j of computation time during the mode i. In the cited

paper this model is used to provide a stochastic description of

the computation time left available by higher priority tasks to

the execution of a lower priority control task.

A similar model is presented in Section VII of [16], where

a FSHIA-MC rules the transition among processor states (or

modes) and a stochastic process (analogous to {ϕ(·)} here)

describes the length of the control sequence computed at each

step.

It is interesting to note that the presented model bears some

similarities also with the one presented in [42]. In the latter

paper a system experiences deterministic switchings among

different working modes. Each mode is associated with a

different MJLS with distinct dynamic matrices and stochastic

properties. The ensuing switching MJLS is ensured to be mean

square stable provided that some dwell-time conditions hold.

Instead, we consider here a unique set of dynamic matrices. At

each step, the choice of the applied matrix in this set is ruled

by a given stochastic process. This stochastic process depends

on the present mode, and the evolution from one mode to the

other is itself ruled by another stochastic process.

We remark that the model (3)-(4) is flexible enough to

also encompass embedded control systems affected by variable

computation delays and networked systems.

Example 3. In [14], [15] a class of scheduling algorithms,

known as adaptive reservations, is applied to control problems.

Adaptive reservations allow the formulation of a discrete time

dynamic model for the evolution of the delay potentially

experienced by a control task. If the computation time of the

task is an i.i.d. process and the bandwidth allocation policy

is a Markov process, then the delay is described by a MC

{σ(·)}. According to the delay, namely to the state of the

MC {σ(·)}, a scheduling policy decides whether executing

the delayed control task or dropping the computation. At each

time step the system can be either in open loop (drop case) or

in closed loop with a specific delay. Then, if a finite discrete

set of values is considered for the delay, the switching among

the different systems is ruled by a stochastic process {ϕ(·)},

which encodes the outcome of the scheduling policy.

Example 4. In [11] a simple model of network delay dynam-

ics is presented. In such a model a three-state MC is used

to describe different network load conditions (modes): low,

medium and high. Associated to each mode there is an i.i.d.

process describing the delay probability for different values of

delays. Clearly larger delays are more likely to occur in high

than in low load conditions. If we consider a discrete and finite

set of possible delays, we can easily fit the model in [11] with

the one here presented. It suffices to identify the MC with

{σ(·)} and to stack the three delay distributions (considered

as vectors) to build the L matrix. The ensuing process {ϕ(·)}
will then represent at each step k the transmission delay

experienced by a measurement or a control packet.

Many other works modeling the network traffic fit, or can

be adapted to fit, the present stochastic framework. Here we

concisely refer to some of them. In [?] a HMM is proposed

to model the packet loss process in TCP channels. The

MC describes the evolution of the network state, while the

block/pass event is determined by different binary probability

distributions associated with each state. The paper [?] aims

at modeling the IP traffic exhibiting long-range dependence.

There, a discrete-time batch Markov arrival process is used

to jointly characterize the packet arrival process and the

packet size distribution. In particular, a discrete-time Markov

modulated Poisson process (dMMPP) accounts for the packet

arrivals and a probability distribution associated to the MC

state of the dMMPP accounts for the packet size. In [43], the

authors employ a HMM to describe the joint delay and loss

dynamics in periodic UDP traffic. A HMM is used also in

[?] to provide a characterization of Internet traffic at a packet

level, namely to jointly describe the Inter Packet Time and the

Packet Size processes.

C. Stability and robustness definitions

In Definition 5 we adapt classical stochastic stability

definitions, such as those in [21], [22], [23], [24], to fit

the SJLS system (1) governed by the stochastic process

{σ(·), ϕ(·)}. We denote with x(k, d) the stochastic process

solution x(k, x0, d, ω), ω ∈ Ω of the difference equation (1)

with non random initial condition x(0) = x0 ∈ R
n and input

signal d : Z≥0 → R
p. when the case is explicit enough, we

might just write x(k) to denote x(k, d).

Definition 5. Given a constant δ ∈ R>0

and the set of admissible initial distributions

Φ ,
{

(πσ0, πϕ0) ∈ SN+M−2 | πϕ0 = πσ0L, πσ0 ∈ SM−1
}

,

the system (1) with d = 0 and driven by the stochastic

process {σ(·), ϕ(·)} with dynamics (3)-(4) is said to be:

1) δ-moment globally asymptotically stable (δ-GAS) if, for

any x0 ∈ R
n and any initial distribution (πσ0, πϕ0) ∈ Φ

of {σ(·), ϕ(·)},

lim
k→∞

E

{

‖x(k, 0)‖
δ
}

= 0 ;

2) δ-moment globally exponentially stable (δ-GES) if there

exist constants a, b ∈ R>0 such that for any x0 ∈ R
n and

any initial distribution (πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)}

E

{

‖x(k, 0)‖
δ
}

≤ a ‖x0‖
δ
e−bk, ∀k ∈ Z≥0;

3) almost surely (with probability one) globally stable (as-

GS) if for any x0 ∈ R
n and any initial distribution

(πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)}

P

{

lim
k→∞

‖x(k, 0)‖ = 0

}

= 1.

We stress that, despite their names, δ-GAS and as-GS

actually address the convergence of solutions of the system
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(1) to the origin, rather than stability issues. Nonetheless, for

stochastic linear systems δ-GAS and δ-GES are equivalent

properties (see for instance [25], [26], [27], [23]). Hence the

convergence property in Definition 5.1 actually implies the

stability contained in Definition 5.2. In order to analyze the

robustness of system (1), we introduce the following new

stability definitions.

