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Abstract— Wireless sensor networks (WSNs) have been the
popular targets for cyberattacks these days. One type of net-
work topology for WSNs, the scale-free topology, can effectively
withstand random attacks in which the nodes in the topology
are randomly selected as targets. However, it is fragile to
malicious attacks in which the nodes with high node degrees are
selected as targets. Thus, how to improve the robustness of the
scale-free topology against malicious attacks becomes a critical
issue. To tackle this problem, this paper proposes a Robustness
Optimization scheme with multi-population Co-evolution for
scale-free wireless sensor networKS (ROCKS) to improve the
robustness of the scale-free topology. We build initial scale-free
topologies according to the characteristics of WSNs in the
real-world environment. Then, we apply our ROCKS with
novel crossover operator and mutation operator to optimize the
robustness of the scale-free topologies constructed for WSNs. For
a scale-free WSNs topology, our proposed algorithm keeps the
initial degree of each node unchanged such that the optimized
topology remains scale-free. Based on a well-known metric for the
robustness against malicious attacks, our experiment results show
that ROCKS roughly doubles the robustness of initial scale-free
WSNs, and outperforms two existing algorithms by about 16%
when the network size is large.

Index Terms— Wireless sensor networks, robustness, scale-free
topology, multi-population co-evolution.

I. INTRODUCTION

W
IRELESS sensor networks (WSNs) [1]–[3] have

become a hot research field with a broad range of appli-

cations. Typically, WSNs deploy a large number of network

nodes within a certain area, and these nodes communicate with
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each other to monitor or control environmental parameters

such as temperature, lighting, etc. Due to the prevalence

of cyber-attacks, how to improve the robustness of WSNs

becomes an essential issue in recent years [4].

Network topology abstracts how nodes are connected in

a network. It is the foundation for communication activities

happening inside the network. Complex network theory [5]

studies the network topologies of an important class of net-

works called Complex Networks in which the topological

feature is neither purely regular (e.g., in a lattice graph [6])

nor purely random (e.g., in a random graph [7]). Actually,

many kinds of real-world networks such as the Internet, social

networks, brain networks, etc. are all complex networks.

There are two classic models in complex network theory,

one is small world topology and the other is scale-free topol-

ogy. The small world model has two notable features [8], [9],

which are small average path length and high clustering

coefficient [10]. It is generally used in modeling heteroge-

neous network topologies in WSNs [11]. On the other hand,

scale-free model is characterized by the power-law distribution

of node degrees, and mainly used in modeling homogeneous

network topologies [12], [13]. Since the scale-free model has

a power-law distribution of node degrees, it is robust against

random attacks, but vulnerable to malicious attacks [14].

Therefore, researchers have been focusing on how to enhance

scale-free topologies to withstand malicious attacks.

Some proposed approaches try to enhance the robustness

of networks with Genetic Algorithm(GA) [15]. Due to single

population of candidate solutions, it brings a typical limitation

called premature convergence [16], in which the evolution falls

into a local optimum too early, resulting in a solution far from

the global optimum. Besides, it is known that multi-population

genetic algorithm can effectively overcome this limitation

by using multiple populations to evolve together. Different

probability of crossover operator and mutation operator are

assigned to each population of multiple-population. Individ-

uals with high fitness values can be introduced into other

different populations through migration operator, which can

effectively prevent falling into a local optimum. Therefore,

in this paper, we propose to use multi-population co-evolution

to enhance the robustness of scale-free topologies. To validate

this idea, we give a concrete scheme called Robustness Opti-

mization with multi-population Co-evolution for scale-free
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wireless sensor networKS (ROCKS). ROCKS introduces novel

crossover and mutation operators to rewire the edges in net-

work topologies to enhance the robustness against malicious

attacks.

The rest of this paper is organized as follows. Section 2 dis-

cusses related work. Section 3 gives an overview of ROCKS.

Section 4 details the crossover operator and mutation operator

in ROCKS by giving their algorithms. Section 5 presents

simulation results on ROCKS and compare it with two existing

algorithms. Finally, Section 6 concludes this paper.

