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Robustness of Zero Shifting via Generalized
Sampled-Data Hold Functions

James S. Freudenberg,Senior Member, IEEE, Richard H. Middleton,Senior Member, IEEE, and Julio H. Braslavsky

Abstract—In this paper we study robustness and sensitivity
properties of a sampled-data feedback system with a generalized
sampled-data hold function (GSHF). We argue that shifting non-
minimum phase zeros using GSHF control can lead to difficulties
unless the zero is outside the closed-loop bandwidth.

Index Terms—Feedback limitations, generalized sampled-data
hold functions, nonminimum-phase zeros, robustness, sampled-
data systems, sensitivity analysis.

I. INTRODUCTION

NONMINIMUM-PHASE (NMP) zeros of a linear time-
invariant plant impose inherent design limitations that

cannot be overcome by any linear time-invariant controller
[1]–[3]. This fact suggests that more general compensation
schemes, such as periodic linear time-varying control, may
prove useful in controlling NMP systems. Sampled-data (SD)
control, wherein an analog plant is controlled by a digital
compensator through the use of periodic sample and hold, is
one class of periodic controllers.

In an SD system, the zeros of the discretized plant, unlike
the poles, bear no straightforward relationship to the zeros of
the original analog plant (e.g., [4] and [5]). In particular, use
of a generalized sampled-data hold function (GSHF) with a
linear time invariant digital controller allows the zeros of the
discretized plant to be placed arbitrarily [6], [7]. Hence it is
tempting to conclude that design limitations due to NMP zeros
of an analog plant may be circumvented by assigning the zeros
of the discretized plant to be minimum phase [8]–[10].

On the other hand, several authors have pointed out potential
disadvantages to the use of GSHF control. In [7, p. 75]
the authors note that “the control signal may become highly
irregular.” In [6], the author notes that systems with GSHF
control can sometimes exhibit intersample ripple. Furthermore,
the authors of [11] present analyses and simulations which
suggest that systems with GSHF controllers are prone to
robustness difficulties in addition to poor intersample behavior.
Hence the potential utility of GSHF control in overcoming
linear time-invariant design limitations is still a matter of
debate [11], [12].
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Let us now consider a common procedure by which a
digital compensator is designed in an SD system. Namely,
one first discretizes the analog plant at an appropriate sample
rate and then designs the compensator so that the discretized
feedback system has desirable properties.1 As a consequence,
the behavior of the analog signals in the resulting hybrid
feedback system will be as desiredat the sampling instants.
One then may simulate the hybrid system to verify that the
intersample behavior is acceptable. If the plant is discretized
with a zero-order hold (ZOH), and if an appropriate sample
rate and anti-aliasing filter are used, then this is very often
the case.

As noted above, when the plant is discretized using a GSHF
hold, its zeros can be placed arbitrarily. In [14] the authors
showed that design limitations imposed by NMP zeros of
the analog plant remain present when the plant is discretized
with a GSHF hold,even if the discretized plant is minimum
phase. One of the contributions of the present paper is to
expand on the implications of this fact by considering the
following situation: suppose that the analog plant has an
NMP zero within the desired closed-loop bandwidth, but the
discretized plant does not. Suppose also that the discrete
closed-loop system possesses feedback properties that would
be unachievable if the discretized plant also had a problematic
NMP zero. Then, as we show in Section III, these feedback
propertiescannotalso be present in the intersample behavior
of the hybrid system.

A more intriguing question, whose analysis is the core of
the paper, is whether the use of GSHF control to relocate zeros
is responsible for sensitivity and robustness difficulties in the
resulting feedback system above and beyond those due to the
NMP zero of the analog plant. It was argued in [11] that the
poor robustness properties of GSHF control are due to the way
in which components of the high-frequency plant response are
aliased down into the baseband to form the frequency response
of the discretized plant. We investigate this phenomenon in
detail by developing a framework in which the robustness
difficulties associated with zero-shifting may be studied quan-
titatively (Sections IV–VI). A key concept introduced is that of
a fidelity function, which measures differential sensitivity and
robustness of the discretized feedback system against modeling
uncertainty in theanalogplant. As an illustration, we analyze

1There are, of course, other digital design methods, including continuous-
based synthesis and direct digital design [13]. Our development here focuses
on the discretized synthesis approach since this is the main approach inherent
in the original development of GSHF control [6]. Our results apply toany
digital controller (no matter what the design), although we have not explored
interpretations.
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Fig. 1. Sampled-data feedback system.

in Section VII an example that originally appeared in [10].
Conclusions are presented in Section VIII.