Definition 6. Given a constant δ ∈ R>0 and the set Φ of

admissible initial distributions as in Definition 5, the system

(1) driven by the stochastic process {σ(·), ϕ(·)} with dynamics

(3)-(4) is said to be:

1) δ-moment input-to-state stable (δ-ISS) if there exist

functions β ∈ KL and γ ∈ K∞ such that for any

x0 ∈ R
n, any initial distribution (πσ0, πϕ0) ∈ Φ of

{σ(·), ϕ(·)} and any locally bounded d : Z≥0 → R
p

E

{

‖x(k, d)‖
δ
}

≤ β(‖x0‖ , k)+γ(‖d‖∞), ∀k ∈ Z≥0;

2) δ-moment exponentially input-to-state stable (δ-EISS) if

there exist constants a, b ∈ R>0 and a function γ ∈
K∞ such that for any x0 ∈ R

n, any initial distribution

(πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)} and any locally bounded

d : Z≥0 → R
p

E

{

‖x(k, d)‖
δ
}

≤ a ‖x0‖
δ
e−bk+γ(‖d‖∞), ∀k ∈ Z≥0;

3) almost surely (with probability one) input-to-state stable

(as-ISS) if there exist functions β ∈ KL and γ ∈ K∞

such that for any x0 ∈ R
n, any initial distribution

(πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)} and any locally bounded

d : Z≥0 → R
p

P {‖x(k, d)‖ ≤ β(‖x0‖ , k) + γ(‖d‖∞)} = 1, ∀k ∈ Z≥0.

As pointed out in [26], the Definitions 5 are stronger than

the weak stability definitions in [17], as they require to be

independent of the initial distribution. Definitions 6 inherit

the same property. It is also worth noting that the above δ-

ISS definition is close to the ISS in L1 estimate at switching

instants introduced for continuous time switching systems in

[33].

The results derived in this paper aim at providing some

robust stability guarantees for the SJLS (1), (3)-(4). They

can be used to ensure that the presence of disturbances do

not disrupt the stability properties enjoyed by the considered

systems. Once established that the system of interest fits the

presented model, the tools can be used to verify the robust sta-

bility property for a given distribution of the shared resource.

It is worth noting that for “given distribution” we mean a

distribution whose stochastic characterization is known. There

is no need for the knowledge of any specific realization (i.e.

sampling path) of the stochastic process.

Remark 7. Due to the special structure of Φ, which imposes a

linear relation between πϕ0 and πσ0, in the following we will

slightly abuse the notation and refer to the probability measure

P(πσ0,πϕ0){·}, induced by any initial distribution (πσ0, πϕ0) ∈
Φ, as Pπσ0

{·}.

III. MAIN RESULTS

On the one hand, the systems evoked in Section II-B

demonstrate the need to develop analytical tools guaranteeing

stability and robustness of SJLS of the form (1). On the other

hand, Section II-C underlines the diversity of existing notions

of stability for such systems. This section therefore aims at

exhibiting the tight links existing between the stability and

robustness notions recalled above for the specific class of

systems (1), (3)-(4), and at developing practical conditions to

establish them.

A. δ-ISS and 2-ISS

Asymptotic second moment stability (2-GAS) and exponen-

tial second moment stability (2-GES), for systems without

input and driven by a Markov chain, have been shown to

be equivalent and to imply the almost sure stability (as-GS)

([25], [26], [27]). Similar properties hold for δ-GAS and δ-

GES (see for instance [44], [23]). In this section we prove

similar equivalences for the more general class of systems (1),

(3)-(4).

Theorem 8. For the system (1) driven by the stochastic

process {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), δ-GAS, δ-GES, δ-ISS and δ-EISS are

equivalent.

Proof: We will prove the following chain of implications:

δ-GAS⇒ δ-GES⇒ δ-EISS ⇒ δ-ISS⇒ δ-GAS. The latter

two implications are easily verified, thus we need to prove

only the first two: δ-GAS ⇒ δ-GES ⇒ δ-EISS.

δ-GAS ⇒ δ-GES part.

This part of the proof is close to the proof of Theorem 4.1 of

[23]. For any k ∈ Z≥0, any x0 ∈ R
n and d ≡ 0 the evolution

of the system (1) is given by x(k, 0) = Aϕ(k−1) · · ·Aϕ(0)x0.

Hence, for any initial distribution πσ0 ∈ SM−1 and the

corresponding distribution πϕ0 = πσ0L, we have

Eπσ0

{

‖x(k, 0)‖
δ
}

≤ Eπσ0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

‖x0‖
δ

with Eπσ0
{·} denoting the expectation value with respect to

the probability measure Pπσ0
{·} (see Remark 7). By the def-

inition of expectation and letting πσ0 , (πσ0,1, . . . , πσ0,M ),
we have

Eπσ0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

=

M
∑

i0=1

πσ0,i0Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

, (5)

where ei0 is the i0-th vector of the canonical base of RM . We

will show that the quantity Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

is

independent of the initial distribution and depends only on the

arbitrary index i0. For ease of notation, in what follows we will

write ϕ = jk−1, j0 and σ = ik−1, i0 instead of ϕ(k − 1) =
jk−1, . . . , ϕ(0) = j0 and σ(k − 1) = ik−1, . . . , σ(0) = i0
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respectively. We have

Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

=
∑

j0,...,jk−1

∥

∥Ajk−1
· · ·Aj0

∥

∥

δ
P {ϕ = jk−1, j0 | σ(0) = i0}

=
∑

j0,...,jk−1

∥

∥Ajk−1
· · ·Aj0

∥

∥

δ

×
∑

i1,...,ik−1

P {ϕ = jk−1, j0 | σ = ik−1, i0}

× P {σ = ik−1, i1 | σ(0) = i0} . (6)

Moreover

P {ϕ = jk−1, j0 | σ = ik−1, i0}

= P {ϕ(k − 1) = jk−1 | ϕ = jk−2, j0, σ = ik−1, i0}

× P {ϕ = jk−2, j0 | σ = ik−1, i0}

= P {ϕ(k − 1) = jk−1 | σ(k − 1) = ik−1}

× P {ϕ = jk−2, j0 | σ = ik−1, i0} ,

where we used the fact that ϕ(k − 1) is dependent of

σ(k − 1) but independent of the previous values of {ϕ(·)}
and {σ(·)}. By iterating the previous relation and recalling

that ℓlj , P{ϕ(k) = j | σ(k) = l}, we find

P {ϕ = jk−1, j0 | σ = ik−1, i0} = ℓi0j0 · · · ℓik−1jk−1
. (7)

Proceeding in a similar fashion we find also

P {σ = ik−1, i1 | σ(0) = i0} = pi0i1 · · · pik−2ik−1
. (8)

Plugging (7) and (8) in (6) yields

Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

=
∑

i1,...,ik−1

∑

j0,...,jk−1

pi0i1 · · · pik−2ik−1
× ℓi0j0 · · · ℓik−1jk−1

×
∥

∥Ajk−1
· · ·Aj0

∥

∥

δ
, (9)

which is clearly independent of the initial distribution πσ0.

According to Definition 5-1, we have that

lim
k→∞

Eπσ0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

= 0. (10)

Recalling (5) and that Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

is

independent of πσ0, the previous limit implies that

limk→∞ Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

= 0 for every ei0 .

Hence, the following limit is also true

lim
k→∞

M
∑

i=1

Eei0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

= 0.

Such a limit is actually independent of the initial distribution

and we can refer to it, with a slight abuse of notation, by

means of the generic expectation operator

lim
k→∞

E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

= 0. (11)

We can argue by the compactness of SM−1 that, for any ε ∈
(0, 1), there exists Q = Q(ε) ∈ Z>0 such that

E

{

∥

∥Aϕ(q−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ ε, ∀q ≥ Q.

By the independence of the initial distribution and the time-

homogeneity property of the composite process {σ(·), ϕ(·)},

the previous inequality holds true at any instant s ∈ Z>0.

Hence, we have

E

{

∥

∥Aϕ(q+s−1) · · ·Aϕ(s)

∥

∥

δ
}

≤ ε, ∀s ≥ 0, ∀q ≥ Q. (12)

We can also define a constant c > 1 such that we have

E

{

∥

∥Aϕ(h+s−1) · · ·Aϕ(s)

∥

∥

δ
}

≤ c, ∀s ∈ Z>0, ∀h ∈ (0, Q)∩Z.

(13)

As in the proof of Theorem 4.1 of [23] and using again the

time-homogeneity property of {σ(·), ϕ(·)}, we have for that

the total expectation (5) can be sliced in r pieces of length Q
and one piece of length h for any k = rQ + h, h, r ∈ Z>0,

h < Q:

Eπσ0

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

=
∑

i0,...,iQ−1

∑

j0,...,jQ−1

pi0i1 · · · piQ−2iQ−1

× ℓi0j0 · · · ℓiQ−1jQ−1

∥

∥AjQ−1
· · ·Aj0

∥

∥

δ
× · · ·

×
∑

i(r−1)Q,...,irQ−1

∑

j(r−1)Q,...,jrQ−1

pi(r−1)Qi(r−1)Q+1
· · · pirQ−2irQ−1

× ℓi(r−1)Qj(r−1)Q
· · · ℓirQ−1jrQ−1

∥

∥AjrQ−1
· · ·Aj(r−1)Q

∥

∥

δ

×
∑

irQ,...,irQ+h

∑

jrQ,...,jrQ+h

pirQirQ+1
· · · pirQ+h−1irQ+h

× ℓirQjrQ · · · ℓirQ+hjrQ+h

∥

∥AjrQ+h
· · ·AjrQ

∥

∥

δ
.

Therefore

E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ E

{

∥

∥Aϕ(Q−1) · · ·Aϕ(0)

∥

∥

δ
}

× · · ·

× E

{

∥

∥Aϕ(rQ−1) · · ·Aϕ((r−1)Q)

∥

∥

δ
}

E

{

∥

∥Aϕ(rQ+h) · · ·Aϕ(rQ)

∥

∥

δ
}

and, exploiting (12) and (13):

E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ cεr = ae−bk, (14)

with a , cε−
h
Q and b , − 1

Q
log ε. Finally, we have that

E

{

‖x(k, 0)‖
δ
}

≤ a ‖x0‖
δ
e−bk, which establishes δ-GES.

δ-GES ⇒ δ-EISS part.

