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Consider an option on a stock whose volatility is unknown and stochastic. An agent assumes this
volatility to be a specific function of time and the stock price, knowing that this assumption may
result in a misspecification of the volatility. However, if the misspecified volatility dominates the true
volatility, then the misspecified price of the option dominates its true price. Moreover, the option
hedging strategy computed under the assumption of the misspecified volatility provides an almost sure
one-sided hedge for the option under the true volatility. Analogous results hold if the true volatility
dominates the misspecified volatility. These comparisons can fail, however, if the misspecified volatility
is not assumed to be a function of time and the stock price. The positive results, which apply to both
European and American options, are used to obtain a bound and hedge for Asian options.
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1. INTRODUCTION

Since the development of the Black–Scholes option pricing formula (Black and Scholes
1973), practitioners have used it extensively, even to evaluate options whose underlying
asset (hereafter called the “stock”) is known to not satisfy the Black–Scholes hypothesis
of a deterministic volatility. In this paper, we provide conditions under which the Black–
Scholes formula is robust with respect to a misspecification of volatility. We extend the
well-known property of the option price being an increasing function of a deterministic
volatility to a comparison of the price of contingent claims associated with two different
stochastic volatilities. Our principal assumptions are that the contingent claims have convex
payoffs and the only source of randomness in the misspecified volatility is a dependence
on the current price of the stock. Under these assumptions, if the misspecified volatility
dominates (respectively, is dominated by) the true volatility, then the contingent claim price
corresponding to the misspecified volatility dominates (respectively, is dominated by) the
true contingent claim price. A counterexample, based on ideas by M. Yor and reported in
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Section 4, shows that in the absence of our assumptions, option prices may fail to compare
in any reasonable way.

The key to the results reported here is that for both European and American contingent
claims with convex payoffs, if the interest rate process is deterministic and the stock volatility
depends only on time and the current price of the stock, then the price of the contingent
claim is a convex function of the price of the stock. This result was previously obtained
by Bergman, Grundy, and Wiener (1996), who reported the European version of it in a
detailed study of the properties of European contingent claims. The proof in Bergman et
al. proceeds through an analysis of the parabolic partial differential equation satisfied by
the contingent claim price. We obtain the result using the theory of stochastic flows and
the Girsanov Theorem. Hobson (1996) has subsequently simplified these arguments, using
stochastic coupling.

Avellaneda, Levy, and Paras (1995); Avellaneda and Paras (1996); and Avellaneda and
Lewicki (1996) obtained pricing and hedging bounds in markets with bounds on uncertain
volatility. Carr (1993) derived formulas for “the Greeks” associated with an option in a
constant-coefficient market by differentiating the Black–Scholes equation. Martini (1995)
has applied semigroup methods to the problem of misspecified volatility.

The present paper examines the performance of a hedging portfolio derived from mis-
specified volatility, and in this respect it is an extension of El Karoui and Jeanblanc-Picqu´e
(1990). We find that, under our assumptions, if the misspecified volatility dominates (respec-
tively, is dominated by) the true volatility, then the self-financing value of the misspecified
hedging portfolio exceeds (respectively, is exceeded by) the payoff of the contingent claim
at expiration. We obtain this result also for American contingent claims.

When the volatility of the underlying stock is allowed to be random in a path-dependent
way, the price of a European call can fail to be convex in the stock price. We provide an
example of this in which the stock price is continuous and driven by a single Brownian
motion, and the volatility depends on the initial stock price and on the driving Brownian
motion. Moreover, the volatility increases with increasing initial stock price. Nonetheless,
the price of the call is neither increasing nor convex in the initial stock price.

Bergman et al. (1996) provide a similar example, but with volatility decreasing with
increasing initial stock price. They also show that dependence of the volatility on a second
Brownian motion or jumps in the stock price can lead to nonincreasing, nonconvex European
call prices.

In a discrete-time, finite-state model, Levy and Levy (1988) established option pricing
and hedging bounds similar to ours. In their paper, the robustness is with respect to the range
of values attained by the stock. Lyons (1995) has considered nonconvex options in a model
with uncertain volatility. Lo (1987) has provided an upper bound for the option prices over
all possible distributions of the terminal stock price with fixed mean and variance. Hull
and White (1987) obtained an explicit formula for the price of an option on a stock whose
volatility is stochastic and independent of the Brownian motion driving the stock price.
Neither Lo nor Hull and White consider hedging portfolios.

This paper is organized as follows. Section 2 provides the basic model and definitions.
In order to introduce some notation, Section 3 reviews the constant-coefficient Black and
Scholes result. Section 4 shows that option prices can behave badly when the stock has
stochastic, path-dependent volatility. Under the assumption that the interest rate is deter-
ministic and the misspecified stock price process is Markov, the key to the positive results
is the convexity of the contingent claim price as a function of the misspecified stock price.
This result is proved in Section 5 using the theory of stochastic flows. Section 6 then
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proves a main result, the comparison of European contingent claim prices and performance
of hedging portfolios under a misspecification of the stochastic volatility of the stock. In
Section 7 we use a change of num´eraire to extend these results to cover the case of ran-
dom interest rate. We take up the study of American contingent claims in Section 8, first
providing conditions under which these reduce to European contingent claims. Section
9 establishes the convexity of the price of American contingent claims, and Section 10
presents the comparison of American contingent claims prices and performance of hedging
portfolios. Section 11 concludes with two examples in which our bounds provide useful
information. In one case, we provide upper and lower bounds on a European call on the
arithmetic average of two independent stock price processes. In the other case, we obtain
an upper bound on the price of an Asian option. In both cases, the hedging portfolios
associated with the bounds are shown to perform as expected.

2. BASIC ASSUMPTIONS AND DEFINITIONS

We consider a continuous-time economy with a positive finite horizonT . Two assets are
traded continuously in a frictionless market. We denote byM(t) the price at timet of the
money market, and byS(t) the price at timet of the stock. We assume there do not exist
arbitrage opportunities, and we adopt the strong version of this assumption, namely the
existence of a martingale (“risk-neutral”) probability measure. More precisely, we make
the following assumption.

HYPOTHESIS2.1. The money market price M and the stock price S are defined on a
probability space(Ä,F ,P) and adapted to a filtration{F(t); 0≤ t ≤ T}. Furthermore,

M(t) = e
∫ t

0
r (u) du

,(2.1)

dS(t) = S(t)[r (t) dt + σ(t) dW(t)],(2.2)

where{W(t); 0 ≤ t ≤ T} is a one-dimensional Brownian motion adapted to{F(t); 0 ≤
t ≤ T}, where theinterest rate processr is deterministic and satisfies

∫ T
0 |r (t)| dt < ∞,

and where thevolatility processσ is nonnegative, adapted to{F(t); 0 ≤ t ≤ T}, and
satisfies

∫ T
0 σ

2(t) dt <∞ almost surely. Finally, we assume that the local martingale

S(t)

M(t)
= S(0) exp

{∫ t

0
σ(u) dW(u)− 1

2

∫ t

0
σ 2(u) du

}
, 0≤ t ≤ T,(2.3)

is in fact a square-integrable martingale, i.e., S/M is a martingale and

E
S2(t)

M2(t)
<∞, 0≤ t ≤ T.

We do not assume that the market is complete. In particular, the filtration{F(t); 0≤ t ≤
T} may be strictly larger than the filtration generated by the Brownian motion{W(t); 0 ≤
t ≤ T}. In Section 7, we relax Hypothesis 2.1 by allowing the interest rate to be stochastic.



96 N. EL KAROUI, M. JEANBLANC-PICQUÉ, AND S. E. SHREVE

REMARK 2.2. It is often the case thatW(t) = W0(t)+
∫ t

0 λ(u) du, whereλ is themarket
price of riskfor the stock price process andW0 is a one-dimensional Brownian motion on
(Ä,F) under the probability measureP0 related toP by the formula

dP
dP0
= exp

{
−
∫ T

0
λ(t) dW0(t)− 1

2

∫ T

0
λ2(t) dt

}
.(2.4)

In this setup, equation (2.2) can be rewritten as

dS(t) = S(t)[(r (t)+ σ(t)λ(t)) dt + σ(t) dW0(t)],

so that underP0 the mean rate of return on the stock is not necessarily equal to the interest
rate.

DEFINITION 2.3. A portfolio process{1(t), 0 ≤ t ≤ T} is a bounded adapted process.
Given a (nonrandom) initial portfolio value51(0), theself-financing valueof a portfolio
process1 is the solution of the linear stochastic differential equation

d51(t) = r (t) [51(t)−1(t)S(t)] dt +1(t) dS(t),(2.5)

which is

51(t) = M(t)

[
51(0)+

∫ t

0
1(u) d

(
S(u)

M(u)

)]
.(2.6)

REMARK 2.4. BecauseS(t)/M(t) is assumed to be a square-integrable martingale and
1 is bounded, the discounted portfolio value51(t)/M(t) is also a square-integrable mar-
tingale.