II. BACKGROUND

Consider the single-input/single-output SD feedback system
of Fig. 1, where and are the transfer functions of
the analog plant and anti-aliasing filter, is the transfer
function of the digital controller, and are the
command, disturbance, and noise signals, is the control in-
put, and is the system output. Denote the sampling period
by and the associated sampling and Nyquist frequencies by

and , respectively. The termbaseband

will denote the frequency range .
We denote the open and closed right halves of the-plane

by ORHP and CRHP, respectively; the open and closed unit

disks by and , and their
complements by and , respectively. A rational function
of (respectively, ) is minimum phaseif it has no zeros in
the ORHP (respectively, in ). Otherwise, it is NMP, and
the corresponding zeros are termed NMPzeros.

We shall assume that the plant, prefilter, and controller are
each free of unstable hidden modes. In addition, suppose that

, where is rational and proper and
is strictly proper, rational, and has no CRHP

poles or zeros, and is rational and proper. The hold
function is a GSHF [6] defined by

where satisfies the mild technical assumptions stated
in [14] and [15]. Then to this hold there is an associated
frequency response function

The transfer function of the discretized connection of plant,
hold, and prefilter is thediscretized plantand is denoted
by . As shown in [16], our assumptions on

and suffice to guarantee that
satisfies the following well-known formula:

(1)

where we have introduced the notation to represent
. This notation will be used frequently.

Exponential and input–output stability of the system in
Fig. 1 follow from the results of [17] and [18] under the
nonpathological sampling hypothesis for GSHF systems of
[15].

Assuming that the hybrid system of Fig. 1 is stable, one may
use classical results from hybrid system theory to calculate the
steady-state response of the output to a sinusoidal input

signal of frequency . This response consists of a fundamental
component with frequency plus infinitely many harmonics
at frequencies separated from the fundamental by an integer
multiple of the sampling frequency [cf., (1)]. The fundamental
component is governed by thefundamental sensitivity and
complementary sensitivity functions

(2)

and

(3)

where

and

are thediscrete sensitivity and complementary sensitivity func-
tions [14].

The functions (2) and (3) play a role similar to the usual
sensitivity and complementary sensitivity functions for ana-
log systems. In particular, governs the fundamental
component of the intersample response to disturbances, and

plays this role for the response to noise. Furthermore,
and satisfy interpolation constraints at poles

and zeros of the plant and compensator which translate into
Bode and Poisson integrals. These integrals quantify important
tradeoffs in SD design [14].

Of particular interest in this paper is the tradeoff between
values of in different frequency ranges depending
upon the relative location of the NMP zeros of the plant and
hold function: suppose that is a real NMP zero of or

. Then, if we require that

it necessarily follows that

(4)

where

denotes the Blaschke product of the set of
ORHP poles of , and
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is the negative of the phase lag contributed by the all-pass
function at the upper end point of the interval

.
Bound (4) shows that if disturbance attenuation is required

throughout a frequency interval in which the NMP zero
contributes significant phase lag, then disturbances will be
greatly amplified at some higher frequency. Similar bounds
can be found for complex NMP zeros [14].

We shall also need a corresponding result to (4) that holds
for the discrete sensitivity function [19]: assume that

is stable and suppose that

where . Then if , with

(5)

where

denotes the Blaschke product of the set
of poles of lying in , and

is the negative of thesum of the phase lags contributed by
the all-pass terms at each of the points

that are mapped to the upper
end point of the interval . Clearly then, .

If is an NMP zero of the discretized plant, then
in (5), and is guaranteed to have a peak greater
than one. Since it follows that the lower
bound on this peak isguaranteedto be greater than that given
by (4) in the analog case.

Finally, we shall need the discrete version of the Bode
sensitivity integral [19]. For a fixed sampling period, this
integral implies a nontrivial sensitivity tradeoff even if no
bandwidth constraint is imposed. Assume that is stable
and that is strictly proper. Suppose in
addition that

Then necessarily

(6)

It follows from (6) that if , then there must exist a
peak in sensitivity whose magnitude exceeds one.

