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Consider an option on a stock whose volatility is unknown and stochastic. An agent assumes this
volatility to be a specific function of time and the stock price, knowing that this assumption may
result in a misspecification of the volatility. However, if the misspecified volatility dominates the true
volatility, then the misspecified price of the option dominates its true price. Moreover, the option
hedging strategy computed under the assumption of the misspecified volatility provides an almost sure
one-sided hedge for the option under the true volatility. Analogous results hold if the true volatility
dominates the misspecified volatility. These comparisons can fail, however, if the misspecified volatility
is not assumed to be a function of time and the stock price. The positive results, which apply to both
European and American options, are used to obtain a bound and hedge for Asian options.
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1. INTRODUCTION

Since the development of the Black—Scholes option pricing formula (Black and Scholes
1973), practitioners have used it extensively, even to evaluate options whose underlying
asset (hereafter called the “stock”) is known to not satisfy the Black—Scholes hypothesis
of a deterministic volatility. In this paper, we provide conditions under which the Black—
Scholes formula is robust with respect to a misspecification of volatility. We extend the
well-known property of the option price being an increasing function of a deterministic
volatility to a comparison of the price of contingent claims associated with two different
stochastic volatilities. Our principal assumptions are that the contingent claims have convex
payoffs and the only source of randomness in the misspecified volatility is a dependence
on the current price of the stock. Under these assumptions, if the misspecified volatility
dominates (respectively, is dominated by) the true volatility, then the contingent claim price
corresponding to the misspecified volatility dominates (respectively, is dominated by) the
true contingent claim price. A counterexample, based on ideas by M. Yor and reported in
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Section 4, shows that in the absence of our assumptions, option prices may fail to compare
in any reasonable way.

The key to the results reported here is that for both European and American contingent
claims with convex payoffs, if the interest rate process is deterministic and the stock volatility
depends only on time and the current price of the stock, then the price of the contingent
claim is a convex function of the price of the stock. This result was previously obtained
by Bergman, Grundy, and Wiener (1996), who reported the European version of it in a
detailed study of the properties of European contingent claims. The proof in Bergman et
al. proceeds through an analysis of the parabolic partial differential equation satisfied by
the contingent claim price. We obtain the result using the theory of stochastic flows and
the Girsanov Theorem. Hobson (1996) has subsequently simplified these arguments, using
stochastic coupling.

Avellaneda, Levy, and Paras (1995); Avellaneda and Paras (1996); and Avellaneda and
Lewicki (1996) obtained pricing and hedging bounds in markets with bounds on uncertain
volatility. Carr (1993) derived formulas for “the Greeks” associated with an option in a
constant-coefficient market by differentiating the Black—Scholes equation. Martini (1995)
has applied semigroup methods to the problem of misspecified volatility.

The present paper examines the performance of a hedging portfolio derived from mis-
specified volatility, and in this respect it is an extension of El Karoui and JeanblancePicqu”
(1990). Wefindthat, under our assumptions, if the misspecified volatility dominates (respec-
tively, is dominated by) the true volatility, then the self-financing value of the misspecified
hedging portfolio exceeds (respectively, is exceeded by) the payoff of the contingent claim
at expiration. We obtain this result also for American contingent claims.

When the volatility of the underlying stock is allowed to be random in a path-dependent
way, the price of a European call can fail to be convex in the stock price. We provide an
example of this in which the stock price is continuous and driven by a single Brownian
motion, and the volatility depends on the initial stock price and on the driving Brownian
motion. Moreover, the volatility increases with increasing initial stock price. Nonetheless,
the price of the call is neither increasing nor convex in the initial stock price.

Bergman et al. (1996) provide a similar example, but with volatility decreasing with
increasing initial stock price. They also show that dependence of the volatility on a second
Brownian motion or jumps in the stock price can lead to nonincreasing, nonconvex European
call prices.

In a discrete-time, finite-state model, Levy and Levy (1988) established option pricing
and hedging bounds similar to ours. In their paper, the robustness is with respect to the range
of values attained by the stock. Lyons (1995) has considered nonconvex options in a model
with uncertain volatility. Lo (1987) has provided an upper bound for the option prices over
all possible distributions of the terminal stock price with fixed mean and variance. Hull
and White (1987) obtained an explicit formula for the price of an option on a stock whose
volatility is stochastic and independent of the Brownian motion driving the stock price.
Neither Lo nor Hull and White consider hedging portfolios.

This paper is organized as follows. Section 2 provides the basic model and definitions.
In order to introduce some notation, Section 3 reviews the constant-coefficient Black and
Scholes result. Section 4 shows that option prices can behave badly when the stock has
stochastic, path-dependent volatility. Under the assumption that the interest rate is deter-
ministic and the misspecified stock price process is Markov, the key to the positive results
is the convexity of the contingent claim price as a function of the misspecified stock price.
This result is proved in Section 5 using the theory of stochastic flows. Section 6 then
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proves a main result, the comparison of European contingent claim prices and performance
of hedging portfolios under a misspecification of the stochastic volatility of the stock. In
Section 7 we use a change of neraire to extend these results to cover the case of ran-
dom interest rate. We take up the study of American contingent claims in Section 8, first
providing conditions under which these reduce to European contingent claims. Section
9 establishes the convexity of the price of American contingent claims, and Section 10
presents the comparison of American contingent claims prices and performance of hedging
portfolios. Section 11 concludes with two examples in which our bounds provide useful
information. In one case, we provide upper and lower bounds on a European call on the
arithmetic average of two independent stock price processes. In the other case, we obtain
an upper bound on the price of an Asian option. In both cases, the hedging portfolios
associated with the bounds are shown to perform as expected.

2. BASIC ASSUMPTIONS AND DEFINITIONS

We consider a continuous-time economy with a positive finite horizodwo assets are
traded continuously in a frictionless market. We denotdvtay) the price at time of the
money market, and bg(t) the price at timé of the stock. We assume there do not exist
arbitrage opportunities, and we adopt the strong version of this assumption, namely the
existence of a martingale (“risk-neutral”) probability measure. More precisely, we make
the following assumption.

HyPOTHESIS2.1. The money market price M and the stock price S are defined on a
probability spacg2, F, P) and adapted to a filtratiofF (t); 0 < t < T}. Furthermore,

(2.1) M(t) = elor@au.
2.2) dSt) = SMO[r ) dt + o) dW(t)],

where{W(t); 0 <t < T} is a one-dimensional Brownian motion adapted f(t); 0 <
t < T}, where thanterest rate processis deterministic and satisfiegT [r(t)|dt < oo,
and where thevolatility processo is honnegative, adapted g7 (t);0 <t < T}, and
satisfiesfoT o?(t) dt < oo almost surely. Finally, we assume that the local martingale

(2.3) &:S(O)exp{/ta(u)dW(u)—}/taz(u)du} 0<t<T
. M(t) 0 2 0 ’ - =

is in fact a square-integrable martingale, i.e,/I8 is a martingale and

St

, O<t<T.
Mz(t)<00 <0l =<

We do not assume that the market is complete. In particular, the filtrigficn; 0 <t <
T} may be strictly larger than the filtration generated by the Brownian m¢tWétt); 0 <
t < T}. In Section 7, we relax Hypothesis 2.1 by allowing the interest rate to be stochastic.
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REMARK 2.2. lItis oftenthe case th&i(t) = Wo(t)+fg A(U) du, wheren is themarket
price of riskfor the stock price process ai is a one-dimensional Brownian motion on
(2, F) under the probability measul® related taP by the formula

dP T 107,
(2.9 P _exp{—/o A(t) dWp(t) — 5/0 A (t)dt}.

In this setup, equation (2.2) can be rewritten as
dS(t) = SO[(r () + o ®)A(t)) dt + o (t) dWo(1)],

so that undePy the mean rate of return on the stock is not necessarily equal to the interest
rate.