II. RELATED WORK

The scale-free network has the typical characteristics that

most nodes (ordinary nodes) have a small node degree,

while very few nodes (hub nodes) have very large node

degrees [12], [13]. This characteristic makes scale-free net-

works robust against random attacks (mostly occurring on

ordinary nodes), but fragile under malicious attacks (occurring

on hub nodes). This paper focuses on how to improve the

robustness of scale-free wireless sensor networks against mali-

cious attacks. Although increasing the number of links among

the nodes could enhance the robustness of scale-free networks,

it will destroy the scale-free characteristic of the network.

Besides, Increasing the number of links also increases the

energy consumption of the network. Therefore, we explore an

effective way to improve the robustness of scale-free WSNs

against malicious attacks, during which the initial degree of

each node keeps unchanged such that the optimized topology

remains scale-free [17].

Due to low node power and energy saving consideration,

some researchers are working to reduce energy consumption

and energy efficiency [18], [19]. WSNs has the following two

constraints: (1) the communication range of its nodes cannot

be arbitrarily long and (2) its node degrees cannot be arbi-

trarily large. Because of these two constraints, the traditional

method for constructing scale-free topologies, the Barabási

Albert model (BA model) [20], cannot be directly applied.

So, we apply the following method, which adapts the BA

model, to construct scale-free topologies for WSNs.

We add edges between nodes sequentially during the process

of constructing WSNs topology after judging whether they are

within the communication range. Here ‘sequentially’ means

that a pair of nodes cannot generate a new edge at the same

time. The local world of the newly joined node is composed of

the all the nodes within its communication range. If a node has

been connected with the newly joined node or it has reached

the maximum degree, it will be removed from the local world

of the newly joined node. Furthermore, the newly joined node

chooses neighbors to establish a connection by roulette method

according to the degree of nodes. And the newly joined node

prefers to connect with higher degree node in its local world.

In recent years, some researchers try to use the GA to

solve the problems encountered in the deployment of wireless

sensor networks. Shukla et al. [21] presented a GA-based

routing scheme, which established a trade-off between energy

efficiency and energy balancing. Elhoseny et al. [22] proposed

a self-clustering method for the heterogeneous networks using

GA that optimizes the network lifetime. Peiravi et al. [23]

gave a new GA-based clustering algorithm to simultaneously

optimize network lifetime and delay. Zhou and Liu [24] pro-

posed a new memetic algorithm to enhance the robustness of

scale-free network against malicious attacks, during which the

initial degree of each node kept unchanged. Especially, it is

a type of significant enhancing method combine both global

and local searching. But it does not consider the limitation of

communication range for WSNs nodes. In this paper, by using

the evolutionary optimization of GA, we try to explore the best

topology scheme for scale-free WSNs, during which the initial

degree of each node kept unchanged.

Besides, some researchers became interested in how to

effectively optimize the robustness of the scale-free network.

Based on percolation theory, Schneider et al. [25] proposed

a new metric of robustness. They considered the largest

connected subgraph [26] when one repeatedly removes the

highest-degree nodes in the network to weight the net-

work robustness. Buesser et al. [27] used probabilistic swap-

ping strategy to deal with the multimodal phenomenon and

enhances the robustness of scale-free network topology, named

Simulated Annealing algorithm. This algorithm also can be

used in the robustness of scale-free WSNs. But its efficiency

is greatly decreased because of redundant swapping edges.

Through determining the edges which need to be compared by

twice selections, Louzada et al. [28] gave a Smart Rewiring

method. But it does not consider the limitation of communi-

cation range for WSNs nodes, thus, it is not aimed for WSNs.

By using the new metric of robustness mentioned above,

Herrmann et al. [29] proposed a new algorithm named Hill

Climbing, which makes the network topology resemble a

stable onion-like structure through swapping edges. But it

has multimodal phenomenon which may cause the algorithm

jumping into a local optimum. Herrmann et al. also have

found that onion-like structure is more stable and robust

against malicious attacks. Thus, in previous work, we make

the evolution of individual topology towards the onion-like

structure in mutation operator to improve the robustness of

topologies against malicious attacks [30]. Basically, the con-

nections among nodes in onion-like structure exhibit the

following characteristics:

• Nodes with similar node degrees connect to each other.

