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Abstract

In realistic situations engineering designs should take into consideration random

aberrations from the stipulated design variables arising from manufacturing variability�

Moreover� many environmental parameters are often stochastic in nature� Traditional

nonlinear optimization attempts to �nd a deterministic optimum of a cost function

and does not take into account the e�ect of these random variations on the objective�

This paper attempts to device a technique for �nding optima of constrained nonlinear

functions that are robust with respect to such variations�

The expectation of the function over a domain of aberrations in the parameters is

taken as a measure of �robustness� of the function value at a point� It is pointed out

that robustness optimization is ideally an attempt to trade o� between �optimality�

and �robustness�� A newly�developed multicriteria optimization technique known as

Normal�Boundary Intersection is used here to �nd evenly�spaced points on the Pareto

curve for the �optimality� and �robustness� criteria� This Pareto curve enables the user

to make the trade�o� decision explicitly� free of arbitrary �weighting� parameters�

This paper also formulates a derivative�based approximation for evaluating the ex�

pected value of the objective function on the nonlinear manifold de�ned by the state

equations for the system� Existing procedures for evaluating the expectation usually

involve numerical integration techniques requiring many solutions of the state equations

for one evaluation of the expectation� The procedure presented here bypasses the need

for multiple solutions of the state equations and hence provides a cheaper and more

easily optimizable approximation to the expectation� Finally� this paper discusses how

nonlinear inequality constraints should be treated in the presence of random parameters

in the design� Computational results are presented for �nding a robust optimum of a

structural optimization problem�
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� Introduction

Optimization problems arising in engineering design often involve variables and parameters

that are inherently stochastic� Manufacturing processes usually produce units which have

random variations� Environmental factors under which systems operate are very often

random quantities� Traditional deterministic optimization assumes that given an optimal

design� the manufacturer will manufacture it accurately and environmental conditions will

hold as speci�ed� thus failing to take into account the e�ect of these stochastic aberrations

in the variables on the function value�

Let us consider a particular example� Consider a design that achieves minimum dis�

placement of the top story in a particular multi�story frame design problem� When the

manufacturer starts out to build beams and columns with the speci�ed optimal geomet�

ric properties� it is quite likely that there will be random variations in the manufacturing

process and the speci�cations will not be met precisely� This will cause a departure of the

actual design from the intended design and hence a change in the top�story displacement�

In addition to the manufacturing errors� the loads �wind� snow or otherwise� actually

imposed on the structure may be di�erent from the ones taken into account in the 	optimal

design
 owing to random variations in such environmental factors�

Based on such considerations� it is more prudent to choose a design which accounts for

the possible aberrations in the relevant parameters in addition to achieving a low value

of the objective function� This motivates the need for a technique which incorporates a

measure of robustness during the optimization process� This is di�erent from 	sensitivity

analysis
 which only attempts to present a measure of how robust the design is after the

optimization process is over� This paper presents what Mulvey� Vanderbei and Zenios ��


call a 	proactive
 approach� i�e� one where the optimization process is designed to yield a

robust solution�

� The robustness optimization problem

Consider the unconstrained optimization problem

min
x

f�x�

where f � �N �� � is a twice continuously di�erentiable mapping� Here x denotes the

vector of design variables� We will defer the introduction of environmental variables z in

the formulation until Section ��� for ease of presentation�

If x� is the chosen optimal design point for the above problem� the robust designer

would want the objective function value to be 	near optimal
 for all nearby values of x��

So instead of posing the problem as the standard unconstrained optimization problem as

above� a more acceptable formulation would be the following min�max problem�

min
x

max
��D�x�

f�x� ��

where D�x� � f� � � � �N � jxi � �ij � �i� i � �� �� � � � � ng and the aberration �i �uctuates

randomly in the interval �xi � �i� xi � �i
� For simplicity of notation� D�x� will henceforth

�



be denoted simply by D�

As posed above� the problem is nonsmooth and hence not tractable by quasi�Newton

methods� A more tractable and quite reasonable reformulation of the problem is obtained

by converting the problem to the one below�

min
x

�R�x� �

R
D f�x� ��d�R

D d�
�

Here �R is a smooth measure of instability of the function f in a neighborhood of x� To ex�

plain the notation� R stands for robustness� and �R for robustness complement or instability�

This formulation though not equivalent to the min�max formulation has the same �avor

and addresses the same issue of taking into consideration the 	activity in a neighborhood


of the point as opposed to at only that one point� The above formulation is more desirable

in situations where safeguarding against the worst�case behavior is too conservative�

It can be seen that �R�x� is nothing other than E�f�x� ���� the expectation of f�x� ��

given that � is distributed uniformly over the hypercuboid D� Since there is no reason to
restrict ourselves to the uniform distribution� we generalize the expectation minimization

problem given any smooth distribution as below�

min
x

�R�x� �

Z
D
f�x� ��w���d� �

where w��� is the multidimensional probability density function of � over the domain D
�so

R
D w���d� � ��� Observe that the domain D does not need to be bounded� e�g� if w���

is the multinormal distribution� the domain is all of �n� Moreover� we assume throughout

the paper that the p�d�f� is independent of x� i�e� the distribution of the aberrations is the

same regardless of the target design point�

This robustness optimization problem has classically been studied in the setting of a

linear program� as in Mulvey� Vanderbei and Zenios ��
 and Mayer ��
� Several applications

that have been studied include the diet problem with a stochastic treatment of the nutri�

tion contents of some foods� the power capacity expansion problem �demand for electric

power being uncertain�� airline allocation for the Air Force and minimum weight struc�

tural design� optimized over a random distribution of wind loads� Robustness optimization

has also been incorporated in multiobjective space vehicle design by Erikstad� et� al� ��
�

The expectation minimization approach has been referred to in Slowinski and Teghem ��
�

Stancu�Minasian ��
 and Ermoliev and Wets ��
 among many others� We shall endeavor to

handle nonlinear problems in the robust setting as well�

��� Evaluating the multidimensional integral

Since the integral for evaluating the expectation may not be available analytically in closed

form� especially if dim�x� is large� we need alternate procedures for evaluating the integral�

A numerical quadrature scheme can require too many evaluations of f�x�� and can be quite

di�cult mathematically when dim�x� gets large� In order to bypass these di�culties� we
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shall resort to building a one�point quadratic model of f�x� and then use this approximation

to evaluate the integral� Thus�

�R�x� �

Z
D
f�x� ��w���d�

�
Z
D
�f�x� �rxf�x�

T � �
�

�
�Tr�

xf�x���w���d� �

Clearly� Z
D
f�x�w���d� � f�x�

Z
D
w���d� � f�x� �

For ease of notation� let �i be the i
th component of rxf�x� and hij the i

th row jth column

entry of r�
xf�x�� the Hessian of f�x� w�r�t� x� ThenZ

D
rxf�x�

T � w���d�

�

Z
D

NX
i��

�i�iw���d�

�
NX
i��

�i

Z
D
�iw���d� �

NX
i��

�i �i � rxf�x�
T�

where � is the vector of expectations of the aberrations �i�

Further Z
D

�

�
�Tr�

xf�x�� w��� d�

�
Z
D
�

X
��i�j�n

�i�jhij �
�

�

nX
i��

��i hii�w��� d�

where the symmetricity of the Hessian of f was used to get rid of the factor of �
� in the

summation over the o��diagonal terms� Elementary statistics tells us thatZ
D
�i�j w��� d� � E��i�j� � �ij	i	j � �i�j

and

Z
D
��i w��� d� � E���i � � 	�i � ��i

where �ij is the correlation coe�cient between �i and �j and 	i is the standard deviation of

�i� Now the integral of the second order term can be expressed in terms of moments �upto

second order� of the joint distribution as

Z
D

�

�
�Tr�

xf�x�� w��� d� �
X

��i�j�n

hij��ij	i	j � �i�j� �
�

�

nX
i��

hii�	
�
i � ��i � �

Observe that the above is a special case of the following general result in matrix form for

any symmetric matrix H with H � r�
xf�x�Z

D

�

�
�TH�w��� d� �

�

�
sT �H �R�s� �TH� ���
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where R is the correlation matrix of the distribution function w��� with ones on the di�

agonal� The operation ��� denotes the Hadamard product or more plainly� term�by�term
multiplication� Here s is the vector of standard deviations with 	i as its i

th entry�

Thus the integral can be approximated as

�R�x� �
Z
D
f�x� ��w���d�

� f�x� �rxf�x�
T� �

X
��i�j�n

hij��ij	i	j � �i�j� �
�

�

nX
i��

hii�	
�
i � ��i � �

If the aberrations are assumed to be stochastically independent� then �ij � � 	i 
� j� so

�R�x� � f�x� �rxf�x�
T� �

X
��i�j�n

hij�i�j �
�

�

nX
i��

hii�	
�
i � ��i � �

If the distributions are symmetric about x �e�g� uniform or multinormal distibutions

centered at x� then �i � �� 	i� i�e� each aberration component has mean zero� so

�R�x� � f�x� �
X

��i�j�n

hij�ij	i	j �
�

�

nX
i��

hii	
�
i �

Note all throughout the dependence of hij on x�

As a small numerical example� let us consider the one�dimensional problem

min
x

�

x
� ���

p
x �

The graph of this function is shown in Fig� �� clearly it is desirable to stay away from the

	steep side
 of the minimum� Thus� even though the minimizer of this function occurs at

x� � ������� the point that minimizes the expectation assuming a uniform distribution of

the aberration over an interval of width ��� centered at x is x� � ������ This was obtained

using the exact integral� using the approximation derived above minimizing the expectation

yields x� � ������ Both of these robust minima migrate considerably to the �atter side of

the curve�

� Trade�o� inherent in the robustness problem

Simply minimizing the expectation has its drawbacks� as shown in the examples in Fig� ��

Often what the user aims to achieve by minimizing expectation is to 	move away from the

sharp minimum
� However� poor knowledge of the distribution w��� on the aberrations

might result in the minimum of the expectation ending up very near the sharp minimum of

the function� For example� this would happen if the uniform distribution on � in the exam�

ple problem earlier had been replaced by a normal distribution with mean � and variance
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A function for which a robust minimum is desirable

f(x) = 1/x  + 2.5*sqrt(x)

x* = 0.8617

Robust x* = 1.139, semi−width of interval 0.7

Figure �� The 	�atter
 side of the minimum is more robust w�r�t� optimality

����� This would also happen if the minimum value is very low compared to other function

values that lie just outside the domain of the aberrations� so that the comparatively low

contributions of the function values around the function minimum still make the function

minimizer a minimizer of the expectation� This is the situation which we attempted to

illustrate in the �rst of the two �gures in Fig� �� The second �gure shows a perhaps patho�

logical case where the function values oscillate wildly in a region but since the expectation

	smooths out
 all the �uctuations the highly unstable oscillatory region is reported as being

robust�

The problems pointed out above arise because minimizing the expectation pays no heed

to the dispersion in the objective function values near the point� However� even though

suggested as an alternative by many including Slowinski and Teghem ��
� solely minimizing

the dispersion in the function values is insu�cient since it pays no attention to the function

values� Thus a minimizer of dispersion could conceivably end up at a �at maximum of a

function as in case of Fig� ��

It can thus be seen that robustness optimization is ideally an attempt to compromise

between two objectives� minimizing the original objective function value at a point and

minimizing an estimate of the behavior of the function in a neighborhood of the point�

This observation directs us towards a biobjective formulation of the robustness problem�

The following biobjective formulations are possible for trading o� between 	optimality
 and

	robustness
�

� Minimizing expectation and minimizing dispersion

�
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Figure �� Drawbacks of choosing minimizer of expectation as �nal design

A

B

O x

f(x)

Figure �� Drawback of minimizing dispersion in function values

� Minimizing expectation and minimizing the original objective
� Minimizing the original objective and minimizing dispersion