For any k ∈ Z≥0 and any x0 ∈ R
n we can write

x(k, d) = Aϕ(k−1) · · ·Aϕ(0)x0 +Aϕ(k−1) · · ·Aϕ(1)B(x0, 0)d(0)

+ · · ·+Aϕ(k−1)B(x(k − 2), k − 2)d(k − 2)

+B(x(k − 1), k − 1)d(k − 1). (15)

Notice that the constant b̄ in (2) can be assumed greater than

1 without loss of generality. Therefore, we get

‖x(k, d)‖
δ
≤
(∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥ ‖x0‖

+ b̄ ‖d‖∞
(

1 +
∥

∥Aϕ(k−1)

∥

∥ + · · ·

+
∥

∥Aϕ(k−1) · · ·Aϕ(1)

∥

∥

))δ
.

Moreover, there exists a constant c1 ∈ R>0 such that

‖x(k, d)‖
δ
≤ c1

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
‖x0‖

δ

+ c1b̄
δ ‖d‖

δ
∞

(

1 +
∥

∥Aϕ(k−1)

∥

∥ + · · ·

+
∥

∥Aϕ(k−1) · · ·Aϕ(1)

∥

∥

)δ
.
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For δ ≤ 1 we can choose c1 = 1 in light of the subadditivity

of the concave function (·)δ . For δ > 1 the function (·)δ is

convex and we can exploit such property to find c1 = 2δ−1.

Let us focus now on the second term in the previous bound

and add the non-negative term
∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥:
(

1 +
∥

∥Aϕ(k−1)

∥

∥+
∥

∥Aϕ(k−1)Aϕ(k−2)

∥

∥+ · · ·

+
∥

∥Aϕ(k−1) · · ·Aϕ(1)

∥

∥

)δ
≤

(

1 +
∥

∥Aϕ(k−1)

∥

∥+
∥

∥Aϕ(k−1)Aϕ(k−2)

∥

∥+ · · ·
∥

∥Aϕ(k−1) · · ·Aϕ(1)

∥

∥+
∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

)δ
.

We claim that there exists a constant c2 ∈ R>0 and coefficients

βi ∈ R>0, i = 1, . . . , k + 1, such that
(

1 +
∥

∥Aϕ(k−1)

∥

∥+
∥

∥Aϕ(k−1)Aϕ(k−2)

∥

∥+ · · ·

+
∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

)δ
≤

c2

(

β1 + β2

∥

∥Aϕ(k−1)

∥

∥

δ
+ β3

∥

∥Aϕ(k−1)Aϕ(k−2)

∥

∥

δ
+ · · ·

+βk+1

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
)

. (16)

For δ ≤ 1 we can still use the subadditivity to find c2 = 1
and βi = 1 for all i = 1, . . . , k + 1. For δ > 1 the convexity

property would lead to a constant c2 dependent of k and hence

to a divergent sum for k → ∞. We, thus, make use of the result

in Lemma 15 (see appendix) to fix c2 = ζ
(

δ
δ−1

)δ−1

, with

ζ(·) the Euler-Riemann zeta function, and βi = iδ . Hence,

recalling that d is deterministic, from (16) we have

E

{

‖x(k, d)‖
δ
}

≤ c1E
{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

‖x0‖
δ

+ c1c2b̄
δ ‖d‖

δ
∞

(

β1 + β2E

{

∥

∥Aϕ(k−1)

∥

∥

δ
}

+ · · ·

(17)

+ βk+1E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
})

.

We must show that there exists a constant c3 ∈ R>0,

independent of k and βi, such that β1+β2E

{

∥

∥Aϕ(k−1)

∥

∥

δ
}

+

· · ·+βk+1E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ c3. For the case δ ≤ 1

this is easily proved by means of the inequality (14). We have

indeed (recall βi = 1 in this case): 1 + E

{

∥

∥Aϕ(k−1)

∥

∥

δ
}

+

· · · + E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ a
∑k

i=0 e
−bi. Hence we

can fix c3 = a
1−e−b by means of the geometric series.

For δ > 1 we exploit again the inequality (14) to write

1+2δE
{

∥

∥Aϕ(k−1)

∥

∥

δ
}

+3δE
{

∥

∥Aϕ(k−1)Aϕ(k−2)

∥

∥

δ
}

+ · · ·+

(k + 1)
δ
E

{

∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥

δ
}

≤ a
∑k

i=0(i + 1)δe−bi.

We finally have a
∑k

i=0(i+1)δe−bi = aeb
∑k+1

j=1 j
δe−bj ≤ c3

where c3 , aebLi−δ(e
−b) and Lis(z) =

∑∞
j=1

zj

js
is the

polylogarithm (see Chapter 25 of [45]), which converges to

a positive finite constant for all 0 ≤ z < 1. Finally we have

E

{

‖x(k, d)‖
δ
}

≤ ac1 ‖x0‖
δ
e−bk + c1c2c3b̄

δ ‖d‖
δ
∞

where we can easily recognize the class K∞ function γ(s) ,
c1c2c3b̄

δsδ for all s ≥ 0. δ-EISS follows.

We are now ready to provide sufficient conditions for the δ-

EISS (hence also for δ-GAS, δ-GES and δ-ISS) of the system

(1). As a first step, we introduce a Lyapunov characterization

for the δ-EISS of system (1), which is in the same spirit of

some classical results such as [46], [47].