• Node degrees gradually decrease from inner nodes to

outer nodes.

• The majorities of the nodes have small degrees and are

located in the outer layers of the onion-like structure.

III. OVERVIEW OF ROCKS

GA is a type of optimization algorithms that imitate the

behavior of natural selection in the biological world. It is

an iterative process of evolution involving a large number

of generations. A GA typically consists of the following

components:

• A population of individuals: each individual is a solu-

tion to the optimization problem; usually encoded as

a 0-1 string.
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• A fitness function: it typically calculates the metric for

optimization on each individual; used to rank individuals

for selection purpose.

• Crossover operator: in this operator, a pair of parents is

selected to breed children in the next generation. This

operator is typically designed to enable the children to

inherit the strengths from their parents and also exhibit

diversity.

• Mutation operator: in this operator, a child in the new

generation is typically changed in certain stochastic way

to increase the diversity of the new generation.

Crossover operators in GA is used to increase the genetic

diversity of the population by selecting different individuals as

parent samples to generate new offsprings. Mutation operator

is used to generate children with high fitness function values

directly. With the widespread application of conventional GA,

many defects are exposed. One of the fatal issues is the

premature convergence mentioned in the previous section.

To address the premature convergence issue, the multi-

population genetic algorithm in ROCKS brings the following

improvements:

The framework of the GA which only uses single population

to evolve is broken by using several populations to search

the optimal solution. For different populations, we adopt

different crossover probability Pcro and mutation probabil-

ity Pmut. Although the ranges of crossover probability and

mutation probability are suggested to set as Pcro(0.7-0.9) and

Pmut(0.001-0.05) respectively, their ranges are wide enough

to allow plenty of probability values being experimented. The

optimization results will differ greatly with different Pcro’s

and Pmut’s. Given the global search and local search at the

same time, we conduct experiments with various Pcro’s and

Pmut’s to pick the best values of them to prevent different

populations from falling into the local optimum.

Each population is independent and communicates with

each other through migration operator. migration operator will

move the optimal individual that appeared on each population

during evolution to other populations in each generation,

which achieves the gene exchange among populations.

The best individual that appears in each generation of

evolution is selected to compose the migration population.

We do not have the operation of crossover and mutation in

migration population, which ensures the best individual of

each population will not be destroyed. The migration popu-

lation is the foundation of migrant operator, which increases

the genetic diversity, and guarantees the fitness function to

search for the optimal solution in a wide range.

For given scale-free topologies for WSNs, we optimize their

robustness using ROCKS. Firstly, we convert the adjacency

matrix of topology to a binary-coded chromosome. To further

illustrate this operator, a topology with five nodes is converted

to a chromosome in Fig. 1. The topology consists of node i,
node j, node k, node l and node m, and the adjacency matrix is

a binary matrix. It is feasible to convert the adjacency matrix

into a chromosome directly. However, the storage space is

wasted and the operating complexity is increased in the GA

when dealing with a huge network. The adjacency matrix is

a symmetric matrix, and its upper triangular matrix is able

Fig. 1. The adjacency matrix is converted to a chromosome.

to completely represent the connections between nodes in

the network. We convert the upper triangular matrix to a

chromosome as shown in Fig. 1. It can shorten the length

of the chromosome and improve the efficiency of the GA.

Each individual will be evaluated in each generation of the

GA. We get the fitness value of individuals by calculating the

fitness function. Individuals of each population will be sorted

by the fitness value. Individuals with high fitness values are

more likely to be selected to enter the next generation. The

fitness function directly influences the evolution direction of

the GA. Thus, it is very important to construct an appropriate

fitness function for the ROCKS proposed in this paper.