DEFINITION 2.5. Apayoff functionis a convex functionh, defined on(0,∞) and having
bounded one-sided derivatives, that is,

|h′(x±)| ≤ C ∀x > 0(2.7)

for a positive constantC. A (non–path-dependent)European contingent claimis a contract
that paysh(S(T)) at timeT . (For example, a European call is characterized byh(x) =
(x− K )+ and a European put byh(x) = (K − x)+, whereK > 0 is the exercise price.) A
price processfor a European contingent claim is any adapted process{P(t); 0 ≤ t ≤ T}
satisfying

P(T) = h(S(T)) a.s.(2.8)

Because the market under consideration is not necessarily complete, the arbitrage price
of a European contingent claim is not necessarily defined. Furthermore, we shall often
be working with a misspecified stock volatility, in which case the arbitrage price, even if
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it is defined, is likewise misspecified. For these reasons, we have adopted the very weak
definition of a price process in Definition 2.5. Of course, if the market is complete, the
arbitrage priceof the European contingent claim is given by

PE(t)
1= M(t)E

[
h(S(T))

M(T)

∣∣∣∣F(t)] , 0≤ t ≤ T.(2.9)

DEFINITION 2.6. Leth be a payoff function for a European contingent claim. LetP
be a price process for this contingent claim and let1 be a portfolio process. Thetracking

error1 associated with(P,1) is defined to be the processe(t)
1= 51(t)− P(t), where51

andP are related by the initial condition51(0) = P(0). If the discounted tracking error
e(t)/M(t) is:

(i) identically equal to zero, then(P,1) is said to be areplicating strategy;
(ii) nondecreasing, then(P,1) is said to be asuperstrategy;

(iii) nonincreasing, then(P,1) is said to be asubstrategy.

A hedger who incorrectly estimates the volatility of the stock underlying a European
contingent claim will incorrectly compute the contingent claim price and hedging portfolio.
Let (P,1) be the result of such a computation. Suppose the hedger begins with a portfolio
whose initial value is51(0) = P(0) and uses the portfolio process1. At expiration,
the hedger will have a portfolio valued at51(T). If (P,1) is a superstrategy, then the
discounted tracking errore/M is nondecreasing, and becausee(0) = 0, we have

51(T) = P(T)+ e(T) ≥ h(S(T)).(2.10)

In other words, the hedger has successfully hedged a short position in the contingent claim.
Moreover, because51(t)/M(t) is a martingale,P(t)/M(t) is a supermartingale and con-
sequently satisfies

P(t)

M(t)
≥ E

[
h(S(T))

M(T)

∣∣∣∣F(t)] , 0≤ t ≤ T.(2.11)

In particular,

P(0) ≥ E[h(S(T))/M(T)].(2.12)

A substrategy (actually, the negative of the portfolio process of a substrategy) hedges a long
position, and inequalities (2.11) and (2.12) are reversed. A replicating strategy hedges a
short position, its negative hedges a long position, and inequalities (2.11) and (2.12) become
equalities. If the market is complete, then there exists a unique replicating strategy for the
European contingent claim; the price process for this strategy is given by (2.9).

1The cost process introduced by F¨ollmer and Schweizer (1991) is the opposite of the tracking error.
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3. CLASSICAL BLACK–SCHOLES

In this section, we set the stage by briefly reviewing properties of the classical Black–
Scholes model. Leth be a payoff function, and assume thatr ∈ R andσ > 0 are constant.
For t ∈ [0, T ], we have

S(T) = S(t) exp

[
σ(W(T)−W(t))+

(
r − 1

2
σ 2

)
(T − t)

]
.

Because(W(T) − W(t))/
√

T − t is a standard normal random variable independent of
F(t), the arbitrage price process (2.9) for the option with payoff functionh is

PE(t) = BS(T − t, S(t); r, σ ),(3.1)

where

BS(τ, x; r, σ ) = e−r τ E
[
h

(
x exp

(
σ
√
τX +

(
r − 1

2
σ 2

)
τ

))]
(3.2)

= e−r τ
∫ ∞
−∞

h(xey)8′
(

y;
(

r − 1

2
σ 2

)
τ, σ
√
τ

)
dy

= e−r τ
∫ ∞

0
h(z)8′

(
logz; logx +

(
r − 1

2
σ 2

)
τ, σ
√
τ

)
dz

z
,

X is a standard normal random variable, and8′(y;µ, ρ) is the normal density with mean
µ and standard deviationρ, the derivative with respect toy of the cumulative normal
distribution8(y;µ, ρ) with the same mean and standard deviation.

By differentiation of the second improper integral in (3.2), one can verify that
BS(·, ·; r, σ ) is in C1,2((0,∞)2) and forτ > 0, x > 0, we have

∂

∂τ
BS(τ, x; r, σ ) = 1

2
σ 2x2 ∂

2

∂x2
BS(τ, x; r, σ )+ r x

∂

∂x
BS(τ, x; r, σ )(3.3)

−rBS(τ, x; r, σ ),
x2 ∂

2

∂x2
BS(τ, x; r, σ ) = 1

στ

∂

∂σ
BS(τ, x; r, σ ).(3.4)

It is clear thatBS(0, x; r, σ ) = h(x) for all x > 0. Differentiation of the first improper
integral in (3.2) shows that

∂

∂x
BS(τ, x; r, σ ) = e−r τ

∫ ∞
−∞

h′(xey) ey8′
(

y;
(

r − 1

2
σ 2

)
τ, σ
√
τ

)
dy,

whereh′ is defined almost everywhere and is bounded and nondecreasing becauseh is
convex and satisfies (2.7). Therefore,(∂/∂x)BS(τ, x; r, σ ) is bounded and nondecreasing



ROBUSTNESS OF THE BLACK AND SCHOLES FORMULA 99

in x, and, in particular,

∂2

∂x2
BS(τ, x; r, σ ) ≥ 0, τ > 0, x > 0.

From (3.4), we then have

∂

∂σ
BS(τ, x; r, σ ) ≥ 0.(3.5)

Applying Itô’s formula to (3.1) and using (3.3), it is easy to verify that with

1(t) = ∂

∂x
BS(T − t, S(t); r, σ ),

the pair(PE,1) is a replicating strategy. The process1 is bounded.

REMARK 3.1. In the special caseh(x) = (x− K )+ of the European call, (3.2) becomes
the well-known Black–Scholes formula,

BS(τ, x; r, σ )=x8(d+(τ, x; r, σ ); 0, σ√τ)−Ke−r τ8(d−(τ, x; r, σ ); 0, σ√τ),

where d±(τ, x; r, σ ) = log(x/K ) + r τ ± 1
2σ

2τ . Furthermore, ∂
∂xBS(τ, x; r, σ ) =

8(d+(τ, x; r, σ ); 0, σ√τ) and the mappingσ 7→ (∂/∂x)BS(τ, x; r, σ ) is strictly in-

creasing on [0, σ0] and strictly decreasing on [σ0,∞), whereσ0
1=
√

2
τ
(log(x/K )+ r τ).

4. A STOCHASTIC VOLATILITY COUNTEREXAMPLE

The remainder of this paper concerns models with stochastic volatility. We obtain positive
results when the misspecified volatility is random only through dependence on the current
stock price. In this section, we consider more general stochastic volatility. We assume that
the market is complete, so that the arbitrage price is defined by (2.9), and we show that
when volatility is stochastic in a path-dependent manner, the value of a European call can
decrease with increasing volatility, and can even decrease with increasing stock price. The
example provided below, which exhibits these counterintuitive behaviors, is derived from
ideas of M. Yor.

We setr = 0. Leta > 0 be fixed, defineTa = inf{t ≥ 0;W(t) = a}, and set

σ(t) = 11{W(t)<S(0)}11{t≤Ta}.

Note thatσ is a nondecreasing function of the initial stock priceS(0). SetK = aea. The
value at time zero of a European call with strike priceK and expiration time 1 is

v(x) = E (Sx(1)− K
)+
,(4.1)
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whereSx(0) = x anddSx(t) = σ(t)Sx(t) dW(t). Here we use the notationv(x) rather
thanPE(0) of (2.9) in order to explicitly indicate the dependence on the initial stock pricex.

THEOREM4.1. The European call valuev of (4.1) satisfieslimx↓0 v(x) = 0, v(a) = 0,
andv(x) > 0 for all x ∈ (0,a).

According to Theorem 4.1, if we take an initial stock pricex ∈ (0,a), then not only does
Sa(0) strictly exceedSx(0), but also the volatility associated with the stock price process
Sa(·) is at least as great as the volatility associated with the stock price processSx(·), at
all times, almost surely. Nonetheless,v(x) > v(a); that is, the European call on the stock
with initial price x is strictly more valuable at the initial time than the European call on the
stock with initial pricea.

It is important to note that the option under consideration in Theorem 4.1 is a standard
European call, not a barrier option. The volatility is zero whenever the driving Brownian
motion exceeds the initial stock price or has reached the levela, but the stock price itself can
exceed these quantities without the volatility vanishing. Moreover, one could create a similar
example in which the volatility never vanishes by using as volatility 11{W(t)<S(0)}11{t≤Ta} + ε.
For sufficiently small positiveε, it will still be possible to find 0< x < a such that
v(x) > v(a).

Proof of Theorem 4.1. According to Tanaka’s formula (Karatzas and Shreve 1991,
Prop. 6.8 and Thm. 6.22, Chap. 3), forx > 0 we have

− (W(1∧ Ta)− x)−

= −x +
∫ 1∧Ta

0
11{W(u)<x}(W(u)) dW(u)− L (1∧ Ta; x) ,

whereL(t; x) denotes the local time ofW atx up to timet . Therefore, the stock price with
initial conditionx is given by

Sx(1) = x exp

[∫ 1

0
σ(u) dW(u)− 1

2

∫ 1

0
σ 2(u) du

]
= x exp

[
L (1∧ Ta; x)+ x − (W(1∧ Ta)− x)− − 1

2

∫ 1

0
σ 2(u) du

]
≤ x exp[L (1∧ Ta; x)+ x] .