III. GEDANKEN EXPERIMENT NO. 1: ANALOG PERFORMANCE

Consider the following scenario. We wish to design a digital
compensator for an analog plant having a problematic NMP
zero. Suppose that a GSHF is used so that the discretized plant
is minimum phase or has NMP zeros only at less problematic
locations. Then one can design a digital controller so that the
discrete sensitivity function satisfies the specification

(7)

(8)

where and satisfies the lower bound (6) imposed
by the discrete Bode sensitivity integral. On the other hand,
the intersample behavior of the hybrid system must satisfy
constraints due to the analog NMP zero. We now present
a Gedanken experiment whose result shows that these con-
straints manifest themselves as limitations upon the ability
of the analog response to approximate that of the discretized
system.

Gedanken Experiment No. 1:Suppose that we wish to de-
sign a digital controller for an analog plant. Then the following
three questions (among others) are of interest.

A1) Is the nominal response of the discretized system
satisfactory? Equivalently, is the response of the SD
system satisfactoryat the sampling instants?

A2) Does the nominal analog response approximate that
of the discrete system so that a satisfactory discrete
response corresponds to satisfactory intersample be-
havior?

A3) Is the analog responseinsensitiveto plant uncertainty,
disturbances, and sensor noise?

Clearly it is desirable that the answers to all three ques-
tions be affirmative.The proposed experiment is to determine
whether affirmative answers to all three of these questions can
be obtained simultaneously.

We shall consider that the answer to A1) is affirmative if the
discrete sensitivity and complementary sensitivity functions
are well behaved. Specifically, we require that
satisfy bounds of the form (7) and (8). It follows from the
identity that if the bounds (7) and (8)
are satisfied, then is also bounded.

To quantify the answer to A2), define thefidelity function

(9)

If , then at frequency the fundamental
component of the analog response to disturbances, noise, and
commands will closely approximate that of the discretized
system.

Since the discrete frequency response is periodic in, it is
clearly not possible (nor desirable) that and
closely approximate the discrete responses at all frequencies.
Hence, we shall consider that the answer to A2) is affirmative
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Fig. 2. Frequency responses of a ZOH and a GSHF.

if fidelity is achieved over a low-frequency range

(10)

Finally, as discussed in [14], it is necessary to keep the
fundamental sensitivity and complementary sensitivity func-
tions bounded at all frequencies to prevent large intersample
response to disturbances and noise, as well as to prevent
poor differential sensitivity and stability robustness. Hence
an affirmative answer to A3) will require that and

satisfy upper bounds of the form

and (11)

at all frequencies.
It follows immediately from (4) that the analog NMP zero

imposes a limitation upon our ability to achieve affirmative
answers to all of questions A1)–A3).

Lemma III.1: Suppose that the hybrid feedback sys-
tem is stable and that (7) and (10) both hold. Define

and . If the analog plant has
an NMP zero at , it follows that

(12)

Thus, if is made small over a wide frequency
band relative to the location of the NMP zero, then
cannot closely approximate the discrete response over this
band without incurring large peaks at higher frequencies.
These peaks, in turn, will tend to compromise the bounds
(11). We see that there exists a tradeoff between the quality of
the response at sampling instants and that of the intersample
behavior that cannot be removed by GSHF control.

IV. GEDANKEN EXPERIMENT NO. 2: DISCRETE RESPONSE

In the present section, we shall argue that use of GSHF
control to shift zeros so that can be made small over
a wide frequency range may lead to unacceptable robustness
difficulties even if no requirement is imposed upon the analog
response. The source of these difficulties is the necessity to
maintain stability robustness against the contribution of high-
frequency aliases to the discrete plant response.

Consider again (1). Typically, the anti-aliasing filter has a
monotonically decreasing Bode gain plot and thus tends to
diminish the contribution of the high-frequency plant behavior
to the discretized system response. The effect of the hold
response in (1) is identical to that of the anti-aliasing filter and
shows that the hold response plays an equally important role
in determining the effect of the high-frequency plant behavior
upon the discretized system. In this regard, it is instructive to
compare the responses of the ZOH and a GSHF taken from [6,
Example 2]; these responses are plotted in Fig. 2. Note that
the frequency response ofthis particular GSHF has larger
gain at high frequencies than does that of the ZOH. Hence
it follows that the frequency response of a plant discretized
with this GSHF will depend more heavily upon the high-
frequency characteristics of the analog plant than if the plant
were discretized with a ZOH.