DerFINITION 2.3.  Aportfolio proces§A(t),0 <t < T} is a bounded adapted process.
Given a (nonrandom) initial portfolio valuH 4 (0), the self-financing valuef a portfolio
processA is the solution of the linear stochastic differential equation

(2.5) dITA(t) =r ) [t — A()SH)] dt + A(t) dS(t),
which is

_ ‘ S(u)
(2.6) MAt) = M(1) [HA(O) +/O A(u)d (M(u)ﬂ.

REMARK 2.4. Becaus&(t)/M(t) is assumed to be a square-integrable martingale and
A is bounded, the discounted portfolio vallig (t)/M(t) is also a square-integrable mar-
tingale.

DEFINITION 2.5.  Apayoff functions a convex functiot, defined o0, co) and having
bounded one-sided derivatives, that is,

2.7) IN(x£)| <C Vx>0

for a positive constar€. A (hon—path-dependeriBuropean contingent claiis a contract
that paysh(S(T)) at timeT. (For example, a European call is characterizedby) =
(x — K)™ and a European put by x) = (K — x)™, whereK > 0 is the exercise price.) A
price procesgor a European contingent claim is any adapted pro¢Esp); 0 <t < T}
satisfying

(2.8) P(T)=h(S(T)) as
Because the market under consideration is not necessarily complete, the arbitrage price

of a European contingent claim is not necessarily defined. Furthermore, we shall often
be working with a misspecified stock volatility, in which case the arbitrage price, even if



ROBUSTNESS OF THE BLACK AND SCHOLES FORMULA 97

it is defined, is likewise misspecified. For these reasons, we have adopted the very weak
definition of a price process in Definition 2.5. Of course, if the market is complete, the
arbitrage priceof the European contingent claim is given by

h(S(T))
M(T)

(2.9) Pe(t) & M(t)IE[ ‘]—"(t)} . 0<t<T.

DEFINITION 2.6. Leth be a payoff function for a European contingent claim. Pet
be a price process for this contingent claim and\die a portfolio process. Theacking

error! associated witliP, A) is defined to be the procesg) 2 ITA (1) — P(t), wherella
andP are related by the initial conditiod  (0) = P(0). If the discounted tracking error
et)/M() is:

(i) identically equal to zero, thefP, A) is said to be aeplicating strategy
(i) nondecreasing, the(P, A) is said to be auperstrategy
(i) nonincreasing, theriP, A) is said to be aubstrategy

A hedger who incorrectly estimates the volatility of the stock underlying a European
contingent claim will incorrectly compute the contingent claim price and hedging portfolio.
Let (P, A) be the result of such a computation. Suppose the hedger begins with a portfolio
whose initial value id1,(0) = P(0) and uses the portfolio procegs At expiration,
the hedger will have a portfolio valued Biy (T). If (P, A) is a superstrategy, then the
discounted tracking err@/M is nondecreasing, and becae$@) = 0, we have

(2.10) IMA(T) = P(T) +&(T) > h(S(T)).

In other words, the hedger has successfully hedged a short position in the contingent claim.
Moreover, becausH 4 (t)/M (t) is a martingaleP (t)/M(t) is a supermartingale and con-
sequently satisfies

P(t) h(S(T))
(2.11) M—(t)zE[ M ‘]—"(t)}, 0<t<T.
In particular,
(2.12) P(0) > E[h(S(T))/M(T)].

A substrategy (actually, the negative of the portfolio process of a substrategy) hedges a long
position, and inequalities (2.11) and (2.12) are reversed. A replicating strategy hedges a
short position, its negative hedges a long position, and inequalities (2.11) and (2.12) become
equalities. If the market is complete, then there exists a unique replicating strategy for the
European contingent claim; the price process for this strategy is given by (2.9).

1The cost process introduced bglFiier and Schweizer (1991) is the opposite of the tracking error.
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3. CLASSICAL BLACK-SCHOLES

In this section, we set the stage by briefly reviewing properties of the classical Black—
Scholes model. Lét be a payoff function, and assume that R ando > 0 are constant.
Fort € [0, T], we have

S(T) = S(t) exp[a(W(T) —W(t)) + <r — %62) (T - t)] )

BecauseW(T) — W(t))/+~/T —t is a standard normal random variable independent of
F (1), the arbitrage price process (2.9) for the option with payoff fundti@s

(3.1) Pe(t) = BS(T —t, S(t); r, 0),

where

(3.2) BS(t,x;r,o) =€ '"E |:h (X exp(aﬁx + (r — %az> 1:) )]

=e' foo h(xe)®’ (y; (r — %02> T, aﬁ) dy

e‘”/ h(z)®’ (Iog z; logx + (r - %oz> T, oﬁ) d7z
0

X is a standard normal random variable, aidy; 1, p) is the normal density with mean
u and standard deviatiop, the derivative with respect tg of the cumulative normal
distribution®(y; u, p) with the same mean and standard deviation.

By differentiation of the second improper integral in (3.2), one can verify that
BS(, 1, 0)isin C12((0, 00)?) and fort > 0,x > 0, we have

9 1 92 9
(3.3) aZS’S(r, X;r, o) = EO’ZXZWBS(T, X;T, o) +rx588(r, X:T,0)

—rBS(t,X;r,0),
10
— —BS(t,X;r,0).

oT 00

32
(3.4) XZWBS(L X; T, o)

It is clear thatBS(0, x; r, o) = h(x) for all x > 0. Differentiation of the first improper
integral in (3.2) shows that

%BS(r, X;r,o)= e’”f h'(xe’)e¥ o’ <y; <r — %02> T, aﬁ) dy,

—00

whereh’ is defined almost everywhere and is bounded and nondecreasing bécause
convex and satisfies (2.7). Therefot@/dx)BS(z, X; r, o) is bounded and nondecreasing
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in X, and, in particular,

2
—BS(t,x;r,0) >0, 7>0,x>0.
ax2

From (3.4), we then have
d

(3.5) —BS(t,X; r,0) > 0.
do

Applying Ité’s formula to (3.1) and using (3.3), it is easy to verify that with
a
A(t) = B—XBS(T —t,S(t): 1, 0),

the pair(Pg, A) is a replicating strategy. The processs bounded.

REMARK 3.1. Inthe special cas&x) = (x — K)™ of the European call, (3.2) becomes
the well-known Black—Scholes formula,

BS(t,%; r,0)=x®d"(r,X;1,0);0,0/7)—Ke " ®(d (1, X;1,0); 0,04/7),

where d*(z, x;r,0) = log(x/K) + rt + 30%r. Furthermore,.LBS(r,x; r,0) =

®(d*(z,x; r,0);0,04/7) and the mappingr — (3/3x)BS(z, X; r, o) is strictly in-
creasing on [Qop] and strictly decreasing o, oo), whereog £ \/é(log(x/K) +r7).

4. A STOCHASTIC VOLATILITY COUNTEREXAMPLE

The remainder of this paper concerns models with stochastic volatility. We obtain positive
results when the misspecified volatility is random only through dependence on the current
stock price. In this section, we consider more general stochastic volatility. We assume that
the market is complete, so that the arbitrage price is defined by (2.9), and we show that
when volatility is stochastic in a path-dependent manner, the value of a European call can
decrease with increasing volatility, and can even decrease with increasing stock price. The
example provided below, which exhibits these counterintuitive behaviors, is derived from
ideas of M. Yor.
We setr = 0. Leta > 0 be fixed, defind, = inf{t > 0; W(t) = a}, and set

o(t) = Liww <sopLit<Ta)-

Note thato is a nondecreasing function of the initial stock pri8@). SetK = a€®. The
value at time zero of a European call with strike priceand expiration time 1 is

(4.1) v(x) = E(S'Q) - K)",
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whereS*(0) = x andd S*(t) = o (t)S*(t) dW(t). Here we use the notatianx) rather
thanPg (0) of (2.9) in order to explicitly indicate the dependence on the initial stock price

THEOREM4.1. The European call value of (4.1) satisfieimy o v(x) = 0, v(a) =0,
andv(x) > Oforall x € (0, a).