In particular,Sa(1) ≤ aea = K almost surely, sov(a) = 0. Furthermore,v(x) ≤ ESx(1) =
x, which shows that limx↓0 v(x) = 0.

Now fix x ∈ (0,a). On the set{Ta ≤ 1}, we have

Sx(1) ≥ x exp

[
L(Ta; x)+ x − 1

2

]
.

But L(Ta; x) is unbounded above on the set{Ta ≤ 1}, because a Brownian motion can
spend substantial Lebesgue time in an arbitrarily small band aboutx and still reacha prior
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to time 1. (A rigorous proof of the unboundedness ofL(Ta; x) on {Ta ≤ 1} is provided in
Appendix A.) We have thenP(Sx(1) > K ) > 0, which impliesv(x) > 0.

We also have the following counterexample, in which two stock prices have the same
initial condition and the European call on one of them has a convex value function. Consider,
in addition to the stock priceSx above, a stock pricẽSx, starting atx ∈ (0,a) and having
volatility σ̃ (t) = 11{t≤Ta}. The value of the European call on this stock is

ṽ(x) = E

[
(xeW1∧Ta−(1/2)(1∧Ta) − K )+

]
,

and differentiation under the expectation leads the formula

ṽ′(x) = E
[
eW1∧Ta−(1/2)(1∧Ta)11{xeW1∧Ta−(1/2)(1∧Ta)≥K }

]
.

Thusṽ is convex. Nevertheless, despite the fact thatσ̃ (t) ≥ σ(t), we havẽv(x) = 0< v(x)
for all x ∈ (0,a).

5. CONVEXITY OF EUROPEAN CONTINGENT CLAIM VALUES

For the remainder of this paper, in addition to the true volatility processσ , we shall have
a misspecified volatilityγ , which we allow to be stochastic only through dependence on
the current stock price. This type of dependence prevents the anomalous behavior of the
previous section, so that comparisons ofσ andγ lead to comparisons of contingent claim
prices and performance of hedging portfolios.

HYPOTHESIS5.1. Let γ : [0, T ] × (0,∞) 7→ R be continuous and bounded above.
Assume moreover that(∂/∂s)[sγ (t, s)] is continuous in(t, s) and Lipschitz continuous and
bounded in s∈ (0,∞), uniformly in t∈ [0, T ].

In place of (2.2), we shall now consider a misspecified stock price process governed by

dSx
γ (t) = Sx

γ (t)
[
r (t) dt + γ (t, Sx

γ (t)) dW(t)
]
,(5.1)

where the subscriptγ records that this price process is being generated by the misspecified
volatility γ and the superscriptx records the initial conditionSx

γ (0) = x, x > 0. The
interest rater (·) is still deterministic. Let a payoff functionh be given, and define the
(misspecified) value of the contingent claim to be

vγ (x) = 1

M(T)
Eh

(
Sx
γ (T)

)
, x > 0.

If the stock price really were governed by (5.1), the market would be complete andvγ (x)
would be the arbitrage price of the contingent claim.
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In later sections, we consider the value of the contingent claim at times other than zero; in
this section we simplify notation by considering the value at time zero only. The following
convexity result holds at all times, even though we state and prove it only at time zero. This
result has been previously proved, using different methodology, by Bergman et al. (1996);
see Section 1 of this paper for more details.

THEOREM5.2. Under Hypothesis 5.1 and the assumption of a deterministic interest
rate r(·), the European contingent claim valuevγ is convex.

Proof. In this proof, we suppress the subscriptγ . Using the theory of stochastic flows
(see, e.g., Kunita 1990, Thm. 4.7.2; Doss 1977), we may choose versions of{Sx(t); 0 ≤
t ≤ T} which, for eacht ∈ [0, T ] and eachω ∈ Ä, are diffeomorphisms inx from (0,∞)
to (0,∞). The processDx(t) = (∂/∂x)Sx(t) has initial conditionDx(0) = 1 and satisfies

d Dx(t) = Dx(t)

[
r (t) dt + ∂

∂s
ρ
(
t, Sx(t)

)
dW(t)

]
,

whereρ(t, s)
1= sγ (t, s). Therefore,Dx(t) = M(t)ζ x(t), where

ζ x(t) = exp

[∫ t

0

∂

∂s
ρ
(
u, Sx(u)

)
dW(u)− 1

2

∫ t

0

(
∂

∂s
ρ
(
u, Sx(u)

))2

du

]
,

is a strictly positive martingale. Define a new probability measurePx on (Ä,F) by

dPx/dP 1= ζ x(T). According to Girsanov’s Theorem, underPx the process

Wx(t) = W(t)−
∫ t

0

∂

∂s
ρ
(
u, Sx(u)

)
du

is a Brownian motion.
Let x > 0, y > 0 be given withx 6= y. We have

Sy(t)− Sx(t)

M(t)
= y− x +

∫ t

0

1

M(u)

[
ρ
(
u, Sy(u)

)− ρ (u, Sx(u)
)]

dW(u),

and soϕ(t)
1= E[(Sy(t)− Sx(t))/M(t)]2 satisfies

ϕ(t) ≤ 2(y− x)2+ 2E
[∫ t

0

1

M(u)

[
ρ
(
u, Sy(u)

)− ρ (u, Sx(u)
)]

dW(u)

]2

≤ 2(y− x)2+ 2K 2
∫ t

0
ϕ(u) du,
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whereK is a bound on(∂/∂s)ρ. Gronwall’s inequality implies

E
(
Sy(t)− Sx(t)

)2 = M2(t)ϕ(t)(5.2)

≤ 2(y− x)2M2(t)e2K 2t , 0≤ t ≤ T.

We are now prepared to differentiatev. Let h′(x−) andh′(x+) denote the respective left
and right derivatives of the convex functionh. These are defined, nondecreasing, and left-
and right-continuous, respectively. Let 0< x < y be given, and consider the difference
quotient

v(y)− v(x)
y− x

= 1

M(T)(y− x)
E
[
h(Sy(T))− h

(
Sx(T)

)]
.

Becausex < y, we must haveSx(T) ≤ Sy(T) almost surely. Indeed, ifτ = T ∧
inf {t ≥ 0; Sx(t) = Sy(t)} were strictly smaller thanT , then strong uniqueness for (5.1)
would implySx(t) = Sy(t) for all t ∈ [τ, T ]. Consequently, the above difference quotient is
bounded above by 1/M(T) times the expectation ofh′ (Sy(T)+) [(Sy(T)− Sx(T))/y− x],
and for y ∈ (x,∞), (2.7) and (5.2) show that this is a uniformly integrable collection of
random variables. It follows that

lim sup
y↓x

v(y)− v(x)
y− x

≤ E
[
h′
(
Sx(T)+) ζ x(T)

]
= Ex

[
h′
(
Sx(T)+)] ,

whereEx is the expectation corresponding toPx. Similarly, we have

lim inf
y↓x

v(y)− v(x)
y− x

≥ Ex
[
h′(Sx(T)+)] .

We conclude thatv′(x+) = Ex
[
h′ (Sx(T)+)]. An analogous argument shows thatv′(x−)

= Ex
[
h′ (Sx(T)−)].

To remove the dependence onx of the expectation operators in the formulas forv′(x±),
we rewrite (5.1) as

dSx(t) = Sx(t)r (t) dt + ρ (t, Sx(t)
) ∂
∂s
ρ
(
t, Sx(t)

)
dt + ρ (t, Sx(t)

)
dWx(t),

a stochastic differential equation for which uniqueness in law holds. ConsiderS̃x given by

dS̃x(t) = S̃x(t)r (t) dt + ρ(t, S̃x(t))
∂

∂s
ρ(t, S̃x(t)) dt + ρ(t, S̃x(t)) dW(t),
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with initial condition S̃x(0) = x. The process̃Sx has the same distribution underP as the
processSx underPx. Thus we may rewrite the formulas forv′(x±) as

v′(x±) = E [h′ (S̃x(T)±)] , x > 0.(5.3)

If 0 < x < y, then by the uniqueness argument used earlier to show thatSx(T) ≤ Sy(T),
we conclude that̃Sx(T) ≤ S̃y(T) almost surely. Becauseh′(x±) is nondecreasing,v′(x±)
must be as well.

From (5.3) and (2.7), we have immediately the following corollary.

COROLLARY 5.3. Under Hypothesis 5.1 and the assumption of a deterministic interest
rate, the convex European contingent claim value functionvγ satisfies

|v′γ (x±)| ≤ C ∀x > 0.

6. EUROPEAN CONTINGENT CLAIM BOUNDS AND HEDGES

In addition to Hypotheses 2.1 and 5.1, in this section we shall impose the following condition.

HYPOTHESIS6.1. The functions r: [0, T ] 7→ R andγ : [0, T ] × (0,∞) 7→ [0,∞) are
Hölder continuous.