To explore this phenomenon further, we rewrite (1) as

(13)

where .
Decomposition (13) separates the frequency response

of the discretized plant into a fundamental component,
, plus the term , which represents

the net effect of aliases from other frequencies. If
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, then the former term represents the baseband
contribution to the discrete frequency response, and the latter
term represents the net contribution of high-frequency aliases.

It follows from (13) that if for some value of
but , then necessarilythe response of
the discretized plant at must depend upon the
response of the analog plant at one or more of the frequencies

. As a corollary, the response of the discretized
system will be potentially sensitive to uncertainty in the
analog plant at these frequencies. This fact is significant in
that uncertainty in the plant model generally increases at
higher frequencies. Hence if a strong dependence upon high-
frequency plant behavior is required to shift a zero, then
one might suspect that the sensitivity and robustness of the
resulting design would be poor. (See also the discussion in [20,
Sec. 10.5].) We now propose another Gedanken experiment
whose result will clarify this issue.

Gedanken Experiment No. 2:Suppose that we wish to de-
sign a digital controller for an analog plant. Then the following
two questions (among others) are of interest.

D1) Is the nominal response of the discrete system satis-
factory?

D2) Is the discrete response insensitive to uncertainty in
the analog plant?

Clearly, it is desirable that the answers to both questions be
affirmative.The proposed experiment is to determine whether
affirmative answers to both of these questions can be obtained
simultaneously.

By way of contrast with the first Gedanken Experiment, we
are now concerned solely with the response of the systemat
the sampling instants.

The only requirement related to the analog system is that
the discrete behavior must be robust against uncertainty in the
analog plant.

Let us now consider the problems of achieving small
differential sensitivity and robust stability against linear time
invariant uncertainty in theanalogplant. As the source of un-
certainty is modeling error in the analog plant, these problems
are more interesting from an engineering standpoint than are
their discrete counterparts.

Motivated by the discussion surrounding (13), we shall
consider separately uncertainty in the two terms on the right-
hand side (RHS) of (13). In particular, since uncertainty in the
analog plant tends to increase with frequency, it follows that
for uncertainty in the term will
tend to be dominated by uncertainty in the term due
to the high-frequency aliases.

To state the desired formulas for differential sensitivity and
stability robustness, we shall need the following definitions.

Definition IV.1. High-Gain Sensitivity and Complementary
Sensitivity Functions:In the limit as ,

, and , where

(14)

and .

At a given frequency , not necessarily in the baseband,
is a measure of the contribution of aliases from other

frequencies to the frequency response of the discretized plant.
By (13), it is therefore a measure of the difference between the
analog and discrete responses. Further design interpretations
are presented in [14, Sec. 3]. For now, we use in the
following result.

Proposition IV.1: At each value of

(15)

Proof: It is straightforward to show that therelative
differencebetween the discrete command response and the
fundamental component of the analog response is given by

(16)

Together, (9) and (16) yield the desired result.
We now use and to describe the

relative differential sensitivity of the discrete command and
control response to uncertainty in the analog plant. [Recall
that the discrete control response is governed by the transfer
function .] For purposes of comparison, we first
state the corresponding result for uncertainty in thediscretized
plant.

Lemma IV.2. Differential Sensitivity to the Discretized Plant:
For each

Proof: The proof is shown by straightforward cal-
culation.

Whether and also correctly describe
sensitivity with respect to analog plant variations depends upon
how closely the discrete and analog responses approximate
one another.

Proposition IV.3. Differential Sensitivity to the Analog
Plant: For each and

(17)

(18)

(19)

(20)
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Proof: The proof is shown by straightforward cal-
culation.

Consider a frequency and suppose that
and , so that thenet contribution of high-
frequency aliases to the discretized response is relatively small
[cf., (14)]. It then follows from (17) and (19) that and

accurately describe sensitivity to baseband
variations in the analog plant.

Furthermore, from (18) and (20) it follows that sensitivity
to the net contribution of the high-frequency aliases will be
small. On the other hand, as and thus
sensitivity to variations in individual components of the high-
frequency plant response will also become small. It
is important to note, however, that large peaks in
and will cause sensitivity to analog variations to be
much worse than that to discrete variations. Finally, note that
differential sensitivity of the control response is governed by

and . As we now show, these functions are
also related to stability robustness.