In order to measure the robustness of the scale-free network

against malicious attacks, we use the attack strategy called

High Degree Adaptive (HDA) [31]. In HDA, all nodes in the

network are sorted according to their node degrees. In each

round of attack, the node with the highest degree and the edges

connected to this node are removed.

To evaluate the network robustness under the HDA attack,

Schneider et al. [25] proposed a metric called R, which

considers the maximal connected subgraph after each round

of attack. Specifically, R is defined in Eq. (1) below:

R =
1

N + 1

N∑

n=0

MCS(n)

N
(1)

Wherein, N represents the total number of nodes in the

network; n represents the nth round of attack; MCS(n)
represents the number of nodes in the largest connected sub-

graph after the nth round of attack; the summation considers

N round of attacks until all nodes are removed; and the

normalization factor 1/(N + 1) ensures that the networks with

different sizes and edge densities can be compared. Note that

the value of R lies in the range (0, 0.5] [29].

It is obvious that the higher the value of R is, the higher

the robustness of scale-free WSNs topology. Thus, we employ

metric R as the fitness function f(G) in ROCKS to measure

the robustness of WSNs topologies, which will guide all the

populations evolving to resist malicious attacks.

IV. ROCKS

A. Initialization Operation

Individual diversity at the initialization operation is the

basis of genetic diversity in evolutionary processe of ROCKS.

If the difference among individuals is little, the advantage
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Fig. 2. Initial topology and how to select edges for swapping. (a) Initial topology. (b) Select edges for swapping.

Fig. 3. Three edge-swapping methods. (a) Method1. (b) Method2. (c) Method3.

of crossover operator will disappear soon. And the evolution

of species will depend on the mutation operator only. Since

the probability of mutation operator is small, the evolution of

species will be close to a single state soon, which causes the

termination of evolution. In order to ensure that the individuals

among population have a big difference in the initial time,

we design the following initialization operation.

For an original topology of scale-free WSNs, the location of

every node is stationary. We make the following transformation

under the premise that the degree distribution does not change.

Firstly, we assign a random probability between [0,1] as Pinit

for each individual of each population. Pinit controls the

frequency of edge-swapping on the original topology. Then

for the selected edges, we select one of the following three

swapping methods in Fig. 3. Thus, each individual transformed

from the original topology is completely random and has a

large difference from others.

Fig. 2(a) is an original scale-free WSNs topology, and

we will do the initialization algorithm on it to generate a

new topology which is different from the original topol-

ogy but has the same degree distribution. Firstly, a random

number between [0,1] is generated as the edge-swapping

frequency Pinit. Then each edge of the topology is traversed

one by one. For each edge, Pinit is compared with a random

probability rv between [0,1]. If rv is more than Pinit, we will

proceed to the next edge. If rv is less than Pinit, we will

do the edge-swapping operation. As shown in Fig. 2(b),

We have selected edge e12 between node 1 and node 2 for

edge swapping operation. Then we traverse each edge of the

topology that is not adjacent to e12, and look for the object

of edge-swapping operation for e12. For e34 in Fig. 2(b),

both node 3 and note 4 are in the communication radius

of node 2, but they are not in the communication radius of

node 1. Thus, e34 is discarded. In the process of traversal,

we find a suitable edge e56, whose node 5 and node 6 are

in the intersection of node 1’s and node 2’s communication

ranges. Finally, we determine e12 and e56 for edge-swapping

operation. As shown in Fig. 3, (a), (b) and (c) correspond to

three candidate operations respectively. We randomly select

one of them to conduct edge-swapping. Fig. 3(c) means there

is no operation on the two selected edges. If a matching

object for e12 cannot be found after traversing all the edges of

topology, the edge-swapping operation for e12 will be aborted,

and we will traverse the remaining edges.