According to Theorem 4.1, if we take an initial stock price (0, a), then not only does
S2(0) strictly exceedS*(0), but also the volatility associated with the stock price process
S(-) is at least as great as the volatility associated with the stock price pr&tessat
all times, almost surely. Nonetheless$x) > v(a); that is, the European call on the stock
with initial price x is strictly more valuable at the initial time than the European call on the
stock with initial pricea.

It is important to note that the option under consideration in Theorem 4.1 is a standard
European call, not a barrier option. The volatility is zero whenever the driving Brownian
motion exceeds the initial stock price or has reached thedezit the stock price itself can
exceed these quantities without the volatility vanishing. Moreover, one could create a similar
example in which the volatility never vanishes by using as volatilityd < sy Lt <T,; + €.

For sufficiently small positive:, it will still be possible to find 0< x < a such that
v(X) > v(a).

Proof of Theorem 4.1According to Tanaka’s formula (Karatzas and Shreve 1991,
Prop. 6.8 and Thm. 6.22, Chap. 3), for- 0 we have
—(WAATa) — %)~

IAT,
— _x+ / Ly oxg (W) dW(U) — L (1A Ta; X) ,
0

whereL (t; X) denotes the local time & atx up to timet. Therefore, the stock price with
initial conditionx is given by

1 1
(1) = x exp[/ o (u) dW(u) — }f az(u)du]
0 2 0

1

= X exp[L AATX)+X—WQAAT) —x) — %/ UZ(U)dU}
0

IA

X exp[L (1A Ta; X) +X] .

In particular, 8 (1) < aé€* = K almostsurely, so(a) = 0. Furthermorey(x) < ES‘(1) =
X, which shows that lig,o v(x) = 0.
Now fix X € (0, a). On the se{T, < 1}, we have

s > xexp[L(Ta; X) + X — %] .

But L(T,; X) is unbounded above on the 48t < 1}, because a Brownian motion can
spend substantial Lebesgue time in an arbitrarily small band adand still reacta prior
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to time 1. (A rigorous proof of the unboundedness.¢1;; x) on{T, < 1} is provided in
Appendix A.) We have theR(S*(1) > K) > 0, which impliesv(x) > 0. O

We also have the following counterexample, in which two stock prices have the same
initial condition and the European call on one of them has a convex value function. Consider,
in addition to the stock pric& above, a stock pric&, starting atx € (0, a) and having
volatility 6 (t) = L<7,). The value of the European call on this stock is

H(X) = E[(Xewl/\Ta_(l/z)(l/\Ta) _ K)+:|,
and differentiation under the expectation leads the formula
7 (x) = E[ewma(1/2)(1ATa>1L[XeWNa(1/2)(1@2 K]].

Thusv is convex. Nevertheless, despite the factéh@j > o (t), we havei (x) = 0 < v(X)
forall x € (0, a).

5. CONVEXITY OF EUROPEAN CONTINGENT CLAIM VALUES

For the remainder of this paper, in addition to the true volatility proeesse shall have

a misspecified volatilityy, which we allow to be stochastic only through dependence on
the current stock price. This type of dependence prevents the anomalous behavior of the
previous section, so that comparisonsradndy lead to comparisons of contingent claim
prices and performance of hedging portfolios.

HYPOTHESIS5.1. Let y:[0, T] x (0,00) +— R be continuous and bounded above.
Assume moreover thél/as)[sy (t, s)] is continuous ift, s) and Lipschitz continuous and
bounded in s= (0, co0), uniformly inte [0, T].

In place of (2.2), we shall now consider a misspecified stock price process governed by

(5.1) dS\(H) = SO [r®) dt+ p(t, St dWD)],

where the subscript records that this price process is being generated by the misspecified
volatility y and the superscript records the initial conditior§;(0) = x, x > 0. The
interest rate (-) is still deterministic. Let a payoff functioh be given, and define the
(misspecified) value of the contingent claim to be

1 X
vy (X) = mIlzh (M), x>0

If the stock price really were governed by (5.1), the market would be complete, &ry
would be the arbitrage price of the contingent claim.
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In later sections, we consider the value of the contingent claim at times other than zero; in
this section we simplify notation by considering the value at time zero only. The following
convexity result holds at all times, even though we state and prove it only at time zero. This
result has been previously proved, using different methodology, by Bergman et al. (1996);
see Section 1 of this paper for more details.

THEOREM5.2. Under Hypothesis 5.1 and the assumption of a deterministic interest
rate r(-), the European contingent claim valug is convex.

Proof. In this proof, we suppress the subscriptUsing the theory of stochastic flows
(see, e.g., Kunita 1990, Thm. 4.7.2; Doss 1977), we may choose versi¢85Df 0 <
t < T} which, for eacht € [0, T] and eachv € 2, are diffeomorphisms ix from (0, co)
to (0, 00). The proces®*(t) = (9/9x)S*(t) has initial conditionD*(0) = 1 and satisfies

dDX(t) = D*(t) [r (t)dt+ %p (t. S(b) dW(t)] ,

wherep(t, s) 2 sy (t, s). Therefore D*(t) = M(t)¢*(t), where

. to § 1[0 § 2
¢ (t):exp|:/0 gp(u,S(u)) dW(u)—E/0 <£p(u,8(u))> dui|,

is a strictly positive martingale. Define a new probability meadkifeon (2, F) by
dP*/dP = ¢*(T). According to Girsanov’s Theorem, undef the process

t
B]
WX(t) = W(t) — / 35” (u, S(w) du
0 S

is a Brownian motion.
Letx > 0,y > 0 be given withx # y. We have

() — St t X
e +/0 i [P (4 S W)~ (u SW)] dwaw),

and sop(t) = E[(S(t) — S'(t))/M(t)]? satisfies

t

M (u)
t

20y — )2+ 2K2/ e(u)du,

0

A

2
p(t) < 2(y—x)?+2E [fo [0 (u, FW) —p (u, S‘W)] dW(u)]

IA
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whereK is a bound or(d/as)p. Gronwall’s inequality implies

(5.2) E(1) - S'1)" = M2Dp(®)
2y —x)2M20e*, 0<t<T.

IA

We are now prepared to differentiate Let h’'(x—) andh’(x+) denote the respective left
and right derivatives of the convex functibn These are defined, nondecreasing, and left-
and right-continuous, respectively. LetOXx < y be given, and consider the difference
guotient

v(y) — v(X) _ 1
y—X M(T)(y — x)

E[h($/(T)) —h(S'(M)].

Becausex < y, we must haveS*(T) < S(T) almost surely. Indeed, if = T A
inf{t > 0; S*(t) = S(t)} were strictly smaller tha, then strong uniqueness for (5.1)
would imply S*(t) = S (t) forallt € [z, T]. Consequently, the above difference quotientis
bounded above by/M (T) times the expectation bf (SY(T)+) [(S(T) — SY(T))/y — X],
and fory € (X, c0), (2.7) and (5.2) show that this is a uniformly integrable collection of
random variables. It follows that

lim supiv(y) — v

sup= o = B[N (SM#) (M)
yx

EX[h' (S(T)+)].
whereE* is the expectation correspondingib. Similarly, we have

v(y) — v(X) _—

liminf > BX [h'(S{(T)+H)].

yix y — X

We conclude that’ (x+) = E* [h/ (SX(T)+)]. An analogous argument shows thatx—)
=E*[h' (S4(T)-)].

To remove the dependence wif the expectation operators in the formulasidtix+),
we rewrite (5.1) as

dS'(t) = S‘tHrdt + p (t, (1) %p (t, S'(®) dt+ p (t, S(B)) dWX(1),
a stochastic differential equation for which uniqueness in law holds. CorSidgven by

dS*(t) = S (Or @) dt + p(t, §X(t))a%p(t, SK(t)) dt + p(t, S () dW(t),
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with initial condition S¢ (0) = x. The proces§X has the same distribution undeias the
processS* underP*. Thus we may rewrite the formulas fof(x+) as

(5.3) Vxt) =E[N ((M+)], x>0

If0 < x <y, then by the uniqueness argument used earlier to shogthiay < $/(T),
we conclude thaSX(T) < SV(T) almost surely. Becaugg(x+) is nondecreasingy (x+)
must be as well. O

From (5.3) and (2.7), we have immediately the following corollary.