Lemma 9. The system (1) driven by the stochastic pro-

cess {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), is δ-EISS if there exist functions

Vi : Rn → R≥0, constants αi, ᾱi, αi ∈ R>0, i ∈ Jσ , and

a function χ ∈ K∞ such that for all x ∈ R
n, all d ∈ R

p and

all k ∈ Z≥0,

i) αi ‖x‖
δ
≤ Vi(x) ≤ ᾱi ‖x‖

δ
for all i ∈ Jσ;

ii) E
{

Vσ(k+1)

(

Aϕ(k)x+B(x, k)d(k)
)

− Vσ(k)(x)
}

≤

−αi ‖x‖
δ
+ χ(‖d(k)‖).

Proof: Let us pick α1 , mini∈Jσ
αi, α2 , maxi∈Jσ

ᾱi

and α , mini∈Jσ
αi. Applying the expectation to both

members of inequality ii) we have

E
{

E
{

Vσ(k+1)

(

Aϕ(k)x(k) +B(x(k), k)d(k)
)

− Vσ(k)(x(k))
}}

≤

− αE
{

‖x(k)‖
δ
}

+ E {χ(‖d(k)‖)}

and thus

E
{

Vσ(k+1)(x(k + 1, d))
}

≤
(

1−
α

α2

)

E
{

Vσ(k)(x(k, d))
}

+ E {χ(‖d(k)‖)} . (18)

By recursively solving the previous relation, we have

E
{

Vσ(k)(x(k, d))
}

≤ ρkE
{

Vσ(0)(x0)
}

+
k−1
∑

j=0

ρk−1−j
E {χ(‖d(j)‖)} (19)

with ρ ,

(

1− α
α2

)

< 1. It is worth noting that ρ ≥ 0. Indeed,

by picking (18) with d ≡ 0, we get E
{

Vσ(k+1)(x(k + 1))
}

≤
ρE
{

Vσ(k)(x(k))
}

. Since E
{

Vσ(k+1)(x(k + 1))
}

≥ 0 and

E
{

Vσ(k)(x(k))
}

≥ 0, it follows that ρ ≥ 0. From (19) and

recalling that d is a deterministic input, we have

α1E

{

‖x(k, d)‖
δ
}

≤ α2ρ
k ‖x0‖

δ
+

1

1− ρ
χ(‖d‖∞).

Definition 6-2 is thus satisfied with

a =
α2

α1
, b = − log

(

1−
α

α2

)

γ(·) =
α2

α1α
χ(·).

The next result provides an alternative Lyapunov condition

for δ-EISS. Contrarily to Lemma 9, it does not rely on the

decrease of the Lyapunov function expectation, but rather

involves the transition probabilities pli.

Lemma 10. The system (1) driven by the stochastic pro-

cess {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), is δ-EISS if there exist M matrices

Rl = RT
l > 0 and α ∈ R>0 such that for all x ∈ R

n and for

all l ∈ Jσ
N
∑

h=1

M
∑

j=1

pljℓlh
(

xTAT
hRjAhx

)
δ
2 −

(

xTRlx
)

δ
2 ≤ −α ‖x‖

δ
,

(20)
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where we recall that plj , P{σ(k + 1) = j | σ(k) = l} and

ℓlh , P{ϕ(k) = h | σ(k) = l}.

Proof: In the light of Theorem 8 we can simply prove

that the system is δ-GES. Let us define the following candidate

Lyapunov functions Vl(x) ,
(

xTRlx
)

δ
2 , l ∈ Jσ . They satisfy

condition i) of Lemma 9 with α1 = minj∈Jσ
λmin(Rj) and

α2 = maxj∈Jσ
λmax(Rj). In order to prove the thesis, we

need to verify condition ii) of the same lemma considering

d ≡ 0. That is, for any x ∈ R
n

E
{

Vσ(k+1)

(

Aϕ(k)x
)

− Vσ(k)(x)
}

=

M
∑

l=1

E
{

Vσ(k+1)

(

Aϕ(k)x
)

− Vσ(k)(x) | σ(k) = l
}

P{σ(k) = l}

=

M
∑

l=1

E

{

(

xTAT
ϕ(k)Rσ(k+1)Aϕ(k)x

)
δ
2

−
(

xTRσ(k)x
)

δ
2 | σ(k) = l

}

P{σ(k) = l}

=

M
∑

l=1





N
∑

h=1

M
∑

j=1

P {ϕ(k) = h, σ(k + 1) = j | σ(k) = l}

×
(

xTAT
hRjAhx

)
δ
2 −

(

xTRlx
)

δ
2

]

P{σ(k) = l}

=

M
∑

l=1





N
∑

h=1

M
∑

j=1

pljℓlh
(

xTAT
hRjAhx

)
δ
2 −

(

xTRlx
)

δ
2





× P{σ(k) = l}

≤

M
∑

l=1

(

−α ‖x‖
δ
)

P{σ(k) = l} = −α ‖x‖
δ
,

where we used inequality (20), the fact that
∑M

l=1 P{σ(k) =
l} = 1 and also, recalling (3)-(4),

P {ϕ(k) = h, σ(k + 1) = j | σ(k) = l}

= P {ϕ(k) = h | σ(k + 1) = j, σ(k) = l}

× P {σ(k + 1) = j | σ(k) = l}

= P {ϕ(k) = h | σ(k) = l}P {σ(k + 1) = j | σ(k) = l}

= ℓlhplj .

For the special case of 2-EISS (δ = 2), the following LMI

condition can be obtained using Lemma 10.