In place of (5.1), we use the notationSt,x
γ to denote the misspecified price process when

the initial condition isSt,x
γ (t) = x; that is,

dSt,x
γ (u) = St,x

γ (u)
[
r (u) du+ γ (u, St,x

γ (u)) dW(u)
]
, t ≤ u ≤ T.(6.1)

The misspecified value at timet of the contingent claim with payoff functionh is

vγ (t, x) = Ee−
∫ T

t
r (u) duh(St,x

γ (T)), 0≤ t ≤ T, x > 0.(6.2)

Our hypotheses guarantee thatvγ is in C([0, T ] × (0,∞)) ∩ C1,2([0, T)× (0,∞)) and

Lγ vγ (t, x) = 0, 0≤ t < T, x > 0,(6.3)

where

Lγ f (t, x)
1= r (t) f (t, x)− ∂

∂t
f (t, x)− 1

2
γ 2(t, x)x2 ∂

2

∂x2
f (t, x)(6.4)

−r (t)x
∂

∂x
f (t, x).

Furthermore,(∂/∂x)vγ is bounded (Corollary 5.3).
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We now consider a hedger who believes the stock price dynamics are given by (6.1),
when in fact the true stock price dynamics are given by (2.2) with the true volatilityσ(·)
satisfying the conditions of Hypothesis 2.1. Observing the true stock priceS(t), the hedger

(incorrectly) computes the contingent claim price to bePγ (t)
1= vγ (t, S(t)) and uses the

hedging portfolio1γ (t)
1= (∂/∂x)vγ (t, S(t)). Beginning with the initial valuevγ (0, S(0)),

this hedger’s self-financing portfolio value will evolve according to the formula (cf. (2.5)):

d51γ (t) = r (t)51γ (t) dt +1γ (t)[dS(t)− r (t)S(t) dt],(6.5)

whereas Itˆo’s rule and (6.4) show that the (incorrectly) computed value of the contingent
claim is governed by

d Pγ (t) = r (t)Pγ (t) dt +1γ (t)[dS(t)− r (t)S(t) dt](6.6)

+ 1

2

[
σ 2(t)− γ 2(t, S(t))

]
S2(t)

∂2

∂x2
vγ (t, S(t)) dt.

The tracking erroreγ (t)
1= 51γ (t)− Pγ (t) is thus given by

eγ (t) = 1

2
M(t)

∫ t

0

1

M(u)

[
γ 2(u, S(u))− σ 2(u)

]
S2(u)

∂2

∂x2
vγ (u, S(u)) du.(6.7)

THEOREM6.2. Assume Hypotheses 2.1, 5.1, and 6.1. If

σ(t) ≤ γ (t, S(t))(6.8)

for Lebesgue–almost all t∈ [0, T ], almost surely, then(Pγ ,1γ ) is a superstrategy, and

51γ (T) ≥ h(S(T)),(6.9)

vγ (0, S(0)) ≥ E[h(S(T))/M(T)].(6.10)

If

σ(t) ≥ γ (t, S(t))(6.11)

for Lebesgue–almost all t∈ [0, T ], almost surely, then(Pγ ,1γ ) is a substrategy and
inequalities (6.9) and (6.10) are reversed.

Proof. It is clear from the definitions thatPγ (T) = vγ (T, S(T)) = h(S(T)). The
theorem follows immediately from (6.7) and the convexity ofvγ (u, ·) (Theorem 5.2). In-
equalities (6.9) and (6.10) are restatements of (2.10) and (2.12).
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REMARK 6.3. If v is not convex or if neither (6.8) nor (6.11) is almost everywhere
satisfied, (6.7) is still valid and the tracking error is a finite-variation process. If bothσ(t)
andγ (t) are deterministic and we replace (6.8) by the weaker integrated volatility condition

∫ T

0
σ 2(t) dt ≤

∫ T

0
γ 2(t) dt,

then (6.10) holds but (6.9) can fail. This is discussed more fully in Appendix B.

7. STOCHASTIC INTEREST RATE AND CHANGE OF NUḾERAIRE

In this section only, we relax Hypothesis 2.1 by assuming that the interest rater is a stochastic
process. More precisely, in place of Hypothesis 2.1, in this section we shall assume the
following.

HYPOTHESIS7.1. The money market price M and the stock price S are defined on a
probability space(Ä,F ,P) and adapted to a filtration{F(t); 0≤ t ≤ T}. Furthermoree,

M(t) = e
∫ t

0
r (u) du

,(7.1)

dS(t) = S(t)[r (t) dt + σ(t) dW(t)],(7.2)

where{W(t); 0 ≤ t ≤ T} is a one-dimensional Brownian motion adapted to{F(t); 0 ≤
t ≤ T}, where theinterest rate processr is adapted to{F(t); 0 ≤ t ≤ T} and satisfies∫ T

0 |r (t)| dt <∞ almost surely, and where thevolatility processσ is nonnegative, adapted

to {F(t); 0≤ t ≤ T}, and satisfies
∫ T

0 σ
2(t) dt <∞ almost surely.

We define the positive martingale

Z(t)
1=
E
[

e−
∫ T

0
r (u) du

∣∣∣∣F(t)]
Ee−

∫ T

0
r (u) du

, 0≤ t ≤ T.

We can useZ to change fromP to an equivalent probability measurêP according to the
formula

P̂(A) 1=
∫

A
Z(t) dP ∀A ∈ F(t), 0≤ t ≤ T.

We call P̂ theforward measure. We also define thezero-coupon bond price process

B(t)
1= E

[
e−
∫ T

t
r (u) du |F(t)

]
, 0≤ t ≤ T,
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which is related toZ by the formula

Z(t) = B(t)

B(0)M(t)
, 0≤ t ≤ T.

BecauseS(t)/M(t) is a martingale, we have immediately the following result.

LEMMA 7.2. Under the forward measurêP, the forward stock price process

Ŝ(t)
1= S(t)

B(t)
, 0≤ t ≤ T,

is a martingale relative to the filtration{F(t); 0≤ t ≤ T}.

HYPOTHESIS7.3. The bond price process B (and hence the forward stock price process
Ŝ) is continuous. Furthermore, the forward stock price processŜ is square integrable, and
its quadratic variation〈Ŝ〉 is absolutely continuous with respect to Lebesgue measure; that
is,

〈Ŝ〉(t) =
∫ t

0

∂

∂u
〈Ŝ〉(u) du, 0≤ t ≤ T.(7.3)

REMARK 7.4. If the filtration{F(t); 0 ≤ t ≤ T} is the augmentation byP-null sets of
the filtration generated by a one- or multidimensional Brownian motion, thenŜis continuous
and equation (7.3) holds. This is becauseS/M andZ are local martingales underP, and any
local martingale relative to the filtration generated by a Brownian motion has a stochastic
integral representation with respect to that Brownian motion. From this, a representation of
Ŝ(t) = S(t)/(B(0)Z(t)M(t)) can be obtained as the sum of a Lebesgue integral and an Itˆo
integral whose integrator is the Brownian motion generating the filtration. The continuity of
Ŝfollows, as does the absolute continuity of the quadratic variation of the localP-martingale
part of Ŝ. The change tôP does not affect this quadratic variation.

In addition to regardinĝS(t) as the forward price of the stock, we can interpret it as the
price of the stock denominated in units of the zero-coupon bond. Making this change of
numéraire, we show below that we can reduce the present situation to the case of zero interest
rate. For a more detailed exposition of change of num´eraire, introduced in a particular case
by Merton (1973), one can consult Jamshidian (1989) and El Karoui, Geman, and Rochet
(1995).

We set

σ̂ (t)
1= 1

Ŝ(t)

√
d

dt
〈Ŝ〉(t).

From Hypothesis 7.3, on an enlarged probability space there is a Brownian motionŴ such
that

dŜ(t) = Ŝ(t )̂σ (t) dŴ(t)(7.4)
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(see Ikdea and Watanabe 1981, Chap. II, Thm. 7.1′, or Karatzas and Shreve 1991, Chap. 3,
Thm. 4.2).

As the risk-free investment instrument, we take the zero-coupon bond denominated in
units of the zero-coupon bond. The price of this instrument is always 1, which corresponds
to an identically zero interest rate. Because this instrument is available, the probability
measurêP which renderŝW in (7.4) into a Brownian motion is a “risk-neutral” probability
measure under the new num´eraire.

Consider now a hedger who invests in the stock and the zero-coupon bond. Suppose he
(incorrectly) believes that when the stock is denominated in units of the zero-coupon bond,
its volatility at timet isγ (t, Ŝ(t)), whereγ : [0, T ]×(0,∞) 7→ [0,∞) satisfies Hypotheses
5.1 and 6.1. In other words, he believes the stock price process, denominated in units of
the zero-coupon bond, is given by

dŜt,x
γ (u) = Ŝt,x

γ (u)γ (u, Ŝt,x
γ (u)) dŴ(u), t ≤ u ≤ T,(7.5)

with Ŝt,x
γ (t) = x. ObservingŜ(t) at time t , this hedger would compute the value, de-

nominated in terms of the zero-coupon bond, of the European contingent claim to be

P̂γ (t)
1= v̂γ (t, Ŝ(t)), where

v̂γ (t, x)
1= Êh(T, Ŝt,x

γ (T)).(7.6)

Here we are using the fact thatB(T) = 1, and sôS(T) = S(T), the actual stock price at
time T . Believing that̂S(T) = Ŝt,x

γ (T), the hedger uses the latter random variable on the

right-hand side of (7.6). The hedger holds1̂γ (t)
1= (∂/∂x)̂v(t, Ŝ(t)) units of stock, where

each unit has valueB(t), and starting from̂51γ (0) = v̂γ (0, Ŝ(0)) units, this generates the
self-financing portfolio value (denominated in units of zero-coupon bond) of (cf. (2.6))

5̂
1̂γ
(t) = v̂γ (0, Ŝ(0))+

∫ t

0
1̂γ (u) dŜ(u).