COROLLARY 5.3. Under Hypothesis 5.1 and the assumption of a deterministic interest
rate, the convex European contingent claim value functipsatisfies

|v;(X:|:)| <C Vx>0.

6. EUROPEAN CONTINGENT CLAIM BOUNDS AND HEDGES

Inadditionto Hypotheses 2.1 and 5.1, inthis section we shallimpose the following condition.

HyPOTHESIS6.1. The functionsr [0, T] — R andy:[0, T] x (0, o0) + [0, o0) are
Holder continuous.

In place of (5.1), we use the notath; to denote the misspecified price process when
the initial condition isS;*(t) = x; that is,

(6.1) dS*uw=S*W[rWwdu+yu, S*W)dww], t<u<T.

The misspecified value at tinteof the contingent claim with payoff functiomis
Trwd

6.2) by (t,x) =Be (VNG XT),  0<t=T x>0

Our hypotheses guarantee thatis in C([0, T] x (0, c0)) N C12([0, T) x (0, 00)) and

(6.3) L,v,(t,X) =0, O0<t<T,x>0,

where

(6.4) L, ft,x) 2 r)f x)—if(t x)—} 2t x)xza—zf(t X)
' v ’ at 2V T e

rtxiftx
_()ax (t, x).

Furthermore(d/dx)v, is bounded (Corollary 5.3).
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We now consider a hedger who believes the stock price dynamics are given by (6.1),
when in fact the true stock price dynamics are given by (2.2) with the true volati{ity
satisfying the conditions of Hypothesis 2.1. Observing the true stock g(igethe hedger

(incorrectly) computes the contingent claim price toR&t) 2 v, (t, S(t)) and uses the

hedging portfolioA,, (t) 2 (9/9x)v,, (t, S(t)). Beginning with the initial value,, (0, S(0)),
this hedger’s self-financing portfolio value will evolve according to the formula (cf. (2.5)):

(6.5) da, (1) = r (D4, () dt + A, (O[S — 1 (©)SH) dt],

whereas b’s rule and (6.4) show that the (incorrectly) computed value of the contingent
claim is governed by

(6.6) dP,(t) = r()P, () dt+ A, (O[dSt) —r(t)S(t) di]
1 82
+5 [0 - ¥, St)] 82<t)ﬁvy<t, S(t)) dt.
The tracking erroe, (t) 2 I, (1) — P, (1) is thus given by

1

32
I [¥%(u, S(u) — o?(W)] 82<u>ﬁvy(u, S(u)) du.

1 t

©7) e =3M0 [
0

THEOREM6.2. Assume Hypotheses 2.1, 5.1, and 6.1. If

(6.8) o) < y(t, S()

for Lebesgue—almost all¢ [0, T], almost surely, theqP,, A, ) is a superstrategy, and

(6.9) Ma,(T) = h(S(T)),

(6.10) v,(0, S(0) = E[h(S(T)/M(T)].
If

(6.11) o) = y(t, Sb)

for Lebesgue—almost all € [0, T], almost surely, theriP,, A,) is a substrategy and
inequalities (6.9) and (6.10) are reversed.

Proof. It is clear from the definitions tha®, (T) = v, (T, S(T)) = h(§(T)). The
theorem follows immediately from (6.7) and the convexityp(u, -) (Theorem 5.2). In-
equalities (6.9) and (6.10) are restatements of (2.10) and (2.12). O
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REMARK 6.3. If v is not convex or if neither (6.8) nor (6.11) is almost everywhere
satisfied, (6.7) is still valid and the tracking error is a finite-variation process. Ifd@dh
andy (t) are deterministic and we replace (6.8) by the weaker integrated volatility condition

T T
/ o2 dt < / V2(t) dt,
0 0

then (6.10) holds but (6.9) can fail. This is discussed more fully in Appendix B.

7. STOCHASTIC INTEREST RATE AND CHANGE OF NUKFRAIRE

Inthis section only, we relax Hypothesis 2.1 by assuming that the interesisatstochastic
process. More precisely, in place of Hypothesis 2.1, in this section we shall assume the
following.

HyPOTHESIS7.1. The money market price M and the stock price S are defined on a
probability spacg2, F, P) and adapted to a filtratiofF (t); 0 <t < T}. Furthermoree,

(7.1) M) = eff;”“)d”,
(7.2) dS(t) = S)[rt)dt + o (t) dW(t)],

where{W(t); 0 <t < T} is a one-dimensional Brownian motion adapted f(t); 0 <
t < T}, where theinterest rate processis adapted to{ 7(t); 0 < t < T} and satisfies
fOT Ir(t)|dt < oo almost surely, and where tivelatility processs is nonnegative, adapted

to{Ft);0<t<T},and satisfie%T o?(t) dt < oo almost surely.

We define the positive martingale

E [e‘fon(“)d“ }'(t)]

Eefj:r(u)du

Zt) 2 0O<t<T.

We can useZ to change fron to an equivalent probability measu@eaccording to the
formula

@(A)é/Z(t)dIP’ VAe Ft), 0<t<T.
A

We call P theforward measureWe also define theero-coupon bond price process

B(t) = E [e‘ft rwdu |]—"(t)} , 0<t<T,
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which is related t&Z by the formula

_ B(t)
Z(t)—m, O0<t<T.

BecauseS(t)/M(t) is a martingale, we have immediately the following result.

LEMMA 7.2. Under the forward measur®, the forward stock price process

()5% 0<t<T,

is a martingale relative to the filtratiofiF (t); 0 <t < T}.

HyPOTHESIS7.3.  The bond price process B (and hence the forward stock price process
S) is continuous. Furthermore, the forward stock price pro&sssquare integrable, and
its quadratic var|at|on(S) is absolutely continuous with respect to Lebesgue measure; that
is,

t
(7.3) <§)(t)=/ i<§>(u)du, O<t<T.
o du

REMARK 7.4. If the filtration{F(t); 0 <t < T} is the augmentation@-null sets of
thefiltration generated by a one- or multidimensional Brownian motion,$igoontinuous
and equation (7.3) holds. Thisis beca@® andZ are local martingales undgr and any
local martingale relative to the filtration generated by a Brownian motion has a stochastic
integral representation with respect to that Brownian motion. From this, a representation of
S(t) = S(t)/(B(0)Z(t)M(t)) can be obtained as the sum of a Lebesgue integral and an It”
integral whose integrator is the Brownian motion generating the filtration. The continuity of
Sfollows as does the absolute continuity of the quadratic variation of theltaclrtingale
part ofS. The change t® does not affect this guadratic variation.

In addition to regarding(t) as the forward price of the stock, we can interpret it as the
price of the stock denominated in units of the zero-coupon bond. Making this change of
numéraire, we show below that we can reduce the present situation to the case of zero interest
rate. For a more detailed exposition of change of etairé, introduced in a particular case
by Merton (1973), one can consult Jamshidian (1989) and El Karoui, Geman, and Rochet
(1995).

We set

a1 /d o
o) = =) ( ) (1).

From Hypothesis 7.3, on an enlarged probability space there is a Brownian Mosoch
that

(7.4) dS(t) = S(t)a (t) dW(t)
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(see Ikdea and Watanabe 1981, Chap. Il, Thm, @riKaratzas and Shreve 1991, Chap. 3,
Thm. 4.2).

As the risk-free investment instrument, we take the zero-coupon bond denominated in
units of the zero-coupon bond. The price of this instrument is always 1, which corresponds
to an identically zero interest rate. Because this instrument is available, the probability
measuré which renderdV in (7.4) into a Brownian motion is a “risk-neutral” probability
measure under the new neraire.