Theorem 11. The system (1) driven by the stochastic pro-

cess {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), is 2-EISS if there exist M matrices

Rl = RT
l > 0 such that

N
∑

h=1

ℓlhA
T
h R̃lAh −Rl < 0, ∀l ∈ Jσ (21)

with

R̃l ,

M
∑

j=1

pljRj , ∀l ∈ Jσ , (22)

where we recall that plj , P{σ(k + 1) = j | σ(k) = l} and

ℓlh , P{ϕ(k) = h | σ(k) = l}.

The proof is straightforward in view of Lemma 10. It is

worth stressing that, if the matrix L = (ℓlh)l=1,...,M
h=1,...,N

is the

identity matrix, then the LMI conditions (21)-(22) become the

one of the second moment stability [25], [48], [49], [23].

B. Almost Sure ISS

The previous section shows, for the class of systems (1),

the equivalence between δ-stability properties (namely, δ-GAS

and δ-GES) and robustness to exogenous inputs (δ-ISS and δ-

EISS), and provides natural Lyapunov tools to guarantee them.

We now proceed in conducting a similar analysis for as-ISS.

As a first step, we prove the following result.

Theorem 12. For the system (1) driven by the stochastic

process {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), any property among δ-GAS, δ-GES,

δ-ISS and δ-EISS implies as-ISS.

Proof: It is well known (see for instance [44], [22], [23])

that δ-GAS ⇒ as-GS, hence we can assume that

lim
k→∞

‖x(k, 0)‖ = 0 almost surely (a.s.).

This property, together with (15), implies that, for any ε ∈
(0, 1), there exists Q = Q(ε) ∈ Z>0 such that for every q ≥ Q
and every initial distribution πσ0 ∈ SM−1,

∥

∥Aϕ(q−1) · · ·Aϕ(0)

∥

∥ ≤ ε a.s.

The previous inequality is satisfied by almost any sequence

ϕ(0), . . . , ϕ(q−1) generated by any initial distribution πσ0 ∈
SM−1. Due to the arbitrariness of the initial distribution

and the time-homogeneity property of the composite process

{σ(·), ϕ(·)}, the same property holds for any sequence starting

at any instant s ∈ Z>0. Or, equivalently, almost all sequences

of length q ≥ Q of product of dynamic matrices satisfy such

inequality. Hence, we have
∥

∥

∥

∥

∥

∥

q−1
∏

j=0

Aij

∥

∥

∥

∥

∥

∥

≤ ε a.s. ∀ij ∈ Jϕ .

Moreover, there exists c > 1 such that, for any h ∈ Z>0 with

h < Q, we have
∥

∥

∥

∥

∥

∥

h−1
∏

j=0

Aij

∥

∥

∥

∥

∥

∥

≤ c a.s. ∀ij ∈ Jϕ .

Using again the time-homogeneity property of {σ(·), ϕ(·)},

we can write for any k = rQ+ h, h, r ∈ Z>0, h < Q
∥

∥Aϕ(k−1) · · ·Aϕ(0)

∥

∥ ≤ cεr = ae−bk, (23)

with a , cε−
h
Q and b , − 1

Q
log ε. Proceeding in a similar

way as for the proof of Theorem 8, we obtain the inequality

‖x(k, d)‖ ≤ β(k, ‖x0‖) + γ(‖d‖∞) almost surely, with the

class KL function β(k, s) , ae−bks and the class K∞

function γ(s) , ab̄
1−e−b s.
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Exploiting the previous theorem and Lemma 10 and pro-

ceeding as in Theorem 2.1 in [50], we can provide sufficient

conditions for the as-ISS of our system. In case L is the

identity matrix, such conditions turn to those provided in [50]

for as-GS.

Corollary 13. The system (1) driven by the stochastic pro-

cess {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4), is as-ISS if there exist M matrices

Rl = RT
l > 0 such that one of the following conditions is

verified

• max
‖x‖=1

N
∏

h=1

M
∏

j=1

(

xTAT
hRjAhx

xTRlx

)pljℓlh

< 1, ∀l ∈ Jσ

•

N
∏

h=1

M
∏

j=1

λmax

(

AT
hRjAhR

−1
l

)pljℓlh
< 1, ∀l ∈ Jσ .

As remarked in Section III, if {σ(·)} is a FSHIA-MC, thus

an ergodic process with a unique ergodic class and a unique

i.p.d. πσ , the process {ϕ(·)} inherits the same ergodic property

and it has a unique i.p.d. πϕ = πσL. Therefore, for ergodic

processes we have the following condition (see also [22], [50]).

Corollary 14. The system (1) driven by the stochastic ergodic

process {σ(·), ϕ(·)}, whose distributions are described by the

evolutions (3) and (4) and whose i.p.d. is given by (πσ, πϕ)
with πϕ , [πϕ1

, . . . , πϕM
] = πσL, is as-ISS if

M
∏

j=1

‖Aj‖
πϕj < 1.

IV. CASE STUDY

In this section we illustrate the robustness properties guar-

anteed by the 2-EISS conditions in Theorem 11 on a tracking

problem for the benchmark mechanical system in Figure 2. We

remark that the TORA is a planar system where the rotating

arm is implanted above the oscillating mass. Hence, the gravity

force is orthogonal to the plan.

q

k
M

m

xc

L

Fig. 2. Model of a Translational Oscillator/Rotational Actuator (TORA)
system ([51]).