B. Crossover Operator

The optimization ability of genetic algorithm comes from

population genetic diversity. Crossover operator is used to
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Fig. 4. The process of crossover operator. (a) Step1. (b) Step2. (c) Step3. (d) Step4. (e) Step5. (f) Step6. (g) Step7. (h) Step8.

increase the genetic diversity of the population by selecting

different individuals as parent samples to generate new off-

springs. It has no fixed evolution direction in the ROCKS. Par-

ent topologies generate new children topologies by crossover

operator, which obtains a larger solution space. Thus, the fit-

ness function will search the best solution in a larger space.

Generally, crossover operator retains part of father and mother

genes, and eventually generates new children topologies. The

crossover operator in this paper keeps the initial degree of

each node unchanged, which means that we will preserve the

degree distribution of parent topologies.

Taking into account the communication range in WSNs,

we design the crossover operator as follows.

Suppose Gf and Gm are the father’s topology and mother’s

topology, respectively. And Gs and Gd are the son’s topology

and daughter’s topology, respectively. Firstly, the parents are

chosen by the probability Pcro of crossover operator in a

population. Then Gs inherits its father’s topology Gf and Gd

inherits its mother’s topology Gm. Obtain the following sets

of edges:

EG
f = {eij |eij ∈ Gf} (2)

EG
m = {eij |eij ∈ Gm} (3)

Ef = EG
f − (EG

f ∩ EG
m) (4)

Em = EG
m − (EG

m ∩ EG
f ) (5)

where, EG
f is the set of the father’s edges, and EG

m is the

set of mother’s edges. Ef and Em are the sets of father’s

exclusive edges and mother’s exclusive edges respectively.

Here ‘exclusive’ means an edge only exists in one par-

ent’s set but not the other. That is, Ef is totally different

from Em. Because the location of each node is stationary,

if one edge exists in Ef , we also can build it in Gd. Finally,

the son’s topology disconnects the existing edges to build

every mother’s exclusive edges Em, during which the initial

degree of each node is kept unchanged. And the construction

process of daughter’s topology is similar to above operation.

Fig. 4 illustrates the process of crossover operator.

Fig. 4(a) and Fig. 4(e) represent the connections between

nodes in the father’s topology Gf and mother’s topology Gm.

It can be seen that the father has an exclusive edge e12 between

node 1 with node 2 in Fig. 4(a), and mother has an exclusive

edge e34 between node 3 with node 4 in Fig. 4(e). According

to the criteria in crossover operator, we build the mother’s

exclusive edge e34 in the son’s topology (Fig. 4(d)), and the

father’s exclusive edge e12 in daughter’s topology (Fig. 4(h)).

Here is the detailed description about how father’s topology

(Fig. 4(a)) generates his son’s topology (Fig. 4(d)). In order to

generate a new edge e34 in Fig. 4(a), we select the candidate

nodes which have no edge with the node 3 in the neighbors

of the node 4. Then we calculate the distance of the candidate

nodes to the node 3. Finally, we sort the distances to generate

a candidate list in ascending order. As shown in Fig. 4(b),

the node 7 that is the neighbor of the node 4 and has no

edge with the node 3, is the nearest node to node 3. Node 3
searches each of its neighbor nodes in Fig. 4(c) until finds a

node which is in the communication range of the node 7 and

has no edge with the node 7. As shown in Fig. 4(c), the node 3
chooses its neighbor node 8, and we disconnect the edges e47

and e38 in Fig. 4(d). After that, we generate the edges e34 and

e78. Finally, we successfully generate a new edge e34 in son’s

topology (Fig. 4(d)). The degree of node 3 and node 4 both

equal to 3 before crossover operator, and after the operator

they still keep unchanged. Therefore, it is consistent with the

criterion that keeps the initial degree of each node unchanged.

The process that the mother generates its daughters topology is

similar to the above operations as shown in Fig. 4(e-g). Finally,

we can see the father’s exclusive edge e12 in the daughter’s

topology in Fig. 4(h).

Besides, when the father’s topology generates his son’s

topology, if the node 3 cannot find an eligible node to match

the node 7 which is the candidate neighbor of the node 4,
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Fig. 5. Candidates for the topology connection. (a) Select edges eij and ekl. (b) Candidate1. (c) Candidate2.

the node 4 will sequentially choose another candidate node

in the candidate list. And the node 3 will search all of its

neighbors for each candidate node until it finds an eligible

node to match the candidate node. If the node 3 still cannot

find an eligible node after traversing the candidate list of the

node 4, we give up generating this edge.