Though often implicit in its appearance� this biobjective approach is no stranger in the

robustness optimization literature� Su and Renaud ���
 penalize their original objective

by a term which they call the sensitivity index� This is nothing but a crude estimate of

the expectation� amounting overall to minimizing a linear combination of the function and

its expectation� Though this approach yields a Pareto optimal point� for the bicriteria

optimization problem of minimizing the function and its expectation� it gives the user no

indication as to whether the point falls in a 	desirable
 part of the curve of Pareto optimal

solutions� To remedy this� Mulvey� Vanderbei and Zenios ��
 plot the 	e�cient frontier
�

i�e�� the Pareto curve� for a robust version of a problem called AFIRO from NETLIB linear

programs using a similar penalty parameter approach� Box and Jones ��
 minimize a convex

�Pareto optimality is a concept of optimality used in multicriteria optimization de�ned in Appendix A�
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combination of the expectation and variance for di�erent parameter settings to �nd several

Pareto optimal points for the biobjective optimization problem� However� their objective

had a particular quadratic form� such assumptions cannot be made about our objective

functions� Also� their system output was allowed to have a random component not captured

by the physical model which will not be the case in our aimed applications arising chie�y

from structural design� Approximating a measure of dispersion in our nonlinear setting can

be sti�ed in the absence of higher order moment information on the distribution of �� as

shown in the next subsection�

A problem exists with the idea of minimizing weighted sums of objectives over various

parameter settings for generating a point�wise approximation to the Pareto curve� it usually

fails to generate an even spread of points on the Pareto curve given an even spread of

parameter settings� Often 	highly biased
 clusters of points are generated which give the

user a very poor model of the trade�o� curve� A detailed investigation of this phenomenon

can be found in Das ��
� Our approach employs Normal�Boundary Intersection �NBI� as

the tool for biobjective optimization� NBI introduces a sophisticated parametrization of

the Pareto set which generates evenly�spaced points on the trade�o� surface and has various

other appealing properties� A brief description of NBI is included in Appendix A for the

convenience of the reader� a full description can be found in Das ��
� More information can

also be found on the NBI homepage at http���www�owlnet�rice�edu
�indra�

��� Minimizing dispersion as an alternative

An obvious measure of dispersion in the objective values in a neighborhood about the target

point is

V �x� �
Z
D
�f�x� ��� f�x���w��� d�

If f�x��� is considered as an estimator of f�x�� then V �x� is the mean�squared error �MSE�

of estimation�

Let us consider approximating this integral using the same second�order Taylor expan�

sion technique used for the expectation� Then we get

V �x� �
Z
D
�rxf�x�

T � �
�

�
�Tr�

xf�x���
�w��� d� �

When expanded� the integrand will clearly involve upto fourth order terms in �� which

when integrated will give rise to terms involving up to fourth order moments of the distri�

bution w���� This causes no di�culty if the exact joint p�d�f�� but this will rarely be the

case in a practical situation� At best the engineers are likely to have some estimates of the

aberration means �possibly �� and standard deviations and no information about higher

order moments or even correlations�

If a �rst�order approximation for f�x � �� is used as in Su and Renaud ���
� then the

approximation for the integrand becomes

V �x� �
Z
D
�rxf�x�

T ���w��� d� �

�

-



But now V �x� su�ers from a serious drawback� it vanishes at any point where rxf�x� � ��

In other words� this approximation suggests that the most robust points are the uncon�

strained minimizers and maximizers of the function� which completely defeats our purpose�

Given the above concerns� we shall strive to avoid formulations which involve minimiz�

ing dispersion� This leaves us with one alternative� that of minimizing expectation and

minimizing the original objective�

��� Robustness versus optimality trade�o� curves

The Pareto curves for minimizing expectation and minimizing the original function value

using NBI for our earlier single variable problem are shown in Fig� � �using exact integral

for expectation� and Fig� � �using the approximation��
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Figure �� Pareto set for minimizing exact expectation and original objective

With the trade�o� curves in hand one can see that it is not worth giving up optimality

by increasing it beyond ���� because then on very little gain in robustness can be achieved

by giving up optimality� However� without the trade�o� curve one might have chosen a

minimizer of some arbitrarily chosen weighted sum of the function and the expectation with

no knowledge of what part of the Pareto set it fell in� Without the biobjective formulation in

the �rst place� the user would have been very likely to choose the minimizer of expectation

as the �nal point� which the trade�o� curve suggests as being not the best choice�

��� Environmental Variables

Following Box and Jones ��
 and many others in the statistical literature� we introduce the

concept of environmental variables� These are the variables which have random aberrations
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about their 	reported
 values� but unlike the design variables� the 	reported
 values are �xed

by the 	environment
 and is not up to the designer to choose�

For example� the wind load in a structural problem falls in this category� The speci�ed

wind load may be distributed uniformly over the interval ���� ��
 kips� Equivalently� the

wind load can be thought of as being �� kips with an aberration distributed uniformly over

����� ��
 kips� The best the designer can do is minimize the expectation over the random
wind load provided� but cannot specify a 	target
 wind load about which �s�he wants the

wind load to be distributed with the speci�ed aberration�

We shall introduce additional environmental variables in our problem and denote them

by z� The expectation minimization problem now is written as

min
x

�Rz�x� �
Z
D
f�x� �x� z � �z�w��x� �z� d�x d�z �

where �x denotes the vector of aberrations from the target design variables x and �z denotes

the aberrations from the �xed environmental variables z� Note that �Rz�x� is minimized

only over x� z as a subscript on �R denotes that z is only a �xed parameter and not an

optimization variable�

� Expectation Evaluation for Equality�Constrained Prob�

lems

In this section we shall attempt to extend the formulation for the robustness optimization

problem for nonlinearly constrained problems� Firstly we shall try to obtain a formula�

tion for equality�constrained robustness optimization where the equality constraints can be

thought of as being the state equations of the system� i�e� a system of nonlinear equations
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derived from physics or chemistry that accurately describes the state of the system� In

other words� the state equations cannot be violated without something unphysical happen�

ing� Thus the equality constraints here are more special than in applications like image

restoration where the �linear� equality constraints can be violated owing to noisy coe��

cients� even though there exists a feasible state of the system �i�e�� there is an image even

if the equality constraints do not hold�� as in Mulvey� et� al� ��
� Our state variables will

be denoted by y� the control or design variables by x and the environmental variables by

z� We will assume that given a particular setting of x and z� the state equations

C�x� y� z� � �

can be solved to obtain a unique y� In other words� the state equations implicitly de�

�ne a function � � �x� z� �� y� i�e� y � ��x� z�� Thus given the aberrations �x and �z in x

and z� the state equation C�x��x� y� z��z� � � can be solved to obtain y � ��x��x� z��z��

If our traditional equality�constrained optimization problem is

min
x�y

f�x� y� z�

s�t� C�x� y� z� � � �

or equivalently

min
x

f�x� ��x� z�� z� �

then the expected cost minimization version of the above is

min
x

�Rz�x� �

Z
D
f�x� �x� ��x� �x� z � �z�� z � �z�w��x� �z� d�x d�z �

��� Approximating the expectation integral for constrained problems

Since it is unlikely that the function � will be available in closed form in most practical

situations� the need for approximating the integral is more pressing here than in the uncon�

strained case� As in the unconstrained case a Taylor series approximation technique will

be used here� A quadrature�based numerical integration scheme would involve solving the

state equations many times and is thus computationally more expensive�

We shall begin by replacing ��x� �x� z � �z� with its �rst�order approximation� i�e��

��x� �x� z � �z� � ��x� z� �rx�
T �x �rz�

T �z �

where rx�
T � rx�

T �x� z� is the dim�y� � dim�x� Jacobian matrix �transpose of the

gradient� with ��i
�xj

as its ith row jth column element� rz� is de�ned similarly� Now the

integrand can be approximated using a Taylor series expansion as below�

f�x� �x� ��x� �x� z � �z�� z � �z�

� f�x� �x� ��x� z��rx�
T�x �rz�

T�z � z � �z� �

��

--



The above expanded in a Taylor series about �x� ��x� z�� z� gives

f�x� ��x� z�� z��rxf
T �x �ryf

T �rx�
T �x �rz�

T �z� �rzf
T �z

� second order terms � higher order terms �

Here the arguments �x� z� have often been dropped to make the algebra less cumbersome�

The �rst�order approximation to the integrand can be integrated as below�Z
D
� f�x� ��x� z�� z��rxf

T �x �ryf
T �rx�

T �x �rz�
T �z� �rzf

T �z �w��x� �z� d�x d�z

� f�x� ��x� z�� z��rxf
T�x �rzf

T�z �ryf
Trx�

T�x �ryf
Trz�

T�z �

where �x and �z are the mean vectors of �x and �z respectively�

The second�order terms in the expansion can be written as

�

�

h
�Tx �Ty �Tz

i ��� r
�
xf Hxy Hxz

HT
xy r�

yf Hyz

HT
xz HT

yz r�
zf

�
��
�
�� �x
�y
�z

�
�� �

where �y � rx�
T �x�rz�

T �z� Hxy is the dim�x� � dim�y� matrix whose ith row jth column

entry is ��f
�xi�yj

� Hyz and Hxz are de�ned similarly�

Expanding the above� substituting rx�
T �x � rz�

T�z for �y and regrouping terms yields

the following useful form for the second�order quantities

�

�
�TxH��x �

�

�
�Tz H��z � �TxH��z �

where

H� � r�
xf �Hxyrx�

T �rx�H
T
xy �rx�r�

yfrx�
T �

H� � r�
zf �HT

yzrz�
T �rz�Hyz �rz�r�

yfrz�
T �

H� � Hxz �Hxyrz�
T �rx�Hyz �rx�r�

yfrz�
T �

Observe that H� and H� are symmetric� thus in order to integrate the �rst two terms

in the second�order expansion the result derived in equation ��� can be applied directly�

yielding Z
D

�

�
�TxH��x �

�

�
sTx �H� �Rx�sx � �TxH��x

and Z
D

�

�
�Tz H��z �

�

�
sTz �H� �Rz�sz � �Tz H��z �

The third term involving the asymmetric matrixH� contains the aberrations in both the

design and the environmental variables� Let us assume for simplicity that the aberrations

in the environmental variables and the aberrations in the design variables are uncorre�

lated� This is certainly the case with our example from structural optimization because

the �uctuation in the wind and suspended loads and the manufacturing errors in the beam

��



cross�sections can be assumed to be independent of each other� In the absence of correlation

between �x and �z the integral of the third term clearly vanishes�

It should be emphasized that it is not any harder to actually integrate this cross�term�

it just happens to be unnecessary for our purposes�

Assembling all of the above quantities� the approximate expectation with second�order

terms becomes

�Rz�x� � f�x� ��x� z�� z��rxf
T�x �rzf

T�z �ryf
Trx�

T�x �ryf
Trz�

T�z

�
�

�
sTx �H� �Rx�sx � �TxH��x �

�

�
sTz �H� �Rz�sz � �Tz H��z � ���

The only remaining issue is that of obtaining the quantities rx� and rz�� This can

be done by di�erentiating the state equations as described below�

Let r denote any variable in the set of design or environmental variables� Then di�er�

entiating C�x� ��x� z�� z� � � with respect to r gives

rrC�x� ��x� z�� z��ryC�x� ��x� z�� z�
Trr��x� z� � �


 ryC�x� ��x� z�� z�
Trr��x� z� � �rrC�x� ��x� z�� z� �

Assembling the derivatives for every r � fxi � i � �� � � � � dim�x�g in order gives

ryC�x� ��x� z�� z�
Trx��x� z�

T � �rxC�x� ��x� z�� z�
T �

In order to obtain rx� we will assume that ryC�x� ��x� z�� z�
T is square and invertible�

i�e� dim�y� � dim�C�� so that there are as many state variables as state equations� Though

this assumption may sound restrictive� a wide spectrum of interesting problems in engi�

neering fall in this category� as does our structural example� Note that if the number of

state variables is less than the number of state equations there would be fewer deterministic

variables than equations and it would be impossible to make the state equations hold for

every setting of x and z� contradicting one of our basic assumptions�

Assuming thus that ryC�x� ��x� z�� z��T exists� we have the following required equa�

tions

rx�
T �x� z� � �ryC

�T �x� y� z�rxC
T �x� y� z�

rz�
T �x� z� � �ryC

�T �x� y� z�rzC
T �x� y� z�

or� omitting the arguments�

rx�
T � �ryC

�TrxC
T

rz�
T � �ryC

�TrzC
T �

which need to be substituted into our previously�derived expression for �Rz�x� �equation ��

to obtain �Rz�x� y�� the expectation as a function of x and y �since the derivatives of C have

y � ��x� z� as an argument��

��



This completes our treatment on how� for robustness optimization problems constrained

by square state equations� the expectation can be computed approximately using derivatives

of the state equations and the objective function� Now we solve

min
x�y

�Rz�x� y�

s�t� C�x� y� z� � � �

	 Handling inequality constraints

Our previous formulation will now be extended to handle inequality constraints g�x� y� z��
� �which includes explicit bounds on variables�� The standard optimization problem con�

strained by equalities and inequalities now is

min
x�y

f�x� y� z�

s�t� C�x� y� z� � �

g�x� y� z�� � �
The inequality constraints g�x� y� z� will be classi�ed into two groups� hard inequality con�

straints gh�x� y� z� and soft inequality constraints gs�x� y� z�� This classi�cation is very

important for our formulation of inequality�constrained robustness optimization�

Hard inequalities are those that simply cannot be violated because of physical con�

siderations or otherwise� no matter what the random aberrations in the design or environ�

mental variables are� A constraint demanding the length of a rod to be nonnegative is an

example� There does not exist any set of random aberrations in the design variables which

can cause length� mass or time to be negative� Thus our robustness optimization must take

into account the fact that these hard inequalities can never be violated� i�e�

gh�x� �x� ��x� �x� z � �z�� z � �z� � �

for all settings of �x and �z � This is achieved by an old trick often used in handling inequal�

ity constraints in nonlinear programming known as 	squared slacks
� i�e� the inequalities

g�x� y� z�� � are replaced by
gh�x� y� z� � ��

�
v � v ���

where v is a vector of unconstrained real numbers and has the same dimension as gh�

Here v � v� the Hadamard product of v with itself� is simply a vector with each component
of v squared� The permissible aberrations ��x� �z� are thus de�ned as those that satisfy

gh�x� �x� ��x� �x� z � �z�� z � �z� � ��
�
v � v �

i�e��D � f��x� �z� � gh�x� �x� ��x� �x� z � �z�� z � �z� � �g �

��



The idea of squared�slacks has been discarded in nonlinear programming because it

often results in loss of convexity of the problem and destroys good semi�local convergence

of NLP algorithms� but proves to be very useful for our formulation�

Just as it was assumed for the equality�constrained case that there exists a function

� � �x� z� �� y� it will be assumed here that there exists a function �g�x� z� �� �y� v� which

is implicitly de�ned by the set of equalities

C�x� y� z� � �

gh�x� y� z� �
�

�
v � v � � �

Observe that since the second set of equalities introduces dim�gh� new equations and

dim�gh� new variables vi�

dim�C� � dim�y� 
 dim�C � gh� � dim�y � v��

Thus the problem constrained by equalities and only hard inequalities is reduced so

that it �ts the robustness optimization formulation for equality�constrained optimization

derived in the previous section�

Soft inequalities are those which can be violated because of untoward aberrations

in the design or environmental variables� For example� requiring the cross�section of a

beam to be � ��� in� is a soft inequality constraint� because there is no guarantee that the
manufacturing process will not erroneously produce a beam with a smaller cross�section�

If there was a guarantee� this should be classi�ed as a hard inequality� Note that this

classi�cation into hard and soft inequalities is not based on whether the designer would

like the inequality to hold rigorously� but rather on whether it actually always is satis�ed

in physical terms in spite of aberrations from targets� Thus� the designer might absolutely

want the beam cross�section to not fall below ��� in� because it may make the beam very

susceptible to fracture otherwise� but still cannot specify it as a hard inequality unless the

manufacturing process guarantees that it will not be violated�

One undesired phenomenon that may occur here is that the expected value of the

objective function might be low at a point because the aberred values of the design variables

map to low objective function values� even though those aberred values actually violate the

soft inequalities� This is illustrated in Fig� ����

This is one reason why our model should also impose a penalty for violating the soft

inequalities owing to aberrations in x� Another obvious reason is that it may be undesirable

to have a violation in the soft inequalities because of �uctuations in x and z� so that the

designer may want what Mulvey� et� al� in ��
 call model robustness� i�e� the �soft inequality�

constraints staying 	almost feasible
 for all aberred scenarios of the variables� Thus the

	degree of infeasibility
 should also be minimized or forced to be under a certain permissible

level� In order to quantify the 	degree of infeasibility
 the following measure� denoted by ��

is proposed�

�z�x� �

Z
D

p�g

s�x� �x� �g�x� �x� z � �z�� z � �z��w��x� �z� d�x d�z

��

-



f

x
Feasible x

A
B

Figure �� Expectation of f can be lower in a neighborhood of A than in the same for B�

but solely because infeasible x values map to smaller f values and contribute to a smaller

value of the expectation�

where


p�g
s�x� �g�x� z�� z�� �

�

p

i�dim�gs�X
i��

�maxf�� gsi �x� �g�x� z�� z�g�p

where p is a positive integer of choice�

It is easy to see that 
p�gs� becomes positive only when some component of gs becomes

positive and thus measures the degree to which the soft constraints are violated at a point�

while � measures this violation over a region�

Let us consider evaluating or approximating the integral for �� If p � �� which is along

the lines of Mulvey� et� al� ��
 
p is continuous but not di�erentiable at any point where

gsi vanishes for some i� The optimization process thus requires nonsmooth optimization

techniques� which we have chosen to avoid from the start�

For p � �� 
p is both continuous and di�erentiable everywhere and

rx
� �
X
i

maxf�� gsi grxg
s
i �

However� second derivatives of 
� clearly do not exist� If we are to use a Taylor approxi�

mation of the integrand as before� a second�order expansion of the integrand is desirable

�the �rst�order term vanishes and plays no role if the means of the aberrations are �� which

is likely to be the case most often�� Moreover� these derivatives must themselves be at

least once and preferably twice di�erentiable for the approximation to the integral to be

tractable by gradient�based optimization� With this in mind� let us choose p � �� which is