A. Plant and control description

The Translational Oscillator/Rotational Actuator (TORA)

system in Figure 2 (see [51] for further details) can be

described as follows
[

θ̈
ẍc

]

=
1

∆(θ)

[

m+M −mL cos θ
−mL cos θ I +mL2

] [

u+ d

mLθ̇2 sin θ − κx

]

y = θ + n

where ∆(θ) = (I + mL2)(m + M) − m2L2 cos2 θ > 0, M
is the mass of the translational oscillator, m and I are the

mass and the inertia of the rotational actuator located at a

distance L from the center of rotation, κ is the stiffness of

the spring, θ is the angle of the actuator, xc is the horizontal

displacement of the oscillator, u is the control torque, d is

the torque disturbance and n is the measurement error. The

previous parameters are assumed to take the following values

throughout this section: m = 1kg, M = 5kg, L = 0.1m,

I = 0.01 kgm2 and κ = 20N/m. After linearization about

the origin and sampled-time discretization with sampling time

T = 0.1 s, we obtain the following transfer function from u
to θ

G(z) =
0.27266(z + 1)(z2 − 1.967z + 1)

(z − 1)2(z2 − 1.964z + 1)
.

We assume measurements to be acquired at the beginning of

each period and control inputs to be released at the end, thus

the controller is not affected by jitter but experiences a constant

unit delay. In order to account for the unit delay, controllers

are designed for the transfer function G(z) 1
z

instead of G(z).
We assume here that the control task is designed according

to the structure illustrated in Example 1. In particular, the

controller Γ1(z) = K1(z) = 3.04(z−0.97)
z+0.9 is designed to

ensure only stability requirement, while the second controller

Γ2(z) = K1(z) + K2(z) with K2(z) = −0.021(z−2)
z−0.76 to

enhance performance in terms of rise time and settling time

(see Figure 3 for a graphical comparison). The prefilters

Φ1(z) = F1(z) = 0.0480 and Φ2(z) = F1(z)F2(z) = 0.1351
are used to adapt the steady-state gain and ensure static

requirements.

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

Time [s]

θ
 [
ra

d
]

 

 

(Γ
1
,Φ

1
)

(Γ
2
,Φ

2
)

r

Fig. 3. Outputs of the TORA system in closed loop with (Γ1,Φ1) and
(Γ2,Φ2) for a square wave reference r of period 40 s, duty cycle 50% and
amplitude 1 rad.

According to the anytime paradigm, the task implementing

the controllers has to minimize the execution time, thus the

computations, while still preserving numerical robustness. To

this aim, in [12, Sec. VII] the controllers were implemented in

Jordan state-space realization. For more details on the structure

of the two closed loop matrices of the linearized system with

the two controllers see [12, Sec. VII].

B. Stochastic description of the computation platform

In this case study we have two controllers Γ1 and Γ2, hence

Jϕ , {1, 2}. We also assume that the available computation

time can take four different values, hence Jσ , {1, . . . , 4}. We



10

assume the FSH-MC {σ(·)} to be described by the following

transition probability matrix

P =









0.5 0.1 0.4 0
0.2 0.1 0.5 0.2
0.2 0.2 0.4 0.2
0.1 0.2 0.3 0.4









and the following initial probability distribution πσ0 =
1
4 [1, 1, 1, 1] (see [13] for more details on how to construct

the transition probability matrix). The stationary probability

distributions of the execution times T 1 and T 2 are given by the

row vectors πT 1 = [1, 0, 0, 0] and πT 2 = [0, 0.33, 0.5, 0.17]
respectively. Therefore, the matrix L in (4) is

L =









1 0
0.67 0.33
0.17 0.83
0 1









.

The controller actually executed at each time step k is the

largest possible one within the available computation time.

That is, if the available computation time σ(k) at step k is

such that σ(k) ≥ T 2(k), then ϕ(k) = 2, otherwise ϕ(k) = 1.

We assume here that σ(k) ≥ T 1(k) for every k.

C. Simulation results

The closed–loop SJLS with the computation platform de-

scribed in the previous sections satisfies the LMI conditions

of Theorem 11, thus it turns out to be 2-EISS. For simulation

purposes we have considered a tracking problem with a square

wave reference of period 40 s, duty cycle 50% and amplitude

1 rad. We assume also that the input disturbance d and the

measurement error n affecting the SJLS (see the scheme in

Figure 1) are bounded as |d| ≤ 0.05Nm and |n| ≤ 0.05 rad.

Figure 4 shows a simulation run for the TORA system in

closed loop with (Γ1,Φ1), with (Γ2,Φ2) and with the anytime

control (SJLS). The vertical black segments of the graph on

the bottom represent the instants where (Γ1,Φ1) is executed,

that is the steps k where ϕ(k) = 1. The empty spaces among

those segments represent, instead, the steps k where ϕ(k) = 2.

Simulations show a bounded response in presence of the

bounded disturbances, which is typical of an ISS behavior.

Figure 5 illustrates the first 4 seconds of temporal evolution

of a sample path for the processes T 1(·), T 2(·) and σ(·).
The available (σ(·)) and required (T 1(·), T 2(·)) computation

time range in the discrete set Jσ = {1, . . . , 4}. Whenever

σ(k) ≥ T 2(k), it holds that ϕ(k) = 2, otherwise ϕ(k) = 1.

The process ϕ(·) is represented at the bottom of the figure

as a bichromatic thick line: dark gray segments accounts for

the activation periods of (Γ2,Φ2), light gray segments indicate

those of (Γ1,Φ1).
This example shows the applicability of our result and its

ability to formally guarantee robustness properties.