C. Mutation Operator

The mutation operator in ROCKS not only increases the

diversity of a new generation but also produces individuals

with high fitness values. We choose the individual by the

mutation probability Pmut. The goal of mutation operator is

to increase the robustness of the selected individual through

exchanging edges, during which the initial degree of each node

is unchanged. Metric R is used to measure the robustness of

topology. We search for optimal solution within the local area

by the mutation operator.

Herrmann et al. [29] have found that onion-like structure

is stable and robust against malicious attacks. The nodes with

similar degrees connect to each other in onion-like structure.

If a node with a large degree failed, another node with a large

degree will replace its function. Therefore, we can minimize

the adverse effects of failure nodes as much as possible, and

the network topology will remain robust. In order to make the

evolution of individual topology toward the onion-like struc-

ture, we generate a new edge between two nodes that have a

similar degree, during which the initial degree of each node

is unchanged. We select two edges in the individual topology

and judge the four end nodes of these two edges whether they

are in the communication range of each other to guarantee that

we can generate a new edge among these four nodes.

For the edges eij and ekl selected in Fig. 5(a), we propose

a criterion to sort degree and swap edges as follows Eq. (6).

d1 − d2 + d3 − d4

|di − dj | + |dk − dl|
< Pswap (6)

Wherein, di, dj , dk, dl are the degree of node i, node j,

node k and node l respectively. We sort them in descending

order, and name them as d1, d2, d3, d4. Pswap controls reduc-

tion ratio of degree difference. If the formula on the left is less

than Pswap, we will swap edges according to d1, d2, d3, d4.

There are two candidate strategies in Fig. 5(b) and Fig. 5(c).

Based on the criteria mentioned above, the nodes that have

similar degrees will connect with each other, thus enabling

the evolution of individual topology towards the onion-like

structure. Besides, the swapping threshold Pswap is defined in

[0, 1), and it cannot be 1 because the two edges will not be

swapped in that case. We control the efficiency of mutation

operator by adjusting the value of Pswap. The appropriate

swapping threshold Pswap can effectively avoid inefficient

swapping edges operation.

D. Migration Operator

The migration operator in ROCKS is designed to overcome

premature convergence. Individuals with high fitness values

can be introduced into other populations through migration

operator, which can effectively prevent falling into a local

optimum. We assign different mutation operator and crossover

operator probabilities for different populations, and the suit-

able individuals are selected in different populations in every

generation. Thus, genetic communication can be carried out

between different populations to prevent trapping into local

optima.

The migration operation is divided into three steps. Firstly,

we select the individual with the highest fitness value in

each population. This optimal individual will be temporarily

stored in an elite population. Secondly, the worst individual in

each population is selected. Finally, each optimal individual

stored in the elite population will be used to replace a worst

individual in a different population.

Fig. 6 depicts a complete process of migration operation.

Each population has ten individuals. And each column repre-

sents an individual, and its length indicates the value of the

individual fitness function. The longer the column is, the larger

the value of individual fitness function will be. We identify

the best individual of each population and mark it by bright

color in Fig. 6(a). The selected individuals make up the elite

population in Fig. 6(b). Then as shown in Fig. 6(b), the worst

individual in each population is identified and marked by red.

Finally, in Fig. 6(c), the current optimal individual of popula-

tion 1 is used to replace the worst individual of population 2.

The current optimal individual of population 2 is used to

replace the worst individual of population 3. And the current
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Fig. 6. Migration operator. (a) Select the optimal individual. (b) Identify the
worst individual. (c) Replacement.

optimal individual of population 3 is used to replace the worst

individual of population 1.

E. Algorithm Design

In this subsection, we detail the algorithms for the four

operations described in the previous subsections.