Assume that the feedback system of Fig. 1 is nominally
stable. Consider uncertainty in the discretized plant due to
analog plant uncertainty of the form

(21)

where is stable and proper and is a stable weight-
ing function used to represent frequency dependence of the
modeling error. It was shown in [14] that anecessarycondition
for the system to remain stable for all satisfying

(22)

is that

(23)

Typically, will become unbounded at high frequen-
cies, and so it is necessary that sufficiently
rapidly as . The derivation of [14, eq. (23)] ignores
the effect of aliases in (13); we now use the results of [21] to
develop a stronger necessary condition that does take aliases
into account.

Lemma IV.4: Assume that in (21) is arbitrary save
for the (22). Define

(24)

Then, anecessarycondition for robust stability is that

(25)

Proof: The results of [21] establish that the feedback
system will remain stable for all satisfying (22) if and
only if the condition

(26)

is satisfied (cf., [22, Ch. 6]). Condition (25) follows immedi-
ately from (9) and (26), since

Since relative uncertainty in the analog plant (21) typically
becomes large at high frequencies, and since the Nyquist
frequency is usually chosen to be around five times the desired
closed-loop bandwidth, it is reasonable to assume thatin
(24) is greater than one. Hence (25) requires that

over the baseband. This fact is significant since, as we shall
see in the next section, must satisfy a Poisson integral
relation.

V. INTERPOLATION CONSTRAINTS

AND AN INTEGRAL RELATION

We now develop a set of interpolation constraints and an
integral relation that must be satisfied by the fidelity function,

. We first require an additional assumption that will
hold generically.

Assumption 1:If is a CRHP zero of or , then
is not a zero of .

Proposition V.1. Interpolation Constraints:Suppose that
the SD feedback system is stable and that
and satisfy all assumptions stated in Section II as well
as Assumption 1. Then the following conditions are satisfied.

1) If is a CRHP zero of , then .
2) If is a CRHP zero of , then .

3) If is a zero of , define
. Then, .

4) If is a CRHP pole of , define
. Then, and .

5) If is a CRHP zero of , then .
6) has no CRHP zeros other than those given in

3)–5).

Proof: Conditions 1) and 2) follow from Assumption 1
and the identity:

(27)

Condition 3) follows from the identity:

(28)

Condition 4) follows from (27). Condition 5) follows from
(28). Finally, (28) shows that the zeros of are restricted
to those of and , and Condition 4)
follows.

Introduce the notation

for the NMP zeros of

for the NMP zeros of

for the NMP zeros of

for the NMP zeros of

for the ORHP poles of

for the poles of in
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Define associated Blaschke products

Finally, note that we may factor as
for some , where satisfies

the Poisson integral relation [23].
Using these definitions yields the following theorem.
Theorem V.2:Let equal an NMP zero of either

or . Then

(29)

where

Proof: Immediate from the factorization
, where

satisfies the Poisson integral relation [23], together with the
identities and .

Integral (29) imposes a constraint upon values of .
Analysis of design implications is deferred to the next section.

VI. RESULT OF GEDANKEN EXPERIMENT NO. 2

Suppose that the analog plant has at least one NMP zero and
is subject to large modeling uncertainty at high frequencies.
We now use the Poisson integrals for and
to show that there exists a limit upon the ability of an SD
feedback system to satisfy, with affirmative answers, questions
D1) and D2) of the second Gedanken experiment. In particular,
we shall show that there exists a tradeoff between achieving
both high performance in the discrete system and stability
robustness against uncertainty in the analog plant model. The
severity of the tradeoff is determined by the location of
the analog NMP zero and isindependent of whether or not
the discretized plant is minimum phase. Furthermore, unlike
the limitations revealed by Gedanken Experiment No. 1,
this tradeoff existseven if no performance requirements are
imposed upon the intersample behavior.

To demonstrate this tradeoff, we shall assume that the
discrete sensitivity function satisfies the performance speci-
fication

(30)

(31)

where , , and is at least as large as the RHS
of (6).