V. CONCLUSIONS

In this paper we have introduced a model of SJLS encom-

passing as special cases switching systems driven by MCs

and i.i.d. processes. Such a model proves very useful in

         

0

0.5

1

 

 

         

0

0.5

1

θ
 [

ra
d

]

 

 

         

0

0.5

1

 

 

0 5 10 15 20 25 30 35 40

Time [s]

(Γ
1
,Φ

1
)

(Γ
2
,Φ

2
)

SJLS

Fig. 4. Outputs of the TORA system in closed loop with (Γ1,Φ1), (Γ2,Φ2)
and with the anytime control for a square wave reference of period 40 s, duty
cycle 50% and amplitude 1 rad. The system is affected by bounded input
disturbance d and measurement error n with |d| ≤ 0.05Nm and |n| ≤
0.05 rad. The bottom graph portraits the activation instants of (Γ1,Φ1).

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

Time [s]

 

 

ϕ

T
1

T
2

σ

Fig. 5. First 4 seconds of temporal evolution of a sample path for the processes
T 1(·), T 2(·) and σ(·). Whenever σ(k) ≥ T 2(k), it holds that ϕ(k) = 2,
otherwise ϕ(k) = 1. The bottom graph represents the process ϕ(·): dark gray
segments accounts for the activation periods of (Γ2,Φ2), light gray segments
indicate those of (Γ1,Φ1).

describing the varying behavior of shared resource availability,

which characterizes many cyber-physical systems. We have

also presented stochastic ISS definitions which smoothly con-

nect deterministic ISS results and classical stochastic stability

definitions for SJLSs. These definitions come with easily

testable sufficient conditions for the aforementioned more

general SJLS. In the future we aim at further extending the

stochastic model to catch the complex behaviors arising when

the interaction of different SJLSs on the shared resource

induces a correlation among the stochastic properties of the

SJLSs. Quantitative performance metrics will be investigated

as well.

APPENDIX

Lemma 15. Given any k ∈ Z≥0, any zi ∈ R≥0, i = 1, . . . , k,

and any δ > 1 the following inequality holds

(

k
∑

i=1

zi

)δ

≤ ζ

(

δ

δ − 1

)δ−1 k
∑

i=1

iδzδi , (24)
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where ζ(·) is the Euler-Riemann zeta function. Notice that,

since δ > 1, ζ
(

δ
δ−1

)

is a positive finite constant independent

of zi and k.

We start by showing that, given any δ > 1 and any β =
(β1, . . . , βk)

T ∈ R
k
>0, there exists a constant c(δ, β, k) > 0

such that, for any w = (w1, . . . , wk)
T ∈ R

k
≥0 satisfying

∑k
i=1 wi = 1,

k
∑

i=1

βiw
δ
i ≥

1

c(δ, β, k)
. (25)

To that aim, we compute the following minimum:

min

{

k
∑

i=1

βiw
δ
i |

k
∑

i=1

wi = 1, wi ≥ 0

}

. (26)

By means of the Lagrange multipliers we define

Λ(w, λ) ,

k
∑

i=1

βiw
δ
i + λ

(

k
∑

i=1

wi − 1

)

.

Solving ∇Λ = 0 leads to the conditions

βiδw
δ−1
i + λ = 0 ∀i = 1, . . . , k (27)

k
∑

i=1

wi = 1. (28)

From (27) we have that, for any i, j ∈ {1, . . . , k}, βiw
δ−1
i =

βjw
δ−1
j , and thus

wi =

(

βj

βi

)
1

δ−1

wj . (29)

Replacing (29) in (28), we get that the minimum (26) is

reached for w = w⋆, where

w⋆
j =

1

β
1

δ−1

j

∑k
i=1

1

β
1

δ−1
i

, ∀j = 1, . . . , k. (30)

We conclude that the sought constant c in (25) can be picked

as

c(δ, β, k) =
1

∑k
i=1 βi(w⋆

i )
δ

=

(

∑k
i=1

1

β
1

δ−1
i

)δ

∑k
j=1

1

β
1

δ−1
j

=





k
∑

i=1

1

β
1

δ−1

i





δ−1

.

Now, notice that if zi = 0 for all i ∈ {1, . . . , k}, then the

inequality (24) is trivially satisfied. If, on the other hand, zi 6=
0 for some i then let

wi =
zi

∑k
i=1 zi

≥ 0, ∀i = 1, . . . , k,

which indeed satisfy
∑k

i=1 wi = 1. Then, by considering the

bound (25) with βi = iδ , we obtain that

k
∑

i=1

iδzδi ≥

(

∑k
i=1 zi

)δ

c(δ, ℓ, k)
, (31)

where ℓ(δ, k) , (1δ, 2δ, . . . , kδ)T . Furthermore, notice that

c(δ, ℓ, k) =

(

k
∑

i=1

1

i
δ

δ−1

)δ−1

≤

(

∞
∑

i=1

1

i
δ

δ−1

)δ−1

≤ ζ

(

δ

δ − 1

)δ−1

.

We conclude, in view of (31), that

(

k
∑

i=1

zi

)δ

≤ c(δ, ℓ, k)

k
∑

i=1

iδzδi ≤ ζ

(

δ

δ − 1

)δ−1 k
∑

i=1

iδzδi .
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