Consider now a hedger who invests in the stock and the zero-coupon bond. Suppose he
(incorrectly) believes that when the stock is denominated in units of the zero-coupon bond,
its volatility at timet is y (t, S)), wherey: [0, T] x (0, c0) — [0, co) satisfies Hypotheses
5.1 and 6.1. In other words, he believes the stock price process, denominated in units of
the zero-coupon bond, is given by

(7.5) dS ) = X Wy U, §*W)dWu),  t<u<T,

with §V~X(t) = X. Observing§(t) at timet, this hedger would compute the value, de-
nominated in terms of the zero-coupon bond, of the European contingent claim to be

P, (1) 27, (t, S(t)), where
(7.6) v, (t, X) 2 ﬁh(T, §;X(T))'

Here we are using the fact thB(T) = 1, and so§(T) = S(T), the actual stock price at
time T. Believing thatS(T) = QX(T), the hedger uses the latter random variable on the

right-hand side of (7.6). The hedger hoﬁj(t) 2 (a/ax)ﬁg, §(t)) units of stock, where
each unit has valuB(t), and starting fronTl,  (0) = v, (0, $(0)) units, this generates the
self-financing portfolio value (denominated in units of zero-coupon bond) of (cf. (2.6))

t
fir, 0 =7,0.50) + [ 3,wd3w.

The tracking error i€, (t) = ﬁAV t)— I3y (t). We have the following corollary to Theorem
6.2.

THEOREM7.5. Assume Hypotheses5.1,7.1, and 7.3 and assume ihBiblder contin-
uous. We have, (T) = h(S(T)) almost surely. I&(t) < y(t, S(t)) for Lebesgue—glmost
all't € [0, T], almost surely, then the tracking error is nondecreasing: (th > v (t, S(t))
for Lebesgue—almost all¢ [0, T], almost surely, then the tracking error is nonincreasing.

REMARK 7.6. The functiorv,, of (7.6) solves the heat equation

@ 1 ) 32
vy(t X) = -y“(t, X)X2 Tz)y(t X), O0<t<T, x>0,
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obtained by setting = 0 in (6.3). Ify is a function oft alone, then
v, (t,x) =BS(T —t,x; 0, C(t)/v/T — 1),
wherel'(t) 2 (/7 y2(u) du)¥2.

8. SUFFICIENT CONDITIONS FOR REDUCTION OF AMERICAN
TO EUROPEAN CONTINGENT CLAIMS

We next turn our attention to American contingent claims. In this section, we note that for
a large class of American contingent claims, the American pricing and hedging problem
reduces to the European pricing and hedging problem. In Sections 9 and 10 we take up the
task of obtaining pricing and hedging bounds on American contingent claims that do not
reduce to European ones.

Still working under Hypothesis 2.1, we recall that tBeell envelopef {h(S(t))/M(t);
0 <t < T} is the smallest supermartingale that dominates this process, and is given by

h(S(x))

W‘}—(t)}’ 0<t<T,

esssup.zE [

where7; denotes the set of stopping timessatisfyingt < ¢ < T almost surely. In a
complete market, the arbitrage price proc@gsfor the American contingent claim with
payoff functionh is (from Bensoussan 1984; Karatzas 1988; Myneni 1992; Kramkov and
Vishnyakov 1994):

h(S(r))

Y )
(8.1) Pa(t) = M(t) - ess supeq;E[ M)

‘]—'(t)] O<t<T.
An optimal exercise time is

(8.2) D = inf{t € [0, T]: Pa(t) = h(S(t)},

and the procesPa(t A D)/M(t A D),0 <t < T}is a martingale.
Under certain conditions,

h(S(T))
M(T)

PA(I)=M(t)]E[ ‘}"(t)] O<t=<T,

and the price processes for the European and American contingent claims agree. We give
a sufficient condition for this, which includes, of course, the dg8%¢ = (x — K)* of the
call option.

THEOREM8.1. Assume Hypothesis 2.1. In a complete markettif > 0 for all
t € [0, T] and h(0) = 0O, then the European and American contingent claim price processes
coincide.
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Proof. We show thah(S)/M is a submartingale, and the Optional Sampling Theorem
applied to (8.1) yields the result. For amy> 1, x > 0, the convexity oh implies

1 -1 1
h(x) < = h@x) + Z==h(0) = = h(ax).
(07 [07 (07
Therefore, forO<u <t < T,

(8.3) h(S(w)

IA

e ful r(y)dy h (ef: r(y)dyS(U))

M) S(t)
= (e g 7))

_ M
— M—(t)h(E[S(t)I]:(U)])

M (u)
™MD E[h(Sm)IF W],

A

where the last step is Jensen’s inequality. O

REMARK 8.2. Ifhis notlinear (e.g.h(x) = (x — K)™) and the stock price has support
on all of (0, c0) (e.g., geometric Brownian motion), then the Jensen inequality in (8.3) is
strict. This implies that for alli € [0, T),

h(S(T))
M(T)

Pa(u) = M(U)E[ ‘ f(U)} > h(S(u)),

so thatD = T almost surely.

9. CONVEXITY OF AMERICAN CONTINGENT CLAIM VALUES

In addition to Hypothesis 2.1, in this section we assume Hypothesis 5.1 and the following.

HyYPOTHESIS9.1. Theinterestrater is nonnegative and the payoff function h is bounded
from below.

Because of Hypothesis 5.1, the misspecified stock price given by (5.1) is Markov, a
fact we exploit below. Because the misspecified volatility is a function only of time and
the misspecified stock price process, the market in the misspecified stock price process is
complete. Given atimee [0, T] and a stock pricex > 0, the (misspecified) value of the
American contingent claim with payofffis

9.1)  v,(t,x) = SupE [e‘ftz’mdyh(S;’X(r))] ,  0<t<T, x>0
el
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where we have used the notation of (6.1). For fige), the process

9.2) e TV gXw),  t=u<T,

is the smallest supermartingale that dominates

e WYX,  tsus<T.

This assertion is just the claim made in the second paragraph of Section 8, except there the
initial time was zero and here itts

We constructy, by an iterative process found in El Karoui (1981) and adapted to the
situation at hand. Lad: [0, T] x (0, co) — R be any function satisfying the following four
conditions.

Conditions 9.2.

(@) gisjointly Borel measurable;
(b) there exist positive constarts andC, such that

—C1 <g(t,x) <C1 +Cxx, Vx>0

(c) gislower semicontinuous from the righhat is, for everyt, x) € [0, T] x (0, c0)
and every sequendétn, x,)}22, C [0, T] x (0, oo) with t, | t andx, — X, we
have

(d) foreveryt € [0, T], the functiong(t, X) is convex inx.

For g satisfying Conditions 9.2 and far € [0, T], we define

Lo, 0 =e " YEgu, $* W),  0<t=ux>0.
We also define the operatér by

(9.3) (Kg)(t,x) = sup (Lyg)(t, x), 0<t<T,x>0.
ueft,T]

LEMMA 9.3. If g satisfies Conditions 9.2, then Kg does also.

Proof. According to the theory of stochastic flows (e.g., Doss 1977; Kunita 1990), we
may choose versions of the proceséq,s‘(u) ; t <u < T)so that for eacln andw € €,
the mapping(t, X) — S‘yvx(u) is continuous. This, combined with Fatou’s Lemma and
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properties (b) and (c) fag, shows that the mapping+— (L,Q)(t, X) is lower semicontin-
uous from the right. Therefore, without loss of generality we may restrict the supremum in
(9.3) to rational € [0, T]. This shows thaK g is Borel measurable.

From (b) and the supermartingale property et/ VExWU); t <u<T), wesee
thatL g satisfies (b), and hent¢eg does as well. The convexity oE,g)(t, -) follows from
Theorem 5.2. The supremum of convex functions is convex, which gives us the convexity
of Kg.