We also require that the system be robustly stable against
modeling uncertainty of the form

, where is arbitrary save for the bound (22),
and as . Let be given by (24). It
follows from Lemma IV.4 and (23) that the conditions

(32)

and

(33)

are bothnecessaryfor robust stability.
The main result of this section, Proposition VI.3, will show

that if conditions (30)–(32) are all satisfied, then there exists a
constraint upon at frequencies outside the baseband.
This constraint may prevent (33) from being satisfied; as a
result, the feedback system may not be robustly stable against
high-frequency modeling uncertainty. We first state and prove
two preliminary lemmas.

Lemma VI.1: Assume that the feedback system in Fig. 1 is
stable. Let denote an NMP zero of , and suppose that

satisfies (32). Then

(34)

where

(35)

Proof: This result is a corollary to Theorem V.2. Note
that the first four terms on the RHS of (29) are nonnegative
and thus may be ignored. Bound (34) follows by imposing
(32), exponentiating both sides, and rearranging the result.

To illustrate Lemma VI.1, consider Fig. 3, which contains
plots of (35) versus the location of a real NMP zero for various
values of . For a fixed value of , we see that will
be large whenever the NMP zero lies well below the Nyquist
frequency. It follows from (34) that will have a
large peak outside the basebandunlessthe value of
is sufficiently small.

We now show that imposing aggressive performance spec-
ifications upon the discrete sensitivity function will tend to
force the value of to be nearly unity. Our next result
shows that satisfying such specifications imposes a constraint
upon the value of at any point outside the unit circle.
For the purpose of generality, we state the following result
for an arbitrary point outside the unit circle. In applying
the lemma, we shall be interested in the case thatis the
image of an NMP zero of the analog plant; i.e., the case in
which .
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Fig. 3. Plot of (35) versus�=!N for various values ofw.

Lemma VI.2: Assume that is stable and that
satisfies the bounds (30) and (31). Consider ,

where ORHP. Then

(36)

where

(37)

Proof: It follows from Corollary 5 that

(38)

from which the result follows.
Consider a fixed value of. It follows from (38) that the

value of will converge to unity as the bound (30) upon
discrete sensitivity converges to zero. To illustrate, consider
Fig. 4, which contains plots of the lower bound (36) versus
the ratio for a real and various values of . As
Fig. 4 shows, the rate at which as
depends upon the ratio , i.e., upon the location of the
point relative to the discrete frequency interval over which
sensitivity reduction is demanded.

Proposition VI.3: Assume that the feedback system in
Fig. 1 is stable. Assume that satisfies (30) and
(31) and that satisfies (32). Let denote an NMP zero
of . Then

(39)

Proof: The triangle inequality in (9) yields

(40)

Using (34) and (36) in (40) gives

Finally, the result follows by noting that the bound (31)
together with the triangle inequality imply that

.
To illustrate Proposition VI.3, consider first Fig. 5, which

contains plots of the lower bound (39) versus the ratio
for and various values of .2 Suppose that the
frequency interval over which discrete sensitivity reduction is
demanded is relatively large with respect to the location of a
real analog NMP zero ( ). Then, as illustrated
in Fig. 5, there will necessarily exist a large peak in
at some frequency outside the baseband. On the other hand,
if the zero lies outside the frequency range in which the
specification is imposed, then the lower bound (39) is vacuous.
In fact, there is a rather abrupt demarcation between these two
cases, indicated by the almost vertical plots in Fig. 5.

Consider next Fig. 6, which illustrates that the sharp depen-
dence of (39) upon the relative location ofwith respect to
remains even as is varied. It appears that the length of the

2We include plots only for!0 � 0:2!N ; this is consistent with the well-
known design guideline stating that sampling frequency should be at least a
factor of ten times the desired closed-loop bandwidth.
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Fig. 4. Lower bound (37) onjTd(e�T )j as a function of the level of sensitivity reduction.

Fig. 5. Lower bound onjTfun(j!)j as a function of the sensitivity reduction interval.

frequency interval in which we desire sensitivity reduction is
a relatively more critical parameter than is the level of desired
sensitivity reduction.

Proposition VI.3, as illustrated by Figs. 5 and 6, motivates
us to recommend that discrete design specifications should
respect the bandwidth limitations imposed by the analog NMP

zero, irrespective of whether the discrete plant is minimum
phase. Violating this recommendation will necessarily lead to
feedback designs that are unduly sensitive to high-frequency
errors in the analog plant model. For example, from Fig. 5
we see that if , then sensitivity will be very large for
parameters with values and .
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Fig. 6. Lower bound onjTfun(j!)j as a function of the level of sensitivity reduction.