The tracking error iŝeγ (t) = 5̂1γ (t)− P̂γ (t). We have the following corollary to Theorem
6.2.

THEOREM7.5. Assume Hypotheses 5.1, 7.1, and 7.3 and assume thatγ is Hölder contin-
uous. We havêPγ (T) = h(S(T)) almost surely. If̂σ(t) ≤ γ (t, Ŝ(t)) for Lebesgue–almost
all t ∈ [0, T ], almost surely, then the tracking error is nondecreasing. Ifσ̂ (t) ≥ γ (t, Ŝ(t))
for Lebesgue–almost all t∈ [0, T ], almost surely, then the tracking error is nonincreasing.

REMARK 7.6. The function̂vγ of (7.6) solves the heat equation

− ∂
∂t
v̂γ (t, x) = 1

2
γ 2(t, x)x2 ∂

2

∂x2
v̂γ (t, x), 0≤ t ≤ T, x > 0,
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obtained by settingr ≡ 0 in (6.3). Ifγ is a function oft alone, then

v̂γ (t, x) = BS(T − t, x; 0, 0(t)/√T − t),

where0(t)
1= (∫ T

t γ
2(u) du)1/2.

8. SUFFICIENT CONDITIONS FOR REDUCTION OF AMERICAN
TO EUROPEAN CONTINGENT CLAIMS

We next turn our attention to American contingent claims. In this section, we note that for
a large class of American contingent claims, the American pricing and hedging problem
reduces to the European pricing and hedging problem. In Sections 9 and 10 we take up the
task of obtaining pricing and hedging bounds on American contingent claims that do not
reduce to European ones.

Still working under Hypothesis 2.1, we recall that theSnell envelopeof {h(S(t))/M(t);
0≤ t ≤ T} is the smallest supermartingale that dominates this process, and is given by

ess supτ∈Tt
E
[

h(S(τ ))

M(τ )

∣∣∣∣F(t)] , 0≤ t ≤ T,

whereTt denotes the set of stopping timesτ satisfyingt ≤ τ ≤ T almost surely. In a
complete market, the arbitrage price processPA for the American contingent claim with
payoff functionh is (from Bensoussan 1984; Karatzas 1988; Myneni 1992; Kramkov and
Vishnyakov 1994):

PA(t)
1= M(t) · ess supτ∈Tt

E
[

h(S(τ ))

M(τ )

∣∣∣∣F(t)] , 0≤ t ≤ T.(8.1)

An optimal exercise time is

D
1= inf{t ∈ [0, T ]; PA(t) = h(S(t))},(8.2)

and the process{PA(t ∧ D)/M(t ∧ D), 0≤ t ≤ T} is a martingale.
Under certain conditions,

PA(t) = M(t)E
[

h(S(T))

M(T)

∣∣∣∣ F(t)] , 0≤ t ≤ T,

and the price processes for the European and American contingent claims agree. We give
a sufficient condition for this, which includes, of course, the caseh(x) = (x − K )+ of the
call option.

THEOREM8.1. Assume Hypothesis 2.1. In a complete market, if r(t) ≥ 0 for all
t ∈ [0, T ] and h(0) = 0, then the European and American contingent claim price processes
coincide.
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Proof. We show thath(S)/M is a submartingale, and the Optional Sampling Theorem
applied to (8.1) yields the result. For anyα ≥ 1, x > 0, the convexity ofh implies

h(x) ≤ 1

α
h(αx)+ α − 1

α
h(0) = 1

α
h(αx).

Therefore, for 0≤ u < t ≤ T ,

h(S(u)) ≤ e−
∫ t

u
r (y) dy h

(
e
∫ t

u
r (y) dyS(u)

)
(8.3)

= M(u)

M(t)
h

(
M(t)E

[
S(t)

M(t)

∣∣∣∣F(u)])
= M(u)

M(t)
h(E[S(t)|F(u)])

≤ M(u)

M(t)
E[h(S(t))|F(u)],

where the last step is Jensen’s inequality.

REMARK 8.2. If h is not linear (e.g.,h(x) = (x− K )+) and the stock price has support
on all of (0,∞) (e.g., geometric Brownian motion), then the Jensen inequality in (8.3) is
strict. This implies that for allu ∈ [0, T),

PA(u) = M(u)E
[

h(S(T))

M(T)

∣∣∣∣ F(u)] > h(S(u)),

so thatD = T almost surely.

9. CONVEXITY OF AMERICAN CONTINGENT CLAIM VALUES

In addition to Hypothesis 2.1, in this section we assume Hypothesis 5.1 and the following.

HYPOTHESIS9.1. The interest rate r is nonnegative and the payoff function h is bounded
from below.

Because of Hypothesis 5.1, the misspecified stock price given by (5.1) is Markov, a
fact we exploit below. Because the misspecified volatility is a function only of time and
the misspecified stock price process, the market in the misspecified stock price process is
complete. Given a timet ∈ [0, T ] and a stock pricex > 0, the (misspecified) value of the
American contingent claim with payoffh is

vγ (t, x) = sup
τ∈Tt

E
[
e−
∫ τ

t
r (y) dy h(St,x

γ (τ ))

]
, 0≤ t ≤ T, x > 0,(9.1)
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where we have used the notation of (6.1). For fixed(t, x), the process

e−
∫ u

t
r (y) dy

vγ (u, St,x
γ (u)), t ≤ u ≤ T,(9.2)

is the smallest supermartingale that dominates

e−
∫ u

t
r (y) dy h(St,x

γ (u)), t ≤ u ≤ T.

This assertion is just the claim made in the second paragraph of Section 8, except there the
initial time was zero and here it ist .

We constructvγ by an iterative process found in El Karoui (1981) and adapted to the
situation at hand. Letg: [0, T ]× (0,∞) 7→ R be any function satisfying the following four
conditions.

Conditions 9.2.

(a) g is jointly Borel measurable;
(b) there exist positive constantsC1 andC2 such that

−C1 ≤ g(t, x) ≤ C1+ C2x, ∀x > 0;

(c) g is lower semicontinuous from the right; that is, for every(t, x) ∈ [0, T ]× (0,∞)
and every sequence{(tn, xn)}∞n=1 ⊂ [0, T ] × (0,∞) with tn ↓ t andxn → x, we
have

g(t, x) ≤ lim inf
n→∞ g(tn, xn) ;

(d) for everyt ∈ [0, T ], the functiong(t, x) is convex inx.

For g satisfying Conditions 9.2 and foru ∈ [0, T ], we define

(Lug)(t, x) = e−
∫ u

t
r (y) dyEg(u, St,x

γ (u)), 0≤ t ≤ u, x > 0.

We also define the operatorK by

(Kg)(t, x) = sup
u∈[t,T ]

(Lug)(t, x), 0≤ t ≤ T, x > 0.(9.3)

LEMMA 9.3. If g satisfies Conditions 9.2, then Kg does also.

Proof. According to the theory of stochastic flows (e.g., Doss 1977; Kunita 1990), we
may choose versions of the processes(St,x

γ (u) ; t ≤ u ≤ T) so that for eachu andω ∈ Ä,
the mapping(t, x) 7→ St,x

γ (u) is continuous. This, combined with Fatou’s Lemma and
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properties (b) and (c) forg, shows that the mappingu 7→ (Lug)(t, x) is lower semicontin-
uous from the right. Therefore, without loss of generality we may restrict the supremum in
(9.3) to rationalu ∈ [0, T ]. This shows thatKg is Borel measurable.

From (b) and the supermartingale property for(e−
∫ u

t
r (y) dySt,x

γ (u) ; t ≤ u ≤ T), we see
thatLug satisfies (b), and henceKg does as well. The convexity of(Lug)(t, ·) follows from
Theorem 5.2. The supremum of convex functions is convex, which gives us the convexity
of Kg.

It remains to show thatKg is lower semicontinuous from the right. Let us fix(t, x) ∈
[0, T)× (0,∞) and lettn ↓ t , xn→ x. If (Kg)(t, x) = g(t, x), then

(Kg)(t, x) = g(t, x) ≤ lim inf
n→∞ g(tn, xn) ≤ lim inf

n→∞ (Kg)(tn, xn).

On the other hand, ifKg(t, x) > g(t, x), then for eachε > 0, there existsu ∈ (t, T ] such
that(Kg)(t, x)− ε ≤ (Lug)(t, x). For large enoughn, we haveu ∈ [tn, T ], and so

(Lug)(t, x) ≤ lim inf
n→∞ (Lug)(tn, xn) ≤ lim inf

n→∞ (Kg)(tn, xn). 2

We now takeg(t, x) = h(x) for all t ∈ [0, T ], x ∈ [0,∞). BecauseKg ≥ g for anyg,
we haveK n+1h ≥ K nh, whereK n denotes then-fold iterate ofK . We can thus define

w
1= lim

n→∞ K nh = sup
n

K nh.

It is easily verified thatw satisfies Conditions 9.2.