It remains to show thaK g is lower semicontinuous from the right. Let us fix x) €
[0, T) x (0, c0) and lett, | t, x, — x. If (Kg)(t, X) = g(t, X), then

(Ko)(t,x) = g(t, x) < liminf g(tn, Xn) < liminf(Kg)(tn, Xn)-

On the other hand, iKg(t, x) > g(t, x), then for eaclr > 0, there existsl € (t, T] such
that(Kg)(t, X) — e < (LyQ)(t, X). For large enough, we haveu € [t,, T], and so

(Lug)(t, x) < Iirminf(Lug)(tn,xn) < Iirqninf(Kg)(tn, Xn). O

We now takey(t, x) = h(x) forallt € [0, T], x € [0, c0). Because&Kg > g for anyg,
we haveK "t1h > K"h, whereK " denotes tha-fold iterate ofK. We can thus define

w2 lim K"h = supK"h.
n

n—o0

It is easily verified thatv satisfies Conditions 9.2.

THEOREM9.4. The functionw is the smallest fixed point of K dominating h. Moreover,
w is the functiorw, defined by (9.1).

Proof. We havew > K™(w) = K(K"w). Lettingn — oo, we obtainw > Kuw.
The reverse inequality is trivial.

If uis a fixed point ofK dominatingh, thenu = K"u > K"h. Lettingn — oo, we
obtainu > w. ,

Fix (t, x) and consideiX (u) = e J rOY 0, S*(u). Fort <up <up < T, we
have

E[X U Fup] = e ) g [e LT S;'*<uz>>‘ F <u1>}

= & LT )y, S uy)

IA

& LTV K w)uy, §¥(u)
X(Ul).

Thus, X is a supermartingale dominatir&jft r(y)dyh(S‘y*X(U)), and so must dominate

e Jirmdy v, (U, §:*(u)) as well. In particulanu(t, X) = X(0) > v, (t, X).
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For the reverse inequality, we observe from the supermartingale property for

e ftu”y)dyvy(u, S (u))

that (L,v,)(t, X) < v, (t, x), and henc&kv, < v,. Thereforey, is a fixed point ofK,
and being a fixed point df, v,, must dominatev. O

COROLLARY 9.5. Under Hypotheses 2.1, 5.1, and 9.1, the American contingent claim
valuev, of (9.1) is convex.

10. AMERICAN CONTINGENT CLAIM BOUNDS AND HEDGES

Now lety: [0, T] x (0, o0) — [0, co) satisfy Hypothesis 5.1. A hedger who believes the
stock price volatility is given by will price and hedge the American contingent claim as
described in Section 6, but now with

(10.1) v, (t, X) = SUpE [e_ ftrw)dyh(%’x(r))} .

teT;

If the hedger is short the contingent claim, then he does not know when it will be exercised
and must be prepared to hedge all the way to fimef the hedger is long the contingent
claim, he will exercise it at time

(10.2) D, =inf{t € [0, T]; v, (t, S(t)) = h(S(t))},

and so only needs to hedge until this time. These observations motivate the following
definition.

DerINITION 10.1. Leth be a payoff function. Aprice procesdor the American con-
tingent claim with payoff functior is any adapted proce$®(t); 0 <t < T} satisfying
Pt) > h(S(t)),0 <t < T, andP(T) = h(S(T)), almost surely. LetP be a price
process and\ a portfolio process. Thiacking errorassociated withiP, A) is defined to
be the process(t) 2 [T (t) — P(t), wherell, andP are related by the initial condition
IMA(0) = P(0). We say that(P, A) is a superstrategyfor the American option if the
discounted tracking erra(t) /M (t) is nondecreasing for& t < T. We say thatP, A)
is asubstrategyfor the American option if the discounted tracking error is nonincreasing
forO <t < D, where

D 2 T Ainfit € [0, T]; P(t) = h(S(H)}.

Under suitable regularity conditions, the functiop of (10.1) is characterized by the
variational inequality

(10.3) min{Z, v, (t, X), v, (t, X) —h(X)} =0, O0<t<T,x>0,
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v, (T, X) =h(x), x>0,

whereL, f is defined by (6.4). Moreover, [0'] x (0, co) separates into two regions:
Cy ={t,X); vy (t, X) > h(x)}, & ={t,%); vy (t,x) = h(x)}.

Under Hypothesis 5.1 op, the strict ellipticity of£, implies thatv, is C*2in C,. There
can be points of discontinuity ofh’, but in such a case, the segmentT( x {a} must lie
in C,; if it did not, Meyer’s (1976) convex function extension o’ formula applied to

t
the supermartingale_ﬂa r(“)d“v],(t, S, (1)) would produce a singularly continuous, strictly

increasing local time term, which would violate the supermartingale property for the process
(9.2). Thereforep, is alsoC! in &,. Finally, it is generally the case that is C* across

the boundary betweef), and&, , a property known as the “principle of smooth fit.” Rather
than undertake a more technical discussion of the regularity,ofie shall simply assume
what we need.

HYPOTHESIS10.2. The function, is C* on[0, T] x (0, 00), (32/3x?)v,, (t, X) is piece-
wise continuous in x for eachd [0, T], and is bounded uniformly itt, X) € [0, T] x
(0, 00), andv, satisfies (10.3) everywherg, v, is defined.

Hypothesis 10.2 permits the application af'#tfule tov,. One can show this by modi-
fying v, to obtain a smooth function, applyingl$rule to this smooth function, and then
passing to the limit.

THEOREM10.3. Assume Hypotheses 2.1, 5.1, 9.1, and 10.2. LétP= v, (t, S(t))
and A, (t) = (3/9X)v, (t, S(t)) be as in Section 6, but witty, now defined by (10.1). If

o(t) <y, S, 0<t<T,as,
then(P,, A,) is a superstrategy for the American option. If
o(t) = y(t, St), 0<t=<D,as,

then(P,, A,) is a substrategy for the American option.

Proof. From It§'s rule and (6.5), we have

de,(t) = [r(t)e, (t) + L, v, (t, S(t)] dt

1 92
+5 [V, S(t) — o?()] Sz(t)ﬁvy(t, S(t)) dt.

If y > o, then Corollary 9.5 and the inequali,v > 0 from (10.3) imply that the
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discounted tracking error

ety [ 1
M—(t) = /(; mﬁyvy(U,S(U))dU

- 2(u, S(u)) — o?(u)] () i (u, S(u)) du
+§/0 M(u)[y ’ — W] S W v 1.

is nondecreasing. ¥ < o, we use the fact that, v, (u, S(u)) = 0for0 <u < D to
show thate(t) /M (t) is nonincreasing for & t < D. O

11. EXAMPLES
11.1. Arithmetic Mean

Suppose we have a complete market with two risky assets, whose dynamics are
dS) = SO[rdt +oi dW(D)], =12,

whereW; andW, are independent Brownian motions, and where the interest eatd the

volatilitieso; > 0ando, > 0 are constant. The arithmetic me&yit) = (S ) + S(1)/2
satisfies

1
dSt) =rSt)dt+ 5[0131('0 dWi (1) + 02S(t) dVL(D)].

Defining a new Brownian motion

Wa(t) — /‘ 01S1(U) dWi (U) + 02S(u) dWa(u)
0 JotS W +o2Sw)

and setting

JolS® + o2t

t) =
‘O="s0rs50

we may rewrite this in the usual form

dS(t) = SO [rdt + o (t) dWa(1)],

but with stochastic volatility. Indeed;(t) is not even a function ofs(t).

Consider a European call &) with expiration timeT and strike pricék. The arbitrage
price of this call at time zero iBe(0) = E[e™"T (S(T) — K)*], a quantity that is difficult
to compute. However, with = 0102/,/0? + 02, andB = o1V o2, we havex < o (t) < B
forallt € [0, T], almost surely. Theorem 6.2 implies

BS(T, S(0); 1, ) = P(0) = BS(T, S(0); 1, B),
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where explicit formulas for the bounds are provided in Remark 3.1. Moreover, a hedger
who sells the option foBS (T, $(0); r, ) and uses the hedging portfolio

Ag(t) = (3/0X)BS(T —t, S(1); 1, B)

is guaranteed to have at led&(T) — K)* attimeT and to be overhedged at each time
t € [0, T). Ahedgerwho borrowBS(T, S3(0); r, «) to buy the option and uses the hedging
portfolio A, (t) = — (3/9X)BS(T —t, S(1); r, «) is guaranteed to have accumulated no
more than(S(T) — K)* in debt at timeT .