VII. EXAMPLE

We now illustrate the robustness difficulties described in this
paper using an example that originally appeared in [10]. The
plant is given by

The authors of [10] desire that the closed-loop bandwidth,
, satisfy the lower bound rad/s. Note that the

analog NMP zero lies well within the desired closed-loop
bandwidth. It is well known (cf., [1], [2]) that if this bandwidth
is achieved with analog control, then the resulting closed-
loop system will have very poor sensitivity and robustness
properties. The sampling period is chosen in [10] to be

s, so that the sampling frequency, rad/s, is ten
times the desired bandwidth.

Using the GSHF

yields a minimum phase discretized plant. The controller
is designed using the discrete-time version of the linear-
quadratic-Gaussian/loop transfer recovery (LTR) methodology
(cf., [24], [25]). In Fig. 7 we plot and for
the observer-based compensator obtained in [10] (with ).
(The discrete sensitivity function has a peak greater than one;
this peak is consistent with (6).) Note that the closed-loop
bandwidth specification is achieved and that both
and are well behaved.

However, the results of the present paper lead us to expect
that intersample behavior and robustness to analog plant
uncertainty will be poor. Indeed, consider Fig. 8, wherein

we plot and . Note that these functions
differ significantly from their discrete counterparts over the
baseband. This discrepancy is consistent with the plot of

, also shown in Fig. 8.
Note that has a relatively large peak within the

baseband. It follows from Lemma IV.4 that the system will
have poor robustness against unstructured multiplicative plant
uncertainty of the form (21). Indeed, it may be verified through
simulation that the system is destabilized by a small time
delay , with s. This extreme
sensitivity to small errors in the analog plant model is not
apparent from the Bode plots of the discrete closed-loop
transfer functions (Fig. 7).

One might conjecture that it is possible to improve this
situation by designing a controller to decrease the peak in

within the baseband while maintaining the same
discrete response. The results of Section VI show that the
potential for such improvements is limited. Indeed, imposing
(32) upon will tend to force a large peak in

outside the baseband (with attendant robustness
problems)unlessthe discrete performance specification (30)
is relaxed.

VIII. C ONCLUSIONS

In this paper, we have discussed potential difficulties related
to the zero shifting capabilities of a GSHF. In principle,
the zero shifting capabilities of a GSHF appear to allow
a designer to circumvent fundamental limitations in analog
control systems imposed by NMP plant zeros. On the other
hand, several authors have noted that use of a GSHF may
yield poor intersample response and result in sensitivity and
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Fig. 7. Discrete sensitivity and complementary sensitivity functions.

Fig. 8. Fundamental sensitivity, fundamental complementary sensitivity, and fidelity functions.

robustness difficulties. We have explored these issues by
considering two Gedanken experiments.

To obtain our first result, we considered a problem statement
that simultaneously required good nominal discrete response,
fidelity between the discrete and intersample responses, and
robustness of the discrete response against analog plant un-
certainty. We have shown that these objectives are mutually
exclusive whenever the analog plant has an NMP zero that

contributes significant phase lag within the desired closed-
loop bandwidth. On the other hand, if the NMP zero lies
outside the desired closed-loop bandwidth, then it poses no
particular limitation to the use of an analog controller. As a
consequence, the zero shifting abilities of GSHF control cannot
remove design limitations on the analog response due to NMP
zeros and may lead to poor sensitivity of the analog response
to model uncertainty.
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We then proposed a second Gedanken experiment wherein
no performance requirements are imposed upon the intersam-
ple behavior. Instead, we ask only that performance be good
at sampling instants and that discrete response be insensitive
to unstructured uncertainty in the analog plant. Once again,
we showed that these design goals are mutually exclusive
whenever the analog plant has an NMP zero within the target
closed-loop bandwidth.

To summarize, we argue that the zero shifting capabilities
of a GSHF should not be used for increasing the closed-loop
bandwidth beyond that achievable by an analog controller.
Doing so will not remove the design limitations imposed by
such a zero and may result in systems with unacceptable
intersample behavior and sensitivity.
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