THEOREM9.4. The functionw is the smallest fixed point of K dominating h. Moreover,
w is the functionvγ defined by (9.1).

Proof. We havew ≥ K n+1(w) = K (K nw). Letting n → ∞, we obtainw ≥ Kw.
The reverse inequality is trivial.

If u is a fixed point ofK dominatingh, thenu = K nu ≥ K nh. Letting n → ∞, we
obtainu ≥ w.

Fix (t, x) and considerX(u) = e−
∫ u

t
r (y) dy

w(u, St,x
γ (u)). For t ≤ u1 ≤ u2 ≤ T , we

have

E[X(u2)|F(u1)] = e−
∫ u1

t
r (y) dyE

[
e
−
∫ u2

u1
r (y) dy

w(u2, St,x
γ (u2))

∣∣∣∣F(u1)

]
= e−

∫ u1

t
r (y) dy

(Lu2w)(u1, St,x
γ (u1))

≤ e−
∫ u1

t
r (y) dy

(Kw)(u1, St,x
γ (u1))

= X(u1).

Thus, X is a supermartingale dominatinge−
∫ u

t
r (y) dy h(St,x

γ (u)), and so must dominate

e−
∫ u

t
r (y) dy

vγ (u, St,x
γ (u)) as well. In particular,w(t, x) = X(0) ≥ vγ (t, x).
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For the reverse inequality, we observe from the supermartingale property for

e−
∫ u

t
r (y) dy

vγ (u, St,x(u))

that (Luvγ )(t, x) ≤ vγ (t, x), and henceKvγ ≤ vγ . Therefore,vγ is a fixed point ofK ,
and being a fixed point ofK , vγ must dominatew.

COROLLARY 9.5. Under Hypotheses 2.1, 5.1, and 9.1, the American contingent claim
valuevγ of (9.1) is convex.

10. AMERICAN CONTINGENT CLAIM BOUNDS AND HEDGES

Now let γ : [0, T ] × (0,∞) 7→ [0,∞) satisfy Hypothesis 5.1. A hedger who believes the
stock price volatility is given byγ will price and hedge the American contingent claim as
described in Section 6, but now with

vγ (t, x) = sup
τ∈Tt

E
[
e−
∫ τ

t
r (y) dyh(St,x

γ (τ ))

]
.(10.1)

If the hedger is short the contingent claim, then he does not know when it will be exercised
and must be prepared to hedge all the way to timeT . If the hedger is long the contingent
claim, he will exercise it at time

Dγ = inf{t ∈ [0, T ] ; vγ (t, S(t)) = h(S(t))},(10.2)

and so only needs to hedge until this time. These observations motivate the following
definition.

DEFINITION 10.1. Leth be a payoff function. Aprice processfor the American con-
tingent claim with payoff functionh is any adapted process{P(t); 0 ≤ t ≤ T} satisfying
P(t) ≥ h(S(t)), 0 ≤ t ≤ T , and P(T) = h(S(T)), almost surely. LetP be a price
process and1 a portfolio process. Thetracking errorassociated with(P,1) is defined to

be the processe(t)
1= 51(t) − P(t), where51 andP are related by the initial condition

51(0) = P(0). We say that(P,1) is a superstrategyfor the American option if the
discounted tracking errore(t)/M(t) is nondecreasing for 0≤ t ≤ T . We say that(P,1)
is asubstrategyfor the American option if the discounted tracking error is nonincreasing
for 0≤ t ≤ D, where

D
1= T ∧ inf{t ∈ [0, T ]; P(t) = h(S(t))}.

Under suitable regularity conditions, the functionvγ of (10.1) is characterized by the
variational inequality

min{Lγ vγ (t, x), vγ (t, x)− h(x)} = 0, 0≤ t ≤ T, x > 0,(10.3)
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vγ (T, x) = h(x), x > 0,

whereLγ f is defined by (6.4). Moreover, [0, T ] × (0,∞) separates into two regions:

Cγ = {(t, x) ; vγ (t, x) > h(x)}, Eγ = {(t, x) ; vγ (t, x) = h(x)}.

Under Hypothesis 5.1 onγ , the strict ellipticity ofLγ implies thatvγ is C1,2 in Cγ . There
can be pointsa of discontinuity ofh′, but in such a case, the segment [0, T ] × {a}must lie
in Cγ ; if it did not, Meyer’s (1976) convex function extension of Itˆo’s formula applied to

the supermartingalee−
∫ t

0
r (u)du

vγ (t, Sγ (t)) would produce a singularly continuous, strictly
increasing local time term, which would violate the supermartingale property for the process
(9.2). Therefore,vγ is alsoC1 in Eγ . Finally, it is generally the case thatvγ is C1 across
the boundary betweenCγ andEγ , a property known as the “principle of smooth fit.” Rather
than undertake a more technical discussion of the regularity ofvγ , we shall simply assume
what we need.

HYPOTHESIS10.2. The functionvγ is C1 on [0, T ]× (0,∞), (∂2/∂x2)vγ (t, x) is piece-
wise continuous in x for each t∈ [0, T ], and is bounded uniformly in(t, x) ∈ [0, T ] ×
(0,∞), andvγ satisfies (10.3) everywhereLγ vγ is defined.

Hypothesis 10.2 permits the application of Itˆo’s rule tovγ . One can show this by modi-
fying vγ to obtain a smooth function, applying Itˆo’s rule to this smooth function, and then
passing to the limit.

THEOREM10.3. Assume Hypotheses 2.1, 5.1, 9.1, and 10.2. Let Pγ (t) = vγ (t, S(t))
and1γ (t) = (∂/∂x)vγ (t, S(t)) be as in Section 6, but withvγ now defined by (10.1). If

σ(t) ≤ γ (t, S(t), 0≤ t ≤ T, a.s.,

then(Pγ ,1γ ) is a superstrategy for the American option. If

σ(t) ≥ γ (t, S(t)), 0≤ t ≤ D, a.s.,

then(Pγ ,1γ ) is a substrategy for the American option.

Proof. From Itô’s rule and (6.5), we have

deγ (t) =
[
r (t)eγ (t)+ Lγ vγ (t, S(t))

]
dt

+1

2

[
γ 2(t, S(t))− σ 2(t)

]
S2(t)

∂2

∂x2
vγ (t, S(t)) dt.

If γ ≥ σ , then Corollary 9.5 and the inequalityLγ v ≥ 0 from (10.3) imply that the
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discounted tracking error

e(t)

M(t)
=
∫ t

0

1

M(u)
Lγ vγ (u, S(u)) du

+1

2

∫ t

0

1

M(u)

[
γ 2(u, S(u))− σ 2(u)

]
S2(u)

∂2

∂x2
vγ (u, S(u)) du

is nondecreasing. Ifγ ≤ σ , we use the fact thatLγ vγ (u, S(u)) = 0 for 0 ≤ u ≤ D to
show thate(t)/M(t) is nonincreasing for 0≤ t ≤ D.

11. EXAMPLES

11.1. Arithmetic Mean

Suppose we have a complete market with two risky assets, whose dynamics are

dSi (t) = Si (t)[r dt + σi dWi (t)], i = 1, 2,

whereW1 andW2 are independent Brownian motions, and where the interest rater and the

volatilitiesσ1 > 0 andσ2 > 0 are constant. The arithmetic meanS3(t)
1= (S1(t)+ S2(t))/2

satisfies

dS3(t) = r S3(t) dt + 1

2
[σ1S1(t) dW1(t)+ σ2S2(t) dW2(t)].

Defining a new Brownian motion

W3(t) =
∫ t

0

σ1S1(u) dW1(u)+ σ2S2(u) dW2(u)√
σ 2

1 S2
1(u)+ σ 2

2 S2
2(u)

,

and setting

σ(t) =
√
σ 2

1 S2
1(t)+ σ 2

2 S2
2(t)

S1(t)+ S2(t)
,

we may rewrite this in the usual form

dS3(t) = S3(t) [r dt + σ(t) dW3(t)],

but with stochastic volatility. Indeed,σ(t) is not even a function ofS3(t).
Consider a European call onS3 with expiration timeT and strike priceK . The arbitrage

price of this call at time zero isPE(0) = E[e−rT (S3(T)− K )+], a quantity that is difficult

to compute. However, withα = σ1σ2/

√
σ 2

1 + σ 2
2 , andβ = σ1∨σ2, we haveα ≤ σ(t) ≤ β

for all t ∈ [0, T ], almost surely. Theorem 6.2 implies

BS(T, S3(0); r, α) ≤ P(0) ≤ BS(T, S3(0); r, β),
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where explicit formulas for the bounds are provided in Remark 3.1. Moreover, a hedger
who sells the option forBS(T, S3(0); r, β) and uses the hedging portfolio

1β(t) = (∂/∂x)BS(T − t, S3(t); r, β)

is guaranteed to have at least(S3(T) − K )+ at timeT and to be overhedged at each time
t ∈ [0, T). A hedger who borrowsBS(T, S3(0); r, α) to buy the option and uses the hedging
portfolio1α(t) = − (∂/∂x)BS(T − t, S3(t); r, α) is guaranteed to have accumulated no
more than(S3(T)− K )+ in debt at timeT .

One could also produce a lower bound on the option by noting that the geometric mean
S4(t) =

√
S1(t)S2(t) always lies belowS3, and so

E
[
e−rT (S4(T)− K )+

] ≤ PE(0).