1) Initialization Algorithm: Algorithm 1 describes the

detailed process of initialization operation. The variables used

in the algorithm are as follows.

• G0: Original topology of a scale-free WSNs.

• Mpop: Size of population.

• Nind: Number of individuals.

• Ginit: The initialization matrix of the ROCKS.

• Giniti

j : The element of ith row and jth column of matrix

Ginit.

• E0: The sets of all edges in the initial network.

• En: The sets of all edges in the current network.

• rv: A random variable that uniformly distributed in [0,1].

• ComRangab: The intersection communication rang of

node a and node b.

• eNei
ab : The neighbor of eab.

Algorithm 1 ROCKS Initialization

Input: G0, Mpop, Nind.

Output: Ginit

1: for i = 1 : Mpop do

2: for j = 1 : Nind do

3: Giniti

j ← G0

4: En ← E0

5: Pinit = rand(0, 1)
6: for all eab ∈ En do

7: En = En − {eab}
8: rv ← rand(0, 1)
9: if rv < Pinit then

10: Search in En until find an edge ecd that:

11: ecd ∈ ComRangab and ecd /∈ eNei
ab

12: candidate ← A random number in [1, 2, 3];
13: if (candidate == 1) then

14: Remove {eab, ecd} from Giniti

j

15: Add {eac, ebd} to Giniti

j

16: else

17: if (candidate == 2) then

18: Remove {eab, ecd} from Giniti

j A

19: Add {ead, ebc} to Giniti

j

20: else

21: No operation

22: end if

23: end if

24: En = En − {ecd}
25: if The edge does not exist then

26: Continue
27: end if

28: end if

29: end for

30: end for

31: end for

• Pinit: The edge-swapping frequency.

• eab: The edge selected currently.

• ecd: The edge-swapping object of eab.

This algorithm works as follows. For the original topology,

a random probability between [0,1] is generated for every

initial topology, which is the Pinit (Lines 3 - 5). We tra-

verse each edge of the initial topology (Line 6). A random

number rv is generated to compare with the edge-swapping

frequency Pinit (Line 8). If rv is less than Pinit, we enter the

edge-swapping operation. Firstly, we find a target edge that

can be swapped with the edge selected currently in set En.

The target edge should satisfy the conditions in line 10. Then

the edge-swapping scheme is selected in random (Line 13).

Line 12 to line 22 is the specific of edge-swapping operation.

If the target cannot be found, the edge-swapping operation for

the current edge will be aborted (Line 24 - 26). Finally, each

individual of each initial population is assigned a different

topology from the original topology, but has the same degree

distribution with the original topology.

2) Crossover Algorithm: Algorithm 2 describes the detailed

process of crossover operator, which is an extremely important
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Algorithm 2 Crossover Operator

Input: Gi, Nind, Pcro.

Output: Gcroi

1: inum ← 0
2: Gcroi ← Gi

3: for j = 1 : Nind do

4: rv ← rand(0, 1)
5: if rv < Pcro then

6: reginum ← j
7: inum + +
8: end if

9: if (inum == 2) then

10: Gf ← Gi
reg1

11: Gm ← Gi
reg2

12: Ef = EG
f − (EG

f ∩ EG
m)

13: Em = EG
m − (EG

m ∩ EG
f )

14: Gs ← Gf

15: Gd ← Gm

16: /*Build every exclusive edge of father’s topology in

daughter’s topology*/

17: for all eij ∈ Ef do

18: Ef = Ef − {eij}
19: for all node k ∈ Lcand do

20: Select in Lstj until find node l that:

21: node l ∈ ComRangk and elk /∈ Ef

22: if node l exists then

23: Remove {eik, ejl} from Gd

24: Add {eij , ekl} to Gd

25: Break
26: end if

27: end for

28: if node l does not exist then

29: Continue
30: end if

31: end for

32: /*Build every exclusive edge of mother’s topology in

son’s topology as above*/

33: Gi
reg1

← Gs

34: Gi
creg2

← Gd

35: inum ← 0
36: end if

37: end for

part of ROCKS. The variables used in the algorithm are as

follows.