��
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1~--- ·-----.;-.1 
I I 



thrice di�erentiable� It can be easily shown that

rx
� �
X
i

�maxf�� gsi g��rxg
s
i

and

r�
x
� �

X
i

�maxf�� gsi g��r�
xg

s
i � �

X
i

�maxf�� gsi g��rxg
s
i �rxg

s
i �

T �

Approximating the integral by integrating a Taylor approximation of 
� su�ers from a

major drawback� Since the �rst and second derivatives of 
� vanish whenever the quantities

maxf�� gsi g vanish 	i� and maxf�� gsi g vanishes 	i at any point that satis�es all the soft
inequalities� the approximation � to the integral of 
� vanishes at any point that satis�es

gsi � � 	i� This completely defeats our purpose since this implies that the 	amount of infea�
sibility
 in the neighorhood of any feasible point is �� no matter how badly the inequalities

are violated because of aberrations from this feasible target point�

An alternate approximation Given the aforementioned drawback� we shall use a more

traditional discretized approximation to the integral for �� In other words� a �nite set

of points �D is chosen from the in�nite set D and the integral replaced by a sum of the

integrand over all points in �D� i�e�

�z�x� �

Z
D

p�g

s�x� �x� �g�x� �x� z � �z�� z � �z��w��x� �z� d�x d�z

�
X

��x��z�� �D


p�g
s�x� �x� �g�x� �x� z � �z�� z � �z��w��x� �z����x� �z�

where ���x� �z� is the weight associated with the point ��x� �z� in the quadrature rule�
The above still requires us to have �g�x��x� z��z� 	��x� �z� � �D� which involves solving

the state equations j �Dj times and can be very expensive� Thus in course of the actual
computation �g�x� �x� z� �z� can be approximated by a �rst�order Taylor approximation

as before� i�e�

�g�x� �x� z � �z� � �g�x� z� �rx�
T
g �x �rz�

T
g �z �

Substituting the above� 
p � gs can be evaluated at an approximation of its argument as


p�g
s�x��x� �g�x��x� z��z�� z��z�� � 
p�g

s�x��x� �g�x� z��rx�
T
g �x�rz�

T
g �z � z��z�� �

This discretized integral still involves evaluating the soft constraints gs j �Dj times� This may
not be a problem if the computation of gs is not too expensive �e�g� if the soft inequality

constraints consist mostly of bounds on variables�� but if it is expensive it can in turn be

approximated using a �rst�order Taylor approximation� i�e�

gs�x� �x� �g�x� z� �rx�
T
g �x �rz�

T
g �z � z � �z�

� gs�x� �g�x� z�� z� � �rxg
s�T �x � �ryg

s�T �rx�
T
g �x �rz�

T
g �z� � �rzg

s�T �z �

��



Now 
p can be evaluated at the above approximation of g
s� The resulting approximation

to the discretized integral for �z is the seemingly clumsy�looking expression below�

�z�x�

�
X

��x��z�� �D


p�g
s�x� �g�x� z�� z���rxg

s�T �x��ryg
s�T �rx�

T
g �x�rz�

T
g �z���rzg

s�T �z�w��x� �z� �

Observe that it su�ces to choose the value of p to be �� because now a gradient�based

optimizer can minimize the discretized integral using the �rst derivatives of 
� which happen

to exist� Also observe that the existence of second derivatives of gs is required in order to

claim di�erentiability of 
� with the �rst�order approximation of g
s as its argument�

Brief comments on rx�
T
g and rz�

T
g are in order� since something special can be said

about their structure� The united system of state equations and hard inequalities can now

be di�erentiated to obtain the gradients of �g� Since rvC � � and rvg
h � diag�v�� the

required gradients turn out to be

rx�
T
g �

�
ryC ryg

h

� diag�v�

	�T �
�rxC�

T

�rxg
h�T

	

rz�
T
g �

�
ryC ryg

h

� diag�v�

	�T �
�rzC�T

�rzg
h�T

	
�

Substituting the above along with �y� v� for �g�x� z� in our approximations for �Rz�x� and

�z�x�� �Rz and �z are obtained as functions of �x� y� v� and can now be minimized subject

to satisfying the state equations� the squared�slack equality constraints ��� and the soft

inequality constraints�

One might argue that the variables v can be eliminated from the above by replacing vi

with
q
�ghi for every i� but then we need to ensure that the hard inequalities hold at every

iteration of the optimization� or else the quantities
q
�ghi which appear in rx�g and rz�g

�and hence �Rz and �z� can become imaginary�

In the presence of soft inequality constraints� the earlier expectation minimization prob�

lem is replaced by the biobjective problem of minimizing �Rz�x� y� and �z�x� y�� We shall

di�er from other researchers in that instead of minimizing �Rz�x� y� penalized by a multiple

of �z�x� y� added to it we will recommend using the NBI parametrization to obtain the

Pareto curve for the problem�

The earlier biobjective formulation for robustness optimization involving minimization

of the expectation and the actual objective function now becomes a tri�objective problem

where the objectives to be minimized are f � �Rz and �z �

��� Special case	 bounds on design variables

In many interesting problems the only soft inequalities in the problem are bounds on the

design variables x� In such a case it may be possible to evaluate the integral for � exactly

��



depending on the joint p�d�f� w���� We shall �nd the integral assuming that the aberra�

tions on the design variables are independent and uniformly distributed� as is the case in

our numerical example�

Let the aberration in xi� denoted by �i for simplicity� be distributed uniformly over

the interval ���i � �
	
i 
� If all the soft inequalities are explicit bounds� say ai � xi � bi � i �

�� � � � � dim�x�� �z�x� can be expressed as

��x� �
�

p

Z
D
w���d�

dim�x�X
i��

�maxf�� ai � �xi � �i�g�p � �maxf�� xi � �i � big�p

�
�

p

dim�x�X
i��

Z
D
�maxf�� ai��xi��i�g�pw���d�� �

p

dim�x�X
i��

Z
D
�maxf�� xi��i�big�pw���d� ���

where w��� �  
dim�x�
i�� ��	i � ��i �

�� is a constant� and D � f� � ��i � �i � �	i 	ig�
Observe that the subscript z has been dropped from � because � does not depend on the