Furthermore,S4 is a geometric Brownian motion, satisfying

dS4(t) = S4(t)

[(
r − σ

2
1 + σ 2

2

8

)
dt + 1

2

√
σ 2

1 + σ 2
2 dW4(t)

]
,

whereW4 is the Brownian motion

W4(t) =
∫ t

0

σ1 dW1(t)+ σ2 dW2(t)√
σ 2

1 + σ 2
2

.

NowE[e−rT (S4(T)−K )+] is not a Black–Scholes price becauseS4 does not have mean rate
of returnr underP. However, settingµ = r − (σ 2

1 +σ 2
2 )/8, we may use the Black–Scholes

formula to compute

E
[
e−rT (S4(T)− K )+

] = e(µ−r )TE
[
e−µT (S4(T)− K )+

]
= e(µ−r )TBS(T, S4(0);µ, α).

Because the volatilities ofS3 andS4 are noncomparable, we can make no claim concerning
investment inS3 according to the hedging strategy

1(t) = e(µ−r )t ∂

∂x
BS(T − t, S(t);µ, α)

derived fromS4.
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11.2. Asian Options

An Asian option pays off a time-average of the stock price. We consider Asian options
which, at timeT , pay (

1

θ

∫ T

T−θ
S(u) du− K

)+
,

whereK > 0 andθ ∈ (0, T ]. We takeS to be a geometric Brownian motion; that is,

dS(t) = S(t) [r dt + σ dW(t)],

where the interest rater and the volatilityσ > 0 are constant. The arbitrage price process
for an Asian option is

PAs(t) = E
[

e−r (T−t)

(
1

θ

∫ T

T−θ
S(u) du− K

)+∣∣∣∣∣F(t)
]
, 0≤ t ≤ T.

This quantity can be explicitly computed (Yor 1992), but is quite complicated. Geman and
Yor (1992, 1993) compute the moments of all orders of(1/θ)

∫ T
T−θ S(u) du and obtain the

Laplace transform of the Asian option price process. Kemna and Vorst (1992) in a discrete-
time case and Bouaziz, Bryis, and Crouhy (1994) in a continuous-time case provide bounds
for the price of an Asian option, but do not consider a hedging strategy.

We apply the methodology of this paper to give a price bound and properties of the
associated hedging strategy. The key idea is to find another underlying asset whose price
at timeT is (1/θ)

∫ T
T−θ S(u) du.

LEMMA 11.1. The process X(t) = e−r (T−t)E[(1/θ)
∫ T

T−θ S(u) du |F(t)] is given by

X(t) = ρ(t)S(t)+ e−r (T−t)

θ

∫ t∨(T−θ)

T−θ
S(u) du, 0≤ t ≤ T ,(11.1)

where

ρ(t) = 1− e−rT+r (t∨(T−θ))

r θ
.

This process satisfies the stochastic differential equation

d X(t) = r X (t) dt + σρ(t)S(t) dW(t).(11.2)

Proof. Fubini’s Theorem impliesX(t) = (1/θ)
∫ T

T−θ E[S(u)|F(t)] du. For t ≤ u,
E[S(u)|F(t)] = er (u−t)S(t), whereas fort ≥ u,E[S(u)|F(t)] = S(u). The lemma follows
by straightforward computation.
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Rewriting (11.2) as

d X(t) = X(t)

[
r dt + σS(t)ρ(t)

X(t)
dW(t)

]
,

we identify the volatility ofX as [σS(t)ρ(t)]/X(t), a positive quantity that is dominated by
σ because of (11.1). Theorem 6.2 (withσ(t) = σS(t)ρ(t)/X(t) andγ (t, x) ≡ σ ) implies

PAs(0) = E[e−r (T−t)(X(T)− K )+] ≤ BS(T, X(0); r, σ ).

We thus obtain the continuous-time analogue of the discrete-time result of Kemna and
Vorst (1992) that the price of an Asian option is dominated by a Black–Scholes price.
The continuous-time result was also obtained by Geman and Yor (1993), who established
the necessity of an assumption on the risk-neutral drift for the property to be true. Note,
however, thatX(0) = ρ(0)S(0) = (1/r θ)(1− e−r θ )S(0).

Theorem 6.2 also leads to a hedging strategy, as we now explain.

THEOREM11.2. For the Asian option, the pair of processes

P∗(t) = BS(T − t, X(t); r, σ ),

1∗(t) = ρ(t)
∂

∂x
BS(T − t, X(t); r, σ )

is a superstrategy. (HereBS(·, ·; ·, ·) is as in Remark 3.1.)

Proof. We observe first that

P∗(T) = (X(T)− K )+ =
(

1

θ

∫ T

T−θ
S(u) du− K

)+
,

which is the modification of (2.8) appropriate for an Asian option. We next appeal to
Theorem 6.2, applied to the “stock price”X, whose volatility is bounded byσ . This
corollary shows that if we hold

1σ(t) = ∂

∂x
BS(T − t, X(t); r, σ )

“shares” of X at each timet , then we have nondecreasing discounted tracking error
e−r t e∗(t) = e−r t [5∗(t) − P∗(t)] associated with the self-financing portfolio value given
by5∗(0) = P∗(0) and

d5∗(t) = [5∗(t)−1σ(t)X(t)]r (t) dt +1σ(t) d X(t).(11.3)
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In integral form, (11.3) is

5∗(t) = M(t)

[
P∗(0)+

∫ t

0

1

M(u)
1σ (u)ρ(u)σS(u) dW(u)

]
= M(t)

[
P∗(0)+

∫ t

0

1

M(u)
1∗(u)σS(u) dW(u)

]
,

which is the self-financing value of the portfolio that holds1∗(u) shares of the real stock
Sat each timeu.

APPENDIX A: UNBOUNDEDNESS OF LOCAL TIME

The purpose of this appendix is to show that for 0< x < a, the local timeL(Ta; x) is
unbounded on the set{Ta ≤ 1}, a fact used in the proof of Theorem 4.1.

PROPOSITIONA.1. Let W be a Brownian motion with W(0) = 0, let b> 0 be given,
and set Tb = inf{t ≥ 0; W(t) = b}. Let L(t) denote the local time of W at0. Then, for
each r> 0 andλ > 0, we have

P(Tb ≤ τ, L(Tb) ≥ λ) > 0.A.1

Proof. The Laplace transform of the distribution of(Tb, L(Tb)) is (see Karatzas and
Shreve 1991, Chap. 6, Prob. 4.4):

E exp(−αTb − γ L(Tb)) =
√

2α

(γ +√2α) sinh(b
√

2α)+√2α cosh(b
√

2α)

for α > 0, γ > 0, which implies that

E exp(−γ L(Tb)) = 1

1+ bγ
, γ > 0,

so that the density ofL(Tb) is

P(L(Tb) ∈ d`) = 1

b
e−`/b, ` > 0.

Let P(Tb ∈ dt|L(Tb) = `) be a regular conditional distribution, and define

g(α, `) =
∫ ∞

0
e−αtP(Tb ∈ dt|L(Tb) = `) dt, α > 0.
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Let ρ > 1/b be given, and setγ = ρ − 1/b. Then

∫ ∞
0

e−ρ`g(α, `)d`

= b
∫ ∞

0

∫ ∞
0

e−αt−γ `P(Tb ∈ dt|L(Tb) = `)P(L(Tb) ∈ d`)

= bE exp(−αTb − γ L(Tb))

= b
√

2α

(ρ − 1
b +
√

2α) sinh(b
√

2α)+√2α cosh(b
√

2α)
.

This Laplace transform formula implies

g(α, `) = b
√

2α

sinh(b
√

2α)
exp

(
−
[√

2α − 1

b
+
√

2α coth(b
√

2α)

]
`

)
.

Let τ > 0 andλ > 0 be given. To prove (A.1), it suffices to show thatP(Tb ≤ τ |L(Tb) =
`) > 0 for all ` ∈ [λ, λ+ 1]. But, forα > 0,

P(Tb ≤ τ |L(Tb) = `) =
∫ τ

0
P(Tb ∈ dt|L(Tb) = `)

≥ g(α, `)−
∫ ∞
τ

e−αtP(Tb ∈ dt|L(Tb) = `)
≥ g(α, `)− e−ατP(Tb ≥ τ |L(Tb) = `),

which implies

(1− e−ατ )P(Tb ≤ τ | L(Tb) = `) ≥ g(α, `)− e−ατ .

Forα sufficiently large, the right-hand side is positive for all` ∈ [λ, λ+ 1].

COROLLARY A.2. Let W be a Brownian motion with W(0) = 0, let a > 0 be given,
and set Ta = inf{t ≥ 0;W(t) = a}. Fix x ∈ (0,a) and let L(t; x) denote the local time of
W at x. Then, for eachλ > 0, we have

P(Ta ≤ 1, L(Ta; x) ≥ λ) > 0.