One could also produce a lower bound on the option by noting that the geometric mean

Si(t) = VS () S(1) always lies belowss, and so
E[e" (S(T) — K)*] < Pe(0).

Furthermore S, is a geometric Brownian motion, satisfying

2+ 2 1
dSi(t) = Su(t) [(r _ 4 . "2> dt+ 5,/012+022dw4(t):| :

whereW, is the Brownian motion

Wa(t) — /t o dWi(t) + o2 sz(t)'
0

[ 2 2
oy + 05

NowE[e™"T (S4(T)— K)*]is not a Black—Scholes price beca&aloes not have mean rate
of returnr underP. However, settinge = r — (62 +02)/8, we may use the Black-Scholes
formula to compute

E[e"(S(T) - K)*] = e" "TE [e*T(S(T) — K)¥]
= " ITBS(T, S(0); u, ).

Because the volatilities && andS, are noncomparable, we can make no claim concerning
investment inS; according to the hedging strategy

At) = e("‘”t;—XBS(T —t, S(t); w, @)

derived fromS,.
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11.2. Asian Options

An Asian option pays off a time-average of the stock price. We consider Asian options

which, at timeT, pay
1 (T *
<—/ S(u)du—K) ,
0 Jr-o

whereK > 0 andé € (0, T]. We takeSto be a geometric Brownian motion; that is,
dS(t) = St) [r dt 4+ o dW(t)],

where the interest rateand the volatilityoc > 0 are constant. The arbitrage price process
for an Asian option is

1 (T N
Pas(t) = E [ef”” (—/ S(u)du — K)
0 Jr-o

This quantity can be explicitly computed (Yor 1992), but is quite complicated. Geman and
Yor (1992, 1993) compute the moments of all orderglgh) thg S(u) du and obtain the
Laplace transform of the Asian option price process. Kemna and Vorst (1992) in a discrete-
time case and Bouaziz, Bryis, and Crouhy (1994) in a continuous-time case provide bounds
for the price of an Asian option, but do not consider a hedging strategy.

We apply the methodology of this paper to give a price bound and properties of the
associated hedging strategy. The key idea is to find another underlying asset whose price
attimeT is (1/6) f;_, S(u) du.

]—"(t)], O0<t<T.

LEMMA 11.1. The process ¥) = e"T-YE[(1/6) fTT_9 S(u) du| F(t)] is given by

e—r(T—t) tv(T-0)
(11.1) X)) = p)S(t) + 5 f S(u) du, 0<t<T,
T-60
where
1— e 'THV(T-0)

p(t) = 3

This process satisfies the stochastic differential equation
(11.2) dX(t) =r X)) dt+ op(t)S(t) dW(t).

Proof. Fubini's Theorem impliesX(t) = (1/9)1;9 E[S(W|F®)]du. Fort < u,
E[S(u)|F ()] = €UV S(t), whereas fot > u, E[S(u)|F(t)] = S(u). The lemma follows
by straightforward computation. O
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Rewriting (11.2) as

oS(Hp (M)

dX(t) = X(t) [r dt + X

dwm} ,

we identify the volatility ofX as p S(t) p(t)]/ X (1), a positive quantity that is dominated by
o because of (11.1). Theorem 6.2 (witlit) = o S(t) p(t)/ X(t) andy (t, X) = o) implies

Pas(0) = E[e T V(X(T) — K)*] < BS(T, X(0); 1, 0).

We thus obtain the continuous-time analogue of the discrete-time result of Kemna and
Vorst (1992) that the price of an Asian option is dominated by a Black—Scholes price.
The continuous-time result was also obtained by Geman and Yor (1993), who established
the necessity of an assumption on the risk-neutral drift for the property to be true. Note,
however, thaX (0) = p(0)S(0) = (1/r0)(1 — e "?)S(0).

Theorem 6.2 also leads to a hedging strategy, as we now explain.

THEOREM11.2. For the Asian option, the pair of processes

P*(t) = BS(T —t, X(1); r,o0),
A*(t) = p(t)%BS(T -1, X(t); r,0)
is a superstrategy. (HeBS(, -; -, -) is as in Remark 3.1.)

Proof. We observe first that

T

+
P*(T) = (X(T) - K)* = (%/ S(u) du — K) ,
T

—0

which is the modification of (2.8) appropriate for an Asian option. We next appeal to
Theorem 6.2, applied to the “stock pric&X, whose volatility is bounded by. This
corollary shows that if we hold

a
Ay (1) = a—XBS(T —t, X(t); r,o0)

“shares” of X at each timet, then we have nondecreasing discounted tracking error
e "tef(t) = e " [IT*(t) — P*(t)] associated with the self-financing portfolio value given
by I1*(0) = P*(0) and

(11.3) dIT*(t) = [TT*(t) — A, ()X D)]r (t) dt + A, (t) dX(1).
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In integral form, (11.3) is

(1)

t
M) [P*m) + /O ﬁmw)p(u)a sw) dW<u)}

t
M (t) |:P*(0) —i—/ iA*(U)U S(u) dW(U)i| ,
o M(u)

which is the self-financing value of the portfolio that hol§$(u) shares of the real stock
Sat each timeu. O

APPENDIX A: UNBOUNDEDNESS OF LOCAL TIME

The purpose of this appendix is to show that foxOx < a, the local timeL (Ty; X) is
unbounded on the s€T, < 1}, a fact used in the proof of Theorem 4.1.

PROPOSITIONA.1. Let W be a Brownian motion with W) = O, let b > 0 be given,
and set § = inf{t > 0; W(t) = b}. Let L(t) denote the local time of W & Then, for
eachr> OandA > 0, we have

Al P(T, <7,L(Tp) = 1) > 0.

Proof. The Laplace transform of the distribution 6F,, L(Ty)) is (see Karatzas and
Shreve 1991, Chap. 6, Prob. 4.4):

V2o

Eexp(—aTy — yL(To)) =
P =y L o) = e inh(bv/2a) + v/2a coshbv/2a)

fora > 0,y > 0, which implies that

Eexp(—y L(Tp)) = y >0,

1
1+by’
so that the density df (Ty) is

1 —¢/b
P(L(Tp) € df) = pe 2>0.

Let P(T, € dt|L(Tp) = £) be a regular conditional distribution, and define

g(a, £) = / e “P(T, e dt|L(Tp) = £)dt, o > 0.
0
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Letp > 1/bbe given, and set = p — 1/b. Then

/ e "tg(a, £)de
0

= b/oo /Oo e U YIP(T, e dt|L(Ty) = OP(L(Tp) € db)
0 0
= bEEXR—O{Tb — ]/L(Tb))
bv/2a
(p — £ + +/20) sinh(by/2a) + v/20 costiby/2r)

This Laplace transform formula implies

b/ 20 1
9o, £) = prscy s exp(— [«/Z -5t @coth(b@)} e) .

Lett > Oandir > 0 be given. To prove (A.1), it suffices to show ti&l, < t|L(Ty) =
¢) > 0forall¢ € [A, A 4+ 1]. But, fora > 0,

P(Ty < 7|L(Ty) = £) = fIIP(Tb e dtL(Ty) = £)
0

v

9o, £) — /Oo e *'P(Ty € dt|L(Tp) = )
9(e, £) — e “"P(Tp = 7|L(Tp) = ),

v

which implies
(1—e“)P(Tp < 7| L(Tp) =€) > g(a, £) — €.