environmental variables in this special situation�

Now� Z
D
�maxf�� ai� �xi � �i�g�pw���d�

�
�

�	i � ��i

Z
D
�maxf�� ai � �xi � �i�g�pd�i

�
�

�	i � ��i

Z
�i�ai�xi

�ai � xi � �i�
pd�

�


�
�

�
�
�

i
���

i

Rminf��i � ai�xig

�
�
i

�ai � xi � �i�p d�i� if xi � ai � ��i

�� if xi � ai � ��i �

Thus� whenever xi � ai � ��i � the above equals

�

�p� ����	i � ��i �
� �ai � xi � ��i �

p	� � �ai � xi �minf�	i � ai � xig�p	�
 � ���

Similarly it can be shown thatZ
D
�maxf�� ai� �xi � �i�g�pw���d�

�


 �
�p	�����

i
���

i
�
� �xi � �	i � bi�p	� � �xi � maxfbi � xi� �

�
i g � bi�p	�
 if xi � bi � �	i

�� if xi � bi � �	i �
���

Some simpli�cations occur if �	i � � and ��i � �� An example of such a situation is

the case when �i is distributed symmetrically about zero� Given that xi � ai which any

feasible point satis�es�

�	i � �
 xi � ai � �	i 
 minfai � xi� �
	
i g � ai � xi �

��



Similarly� since any feasible point satis�es xi � bi�

��i � �
 xi � bi � ��i 
 maxfbi � xi� �
�
i g � bi � xi �

Substituting the above� � and � become

Z
D
�maxf�� ai � �xi � �i�g�pw���d� �


�
�

�ai�xi��
�
i
�p��

�p	�����
i
���

i
�

if xi � ai � ��i

�� if xi � ai � ��i

and Z
D
�maxf�� ai � �xi � �i�g�pw���d� �


�
�

�xi	�
�

i
�bi�

p��

�p	�����
i
���

i
�

if xi � bi � �	i

�� if xi � bi � �	i �

Now the above �or their more general versions in � and �� can be substituted in � to

evaluate �� The value of the integer p was chosen to be � in our computation�


 A numerical example

The technique for robustness optimization of functions on constrained domains discussed in

the preceding sections was applied to a truss design problem described below� The problem

involves optimizing the design of a pin�jointed truss structure under a wind load and a

suspended load as shown in Fig� ����

D

L

Suspended 
Load

Wind

P

xm

Figure �� A truss structure under a suspended load and a wind load

The problem is to �nd the optimal position xm of the vertical bar of �xed length

L � �� ft� between �
� and �
� of the �xed distance D � ��� ft� and the optimal bar

cross�sectional areas� The bars on the edge get �xed and their lengths decided accordingly�

The angles � and � clearly depend on the chosen location x� The cross�sectional areas of

��



the three bars in sq� in�� a�� a�� a�� were allowed to vary between ���in
� and ���in�� The

horizontal and vertical displacement of the node are denoted by u� and u� respectively and

measured in feet�

Observe that allowing the position of the middle bar to vary introduces more nonlin�

earity in the problem than is found in the version of this problem studied by Koski ��
�

The vector of variables in the problem is

r � �a�� a�� a�� xm� �� �� u�� u�
 �

The �rst four variables are design variables while the remining four are state variables� The

equality constraints arise from expressing equilibrium of the truss under the given loads

and from imposing that the three bars are connected at P�

The aim of the designer is to �nd a robust Pareto optimal point for minimizing the

square of the displacement of the node P and the total volume of the truss� Let us denote

the �rst objective by f��r� and the second by f��r�� so

f��r� � u�� � u�� �

f��r� � a�
L

sin �
� a�L� a�

L

sin �
�

This biobjective problem �with deterministic data� was solved using NBI and a point was

picked from the Pareto curve based on 	engineering judgment
� This Pareto point is also

the minimizer of the following weighted sum of the two objectives�

f�r� � ������ f��r� � ������ f��r� �

The minimizer of f�r� was

r� � �������� ������� ������� �������� ������� ������� ������� ������
 �

A robust minimizer of the function f�r� is what we desire� Aberrations in r� could

result in either loss of Pareto optimality of the chosen design or have the less severe e�ect

of shifting the position of the design point to a less desirable part of the trade�o� curve�

The random distribution data for the problem were as below�

� Design variable aberrations
� �ai � the aberration in each cross�section� Uniform������ ���
 sq� in�

� �xm � the aberration in the position of the middle bar� Uniform���� �
 ft� The

aberration in the position of the middle bar is taken to arise not from fabrica�

tion or assembly errors errors� but from decisions based on aesthetics and other

considerations� During the actual assembly� the designer may decide that the

structure would be visually more pleasing if the middle bar was shifted by � ft�

to one side�
�The weights can be obtained by looking at the optimal multipliers in the NBI subproblem as shown in

Das �	��

��



� Environmental variable distributions
� Horizontal wind load� Normal����� ���� kips

� Suspended load� Normal������ ���� kips

All the random variables were assumed to be uncorrelated�

Expression � was used to evaluate the expectation of f�r� over the domain of aberrations�

The minimizer of the expectation turned out to be

rR� � �������� ������� ������� �������� ������� ������� ������� ������
 �

The trade�o� curve for minimizing f�r� and its expectation obtained using NBI is shown

in Fig� ��
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Figure �� Trade�o� curve for minimizing f�r� and its expectation using NBI

It is worth observing that here the e�ect of the aberrations in the environmental vari�

ables dominates that for the design variables� If the distributions on the environmental

variables are assumed to be �� the minimizer of the expectation turns out to be

�������� ������� ������� �������� ������� ������� ������� ������
 �

which deviates less from r� than rR�� The aberrations in the loads cause the 	displace�

ment component
 f� to have large �uctuations� Hence the robust minimizer shifts to a

con�guration that allows for a sti�er design and su�ers less nodal displacement�

The violation in soft inequalities� �� was then taken into account as the third objective�

Since the only soft inequalities are the bounds on the design variables� the quantity � was

evaluated using �� This triobjective problem was solved using NBI� a plot of the points

obtained is shown in Fig� �� This Pareto surface appears to be almost degenerate� further
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Figure �� Trade�o� surface for weighted sum f�r�� its expectation and �

an examination of the values of the three objectives reveals that � is of the order ���� at

most of the points� which is a little too high for our purposes�

Thus we attempted to generate the Pareto set for minimizing the weighted sum f�r�

and its expectation subject to � � ����� The trade�o� curve thus obtained using NBI

is shown in Fig� ��� The variation in � along the Pareto curve is shown in Fig� ��� It

can be observed that � is low in the desirable 	middle part
 of the trade�o� curve� hence

designating these points as good choices�

� Conclusion

The robustness optimization problem was discussed in the context of nonlinear optimiza�

tion� A systematic multicriteria procedure was formulated to allow the designer to explicitly

trade o� robustness for optimality and vice�versa� This renders unnecessary the use of ad

hoc penalty parameters and weighting strategies widely used thus far for combining the

	robustness
 and 	optimality
 criteria into one scalar objective function�

An algorithmic strategy was also developed for evaluating the expectation of the cost

function over a neighborhood of aberrations� For problems constrained by state equations�

existing strategies for evaluating the expectation have usually been based on Monte�Carlo

integration techniques or more sophisticated variants of such methods� Such techniques

treat the state equation solver as a black box and require solving the state equations mul�

tiple times to obtain a reasonably accurate estimate of the integral� Since optimizing the

expectation involves many evaluations of the expectation� the computational task reaches

formidable proportions� The derivative�based approximation suggested in this paper makes

the computational task more tractable� but restricts the applicability of the method to

problems where the derivatives are available� The application of automatic di�erentiation

��

• 

--- -
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Figure ��� Pareto curve for weighted sum and its expectation subject to � � ����

techniques for �nding the derivatives of the state equations is one of the topics of future

research�
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 Appendix A� Normal�Boundary Intersection

Normal�Boundary Intersection �NBI� is a new technique for solving multicriteria optimiza�

tion problems� To describe NBI� let us �rst describe the multicriteria optimization problem

and other necessary terminology� In mathematical notation a multicriteria optimization

problem can be loosely posed as�

!min
x�C

"F �x� �

�
�����
f��x�

f��x�
���

fn�x�

�
����� � n � �� � � ��MOP �

where

C � fx � h�x� � �� g�x�� �� a � x � bg�
F � �N �� �n� h � �N �� �ne and g � �N �� �ni are twice continuously di�erentiable

mappings� a � �� � f��g�N � b � �� � f�g�N � where N is the number of variables� n the
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Figure ��� Variation in � along Pareto curve for weighted sum and its expectation subject

to � � �����

number of objectives� ne and ni the number of equality and inequality constraints�

The domain of F is called the decision space while its range is referred to as the objective

space �see �g� ���� The set of attainable objective vectors� fF �x� � x � Cg� is denoted by
F � so F � C �� F �

Since no single x� would in general minimize every fi simultaneously� a concept of

optimality which is useful in the multiobjective framework is that of Pareto optimality� To

acquaint readers not familiar with the concept� it is de�ned below�

A point x� � C is said to be �globally� Pareto optimal or a �globally� e�cient point for

�MOP� if and only if there does not exist x � C such that fi�x� � fi�x�� 	i � f�� �� � � � � ng
with at least one strict inequality�

It is possible to generate a set of Pareto optimal points by minimizing a convex com�

bination of the objectives� wTF �x�� over x � C� where wi � � 	i � f�� �� � � � � ng andPn
i�� wi � �� and performing the minimization for di�erent choices of w �see� among many

others� Koski ��
�� This very popular method su�ers from two major drawbacks in that it

fails to obtain nonconvex parts of the Pareto set and more importantly� does not yield a

uniform spread of points on the Pareto set given a uniform spread of w�

Some other necessary de�nitions are given below�

The shadow minimum or utopia point� F �� is de�ned as the vector containing the

��

* * * * * * * * * 

* 
* 

* 
+ + + + 

+ + + * 
* 

+ 
liE * * * * 

+ + + + 

* * 
+ + 



x

Objective

Space

O

F*

f1(x)

f2(x)

F(x2*)

F(x1*)

F = [f1, f2]’

Feasible

set

Figure ��� Mapping the feasible set to the objective space

individual global minima� f�i � of the objectives� i�e��

F � �

�
�����
f��
f��
���

f�n

�
����� �

Convex Hull of Individual Minima �CHIM�� Let x�i be the respective global minimizers

of fi�x�� i � �� � � � � n over x � C� Let F �
i � F �x�i �� i � �� � � � � n� Let # be the n� n matrix

whose ith column is F �
i �F �� sometimes known as the pay�o� matrix� Then the set of points

in �n that are convex combinations of F �
i � F �� i�e�� f#� � � � �n�

Pn
i�� �i � �� �i � �g� is

referred to as the Convex Hull of Individual Minima�

Of course� global minima are not available in practice� However� this does not pose

much of a problem in most cases as discussed extensively in Das ��
�

Given a convex combination vector �� #� represents a point on the CHIM � Let �n

denote the unit normal to the CHIM simplex pointing towards the origin� then #��t�n� t �
� represents the set of points on that normal� Then the point of intersection between the
normal and the boundary of F closest to the origin is the solution of the following nonlinear
programming problem�

max
x�t

t

s�t� #� � t�n � F �x�� F �

h�x� � � �NBI��

g�x� � �
a � x � b �

��



The vector constraint #� � t�n � F �x� � F � ensures that the point x is actually mapped

by F to a point on the normal� while the remaining constraints ensure feasibility of x with

respect to the constrained set in the original problem �MOP ��

The subproblem above is referred to as the NBI subproblem and written as NBI� � The

idea is to solve NBI� for various � and �nd several points on the boundary of F � e�ectively
constructing a pointwise approximation to the part of the boundary of F containing the

Pareto minimal set�

Solving NBI� for various � with the components of � evenly�spaced is equivalent to

	shooting a family of normals
 from a uniform grid of points on the CHIM towards the

Pareto boundary� Since the projection of the Pareto points hence obtained on the CHIM

are evenly spread� the points themselves are� Numerous instances of such even spreads of

points are provided throughout the paper� It has also been rigorously proved that the even

spread of Pareto points obtained using NBI is invariant with respect to the relative scales

of the multiple objective functions�

For more details� the reader is referred to Das ��
�
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