Proof. According to the strong Markov property, the process

Wx(t) = W(t + Tx)− x, t ≥ 0,

is a Brownian motion independent ofTx = inf{t ≥ 0; W(t) = x}. Setb = a − x and
Tx

b = inf{t ≥ 0, Wx(t) = b}, so thatTa = Tx + Tx
b . The local timeLx(t) of Wx at zero
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up to timet is the local timeL(Tx + t; x) of W at x up to timeTx + t . For eachλ > 0, we
have

P(Ta ≤ 1, L(Ta; x) ≥ λ) ≥ P

(
Tx ≤ 1

2
, Tx

b ≤
1

2
, Lx(Tx

b ) ≥ λ
)

= P

(
Tx ≤ 1

2

)
P

(
Tx

b ≤
1

2
, Lx(Tx

b ) ≥ λ
)

> 0. 2

APPENDIX B: DOMINATION OF THE INTEGRAL OF VOLATILITY
MAY NOT PERMIT HEDGING

We assume in this appendix that the volatility processσ(t) is a nonnegative, square-
integrable, deterministic function oft , and we define

6(t)
1=
(∫ T

t
σ 2(u) du

)1/2

, 0≤ t ≤ T.

To avoid trivialities, we assume that6(t) is strictly positive for allt ∈ [0, T ]. We letγ (t)
be another nonnegative, square-integrable, deterministic function oft , and define

0(t)
1=
(∫ T

t
γ 2(u) du

)1/2

, 0≤ t ≤ T.

In this appendix, we study the misspecified price and hedging strategy for a European
contingent claim under the assumption

6(t) ≤ 0(t), 0≤ t ≤ T.(B.1)

(For example, we might haveσ(t) = √T − t andγ (t) = √t .) As we shall see, this
assumption ensures thatv(t, x) ≤ vγ (t, x) for all 0≤ t ≤ T , x > 0 (see below or (6.2) for
definitions), but it does not guarantee that the hedging portfolio associated withvγ protects
a short position in the claim. It particular, the expected tracking error under the risk-neutral
probability measure is nonnegative (see (B.6)), but the expected tracking error under the
market probability measure can be negative (see Remark B.4). This latter fact shows that the
actual tracking error can be negative with positive probability, and hence the short position
is not hedged.

In order to simplify notation, we assume throughout thatr = 0. The case ofr (t) being
a deterministic function follows easily. We adopt the notation

Lγ (t, T)
1= exp

[∫ T

t
γ (u) dW(u)− 1

2
02(t)

]
,(B.2)
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so that (see (6.1), (6.2), (3.2))

St,x
γ (T) = x Lγ (t, T),

vγ (t, x)
1= Eh(x Lγ (t, T))(B.3)

= BS(T − t, x; 0, 0(t)/√T − t),
∂

∂x
vγ (t, x) = E[Lγ (t, T)h

′(x Lγ (t, T))].(B.4)

Whenγ in (B.2)–(B.4) is replaced byσ , we drop the subscript, writing simplyL(t, T)
andv(t, x) rather thanLσ (t, T) andvσ (t, x). Under condition (B.1), we have immediately
from (3.5) that

v(t, S(t)) ≤ vγ (t, S(t)), 0≤ t ≤ T, a.s.

The tracking error associated with the portfolio process1γ (t)
1= (∂/∂x)vγ (t, S(t)) and the

price processPγ (t)
1= vγ (t, S(t)) is

eγ (t)
1= 51γ (t)− Pγ (t), 0≤ t ≤ T,(B.5)

and because51γ (t) is a martingale, we have

Eeγ (T) = 51γ (0)− Eh(S(T))(B.6)

= vγ (0, S(0))− v(0, S(0))

≥ 0.

The result (B.6) is unsatisfying because the expection is computed under the risk-neutral
probability measure rather than the market probability measure. To study the expectation
under the market measure, we assume (see Remark 2.2) thatW(t) = W0(t)+

∫ t
0 λ(u) du,

where the market price of riskλ is a square-integrable deterministic function andW0 is a
Brownian motion under the market probability measureP0 related toP by (2.4). We may
write

dS(t) = S(t)[σ(t)λ(t) dt + σ(t) dW0(t)].

We define

A(t)
1= exp

(∫ t

0
σ(u)λ(u) du

)
,

L0(t, T)
1= exp

[∫ T

t
σ(u) dW0(u)− 1

2
6(t, T)

]
,

L0,γ (t, T)
1= exp

[∫ T

t
γ (u) dW0(u)− 1

2
0(t, T)

]
,
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and forτ ∈ [0, T ], we set

β(t; τ) 1=
{
σ(t), 0≤ t ≤ τ,
γ (t), τ < t ≤ T,

B(t; τ) 1=
(∫ T

t
β2(u; τ) du

)1/2

, 0≤ t ≤ T.

UnderP0, the processesL0(t, T)andL0,γ (t, T)have the same distributions as the respective
processesL(t, T) andLγ (t, T) underP. Also,

S(t) = S(0)A(t)L0(0, t),(B.7)

dS(t) = S(0)A(t) dL0(0, t)+ S(0)L0(0, t) d A(t).(B.8)

LetE0 denote the expectation underP0.

PROPOSITIONB.1. Irrespective of whether the condition (B.1) holds, the expectation of
the tracking error under the market measure is given by

E0eγ (T) = vγ (0, S(0))− v(0, S(0))(B.9)

+ S(0)
∫ T

0

[
∂

∂x
BS(T, S(0)A(τ ); 0, B(0; τ)/

√
T)

− ∂

∂x
BS(T, S(0)A(τ ); 0, 6(0)/

√
T)

]
d A(τ ).

Proof. From (2.6), (B.7), (B.8), theP0-martingale property forL0(0, t), and (B.4), we
have

E051γ (T)

= 51γ (0)+ E0

∫ T

0
1γ (t) dS(t)

= vγ (0, S(0))+ E0

∫ T

0
S(0)L0(0, τ )

∂

∂x
vγ (τ, S(0)A(τ )L0(0, τ ))d A(τ )

= vγ (0, S(0))+ E
∫ T

0
S(0)L(0, τ )

∂

∂x
vγ (τ, S(0)A(τ )L(0, τ ))d A(τ )

= vγ (0, S(0))

+E
∫ T

0
S(0)L(0, τ )E

[
Lγ (τ, T)h

′(S(0)A(τ )L(0, τ )Lγ (τ, T))
∣∣F(τ )] d A(τ )

= vγ (0, S(0))+ E
∫ T

0
S(0)Lβ(·;τ)(0, T)h′(S(0)A(τ )Lβ(·;τ)(0, T)) d A(τ )
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= vγ (0, S(0))+
∫ T

0
S(0)

∂

∂x
vβ(·;τ)(0, S(0)A(τ )) d A(τ )

= vγ (0, S(0)+ S(0)
∫ T

0

∂

∂x
BS(T, S(0)A(τ ); 0, B(0; τ)/

√
T) d A(τ ).

On the other hand, using the integration formula

h(y A(T)) = h(y)+
∫ T

0
yh′(y A(t)) d A(t),

we have

E0Pγ (T) = E0h(S(0)A(T)L0(0, T))

= E0h(S(0)L0(0, T))+ E0

∫ T

0
S(0)L0(0, T)h

′(S(0)A(t)L0(0, T)) d A(t)

= Eh(S(0)L(0, T))+ E
∫ T

0
S(0)L(0, T)h′(S(0)A(t)L(0, T)) d A(t)

= v(0, S(0))+ S(0)
∫ T

0

∂

∂x
v(0, S(0)A(t)) d A(t)

= v(0, S(0))+ S(0)
∫ T

0

∂

∂x
BS(T, S(0)A(t); 0, 6(0)/

√
T) d A(t).

The proposition now follows from (B.5).

REMARK B.2. The risk premiumλ influences the expected tracking errorE0eγ (T) in
two ways. First, the risk premium is implicit inS(0), the market price of the stock, although
this dependence is not modeled here. Secondly, the risk premium appears explicitly in the
integratorA(·) of (B.9). Note that the integrand in (B.9) involvesA(·) as well as the true
and misspecified volatilities, with a switch from one to the other.

COROLLARY 13.3. Consider the case of a European call; that is, h(x) = (x − K )+,
for some K> 0. Assume that (B.1) holds,6(0) = 0(0), and the market price of riskλ is
nonnegative. If

B2(0; τ) ≤ 2 log
S(0)

K
+ 2

∫ T

0
σ(u)λ(u) du, 0≤ τ ≤ T,(B.10)

thenE0eγ (T) ≥ 0. However, if

62(0) ≥ 2 log
S(0)

K
+ 2

∫ T

0
σ(u)λ(u) du,(B.11)

thenE0eγ (T) ≤ 0.
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Proof. Inequality (B.1) implies

6(0)/
√

T ≤ B(0; τ)/
√

T, 0≤ τ ≤ T.

Under (B.10), we have in addition that

B(0; τ)/
√

T ≤
√

2

T
log

S(0)A(τ )

K
, 0≤ τ ≤ T,

and Remark 3.1 shows that

∂

∂x
BS(T, S(0)A(τ ); 0, B(0; τ)/

√
T) ≥ ∂

∂x
BS(T, S(0)A(τ ); 0, 6(0)/

√
T).(B.12)

BecauseA(·) is nondecreasing, we conclude from Proposition B.1 that

E0eγ (T) ≥ vγ (0, S(0))− v(0, S(0)) = 0.

Under (B.11), inequality (B.12) is reversed, and we obtain

E0eγ (T) ≤ vγ (0, S(0))− v(0, S(0)) = 0. 2

REMARK B.4. Condition (B.10) holds if the call is initially deep in the money, whereas
(B.11) holds if the call is deep out of the money. In the latter case, the strict inequality
E0eγ (T) < 0 can easily hold, despite (B.1).
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