For « sufficiently large, the right-hand side is positive for@&k [A, A + 1]. O

COROLLARY A.2. Let W be a Brownian motion with W) = 0, let a > 0 be given,
and set T = inf{t > 0; W(t) = a}. Fix x € (0, a) and let L(t; x) denote the local time of
W at x. Then, for each > 0, we have

P(Ta =1, L(Ta; X) = 4) > 0.
Proof. According to the strong Markov property, the process
WX(t) =W(t+T)—x, t>0,

is a Brownian motion independent &f = inf{t > 0, W(t) = x}. Setb = a — x and
T = inf{t > 0, WX(t) = b}, so thatT, = T, + TJ. The local timeL*(t) of W* at zero
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up to timet is the local timeL (T + t; X) of W atx up to timeT, + t. For eachh > 0, we
have

PMa<1LLTi;x)=2) >

v
T

Tx

IA

APPENDIX B: DOMINATION OF THE INTEGRAL OF VOLATILITY
MAY NOT PERMIT HEDGING

We assume in this appendix that the volatility procest) is a nonnegative, square-
integrable, deterministic function of and we define

T 1/2
z(t)é(/ az(u)du) ., 0<t<T.
t

To avoid trivialities, we assume thal(t) is strictly positive for allt € [0, T]. We lety (1)
be another nonnegative, square-integrable, deterministic functigranél define

T 1/2
r(t)é</ yz(u)du> , 0<t<T.
t

In this appendix, we study the misspecified price and hedging strategy for a European
contingent claim under the assumption

(B.1) X(t) < T(t), O0<t<T.

(For example, we might have(t) = /T —t andy(t) = +/t.) As we shall see, this
assumption ensures that, x) < v, (t,x) forall0 <t < T, x > 0 (see below or (6.2) for
definitions), but it does not guarantee that the hedging portfolio associated,witbtects
a short position in the claim. It particular, the expected tracking error under the risk-neutral
probability measure is nonnegative (see (B.6)), but the expected tracking error under the
market probability measure can be negative (see Remark B.4). This latter fact shows that the
actual tracking error can be negative with positive probability, and hence the short position
is not hedged.

In order to simplify notation, we assume throughout that 0. The case of (t) being
a deterministic function follows easily. We adopt the notation

.
(B.2) L, T)= eXpU y () dW(u) — %Fz(t)} .
t
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so that (see (6.1), (6.2), (3.2))

S*T) = xL,(t, T,
(B.3) v, (t.X) 2 Eh(xL,(t, T))
= BS(T —t,x;0,T(t)/~/T — ),
d
(B.4) — v, (t,x) = E[L,t T)N(L, T))].

X
Wheny in (B.2)—(B.4) is replaced by, we drop the subscript, writing simply(t, T)

andu(t, x) rather tharl_, (t, T) andv, (t, X). Under condition (B.1), we have immediately
from (3.5) that

v(t, S(t) < v, (t, S)), O0<t<T, as.

The tracking error associated with the portfolio proca&sst) E (9/ax)v, (t, S(t)) and the
price proces®, (1) 2 v, (t, S()) is

(B.5) e =Ta®—P(), 0<t<T,

and becausél,, (1) is a martingale, we have

(B.6) Ee, (T) = M4, (0) — Eh(S(T))
= v,(0, S(0)) — v(0, S(0))
> 0.

The result (B.6) is unsatisfying because the expection is computed under the risk-neutral
probability measure rather than the market probability measure. To study the expectation
under the market measure, we assume (see Remark 2.2y that Wy(t) + fot A(u) du,
where the market price of riskis a square-integrable deterministic function afiglis a
Brownian motion under the market probability measBgeelated taP by (2.4). We may
write

dS(t) = S(t)[o (DHA) dt + o (t) dWo(D)].
We define

t

At) 2 exp</ o(u)k(u)du),
0

A T 1
Lo(t, T) = exp[/ o (u) dWo(u) — EE(t,T)},

t

A T 1
Lo, (t,T) = exp[/ y (u) dWo(u) — EF(LT)]
t
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and fort € [0, T], we set

.y A ) o), O<t<r,
ﬂ(t’r)_{y(t), T<t<T,
T 1/2
B(t;r)é(f ﬂz(u;r)du> ., 0<t<T.
t

UnderlPy, the processdsy(t, T) andLg, (t, T) have the same distributions as the respective
processes (t, T) andL, (t, T) underP. Also,

(B.7) S(t) = S(O)A(t)Lo(0, 1),
(B.8) dS(t) = S0)A(t)dLo(0,t) + S(0)Lo(0, t) d A(t).
Let Eg denote the expectation undgy.

ProPOSITIONB.1. Irrespective of whether the condition (B.1) holds, the expectation of
the tracking error under the market measure is given by

(B.9) Eoe, (T) = v,(0, S(0)) — v(0, S(0))

;
+ 5(0)/ [;—XBS(T, S(0)A(7); 0, B(O; 7)/v/T)
0

—%BS(T, S(0)A(1); 0, 2(0)/«/?)} dA®7).

Proof. From (2.6), (B.7), (B.8), th&®y-martingale property fok (0, t), and (B.4), we
have

Eolla, (T)

T

M4 (0) + Eo f A, (1) dSt)

0

T
0
= v,(0, §(0)) +Eo/0 S(0)Lo(0, D v (T S(0)A(r)Lo(0, 7)) d A(z)

T

= v, (0, S(0)) + E/ S(O)L (0, t)%vy(t, S(0)A(T)L (0, 7)) d A(T)
0

= v,(0, S(0))

;
+E/ SO)L(0, E[ L, (z, TN (SO A()L(O, 7)L, (z, T))| F(r)] dA®x)
0

-
= v,(0, S0)) + E/O SO)L g1y (0, TN (S(0) A(T) L g(..r)(0, T)) d A(x)
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T 9
v, (0, S(0)) + / S(O) L AG (0, S(0)A(1)) d A(7)

v, (0, S(0) + S(O)f 5 BS(T. SO)A(x): 0. BO: ) /NT)dAT).
0

On the other hand, using the integration formula

]
h(yAT)) = h(y) + /0 yH (y A1) dA®D),

we have

EoP, (T) = Eoh(S(0)A(T)Lo(0, T))

.
Eoh(S(0)Lo(0, T)) + Eo/o S(0)Lo(0, TN (S(0)A(t)Lo(0, T)) d At)

T
Eh(S(O)L(0, T)) + IE/ S(O)L (0, THh'(S(0)A(t)L (0, T)) d A(t)
0

)
0
2(0, S(0)) + SO) /O L u(0, SO A®) dAD

.
v(0, S(0)) + S(0) / %BS(T, S(0)A(t); 0, =(0)//T) d A(t).
0

The proposition now follows from (B.5). O

REMARK B.2. The risk premium. influences the expected tracking eriye, (T) in
two ways. First, the risk premium is implicit i8(0), the market price of the stock, although
this dependence is not modeled here. Secondly, the risk premium appears explicitly in the
integratorA(-) of (B.9). Note that the integrand in (B.9) involvég-) as well as the true
and misspecified volatilities, with a switch from one to the other.

CoROLLARY 13.3. Consider the case of a European call; that igxh = (x — K)™,
for some K> 0. Assume that (B.1) hold¥,(0) = I"(0), and the market price of risk is
nonnegative. If

(B.10) B2(0; ) < 2Iog& + 2/ o(WA(u)du, O0<t<T,

thenEge, (T) > 0. However, if

(B.11) »2(0) > 2Iog$ + 2/ o(WA(u)du,

thenEqe, (T) < 0.
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Proof. Inequality (B.1) implies
SO/VT <BO;)/v/T, 0<t<T.

Under (B.10), we have in addition that

B(O; 7)/VT < ,/%Iog%, 0<r<T,

and Remark 3.1 shows that
(B.12) ;—XBS(T, S(0)A(r); 0, B(O; t)/ﬁ) > %BS(T, S(0)A(z); O, E(O)/ﬁ).
BecauseA(-) is nondecreasing, we conclude from Proposition B.1 that
Eoe, (T) = v, (0, S(0)) — v(0, S(0)) = 0.
Under (B.11), inequality (B.12) is reversed, and we obtain
Eoe, (T) < v, (0, S(0)) — v(0, S(0)) = 0. O

REMARK B.4. Condition (B.10) holds if the call is initially deep in the money, whereas
(B.11) holds if the call is deep out of the money. In the latter case, the strict inequality
Eoe, (T) < 0 can easily hold, despite (B.1).
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