• Gi: The set of individuals in the ith population.

• Pcro: The probability of crossover operator.

• Gcroi : The ith population after the crossover operator.

• reg: The index of individual that participates in crossover

operator.

• reginum: The inumth element in register reg.

• Gi
reg1

: Topology of the reg1th individual of the ith
population.

• Gf : The father’s topology in crossover operator.

• Gm: The mother’s topology in crossover operator.

• Gs: The son’s topology in crossover operator.

• Gd: The daughter’s topology in crossover operator.

• EG
f : The sets of edges in the father’s topology.

• EG
m: The sets of edges in the mother’s topology.

• Ef : The sets of father’s exclusive edges.

• Em: The sets of mother’s exclusive edges.

• eik: The edge selected currently.

• ejl: The edge-swapping object of eik.

• Lsti: The list of neighbors connected to node i.
• Lstj: The list of neighbors connected to node j.

• ComRangk: The communication rang of node k
• Lcand: The list of candidate node that ascending sort the

distances of node in Lsti to node j.

Every individual of the input population will be traversed

(Line 3). A random number rv between [0,1] is generated

to compare with the probability of crossover operator Pcro

(Line 4). If rv is less than Pcro, the current individual will

be selected as one of the parent topology (Lines 5 - 6).

After we have a couple of individuals, the crossover opera-

tor is beginning (Line 8). One of the couples becomes the

father’s topology Gf , and the other becomes the mother’s

topology Gm (Lines 9 - 10). Then we get the set of father’s

exclusive edges Ef and the set of mother’s exclusive edges

Em (Lines 11 - 12). The son’s topology inherits its father’s

topology, and the daughter’s topology inherits its mother’s

topology (Lines 13 - 14). Then we build every exclusive

edge of father’s in daughter’s topology (lines 15 - 30), which

has been described in detail in Section 4.2. This process

continues until every father’s exclusive edge has been rebuilt

in daughter’s topology. The method of generating the son’s

topology is similar to the above operations. Finally, the son

replaces its father’s position and the daughter replaces its

mother’s position in the population (Lines 32 - 33).

3) Mutation Algorithm: Algorithm 3 describes the detailed

process of mutation operator. The variables used in the algo-

rithm are as follows.

• Pmut: The probability of mutation operator.

• Pselect: The frequency of select edges.

• Pswap: The threshold of swapping edges.

• Gmuti : The ith population after the mutation operator.

• Ptemp: The temporary ratio value of degree change.

• Gmuti

j : The topology of the jth individual of the ith
population in mutation operator.

• Gmut: The target topology of crossover operator.

• EG
mut: The sets of edges in the current topology.

• eij : The edge selected currently.

• ekl: The edge-swapping object of eik.

• ComRangij : The intersection communication rang of

node i and node j.

• eNei
ij : The neighbor of eij .

• index: Records the original index of end nodes in

selected edges.

• R1: Robustness of the target topology before operation.

• R2: Robustness of the target topology after operation.

Every individual of the input population is traversed

(Line 2). A random number rv between [0,1] is generated

to compare with the probability of mutation operator Pmut

(Line 3-4). If rv is less than Pmut, the current individual
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Algorithm 3 Mutation Operator

Input: Gi, Nind, Pmut, Pselect, Pswap.

Output: Gmuti

1: Gmuti ← Gi

2: for j = 1 : Nind do

3: rv ← rand(0, 1)
4: if rv < Pmut then

5: for all eij ∈ EG
mut do

6: EG
mut = EG

mut − {eij}
7: rv2 ← rand(0, 1)
8: if rv2 < Pselect then

9: Search in EG
mut until find an edge ekl that:

10: ekl ∈ ComRangij and ekl /∈ eNei
ij

11: Ptemp = d1−d2+d3−d4

|di−dj|+|dk−dl|

12: if Ptemp < Pswap then

13: Gmut ← Gmuti

j

14: R1 ← CalculateRobust(Gmuti

j )
15: if (index(1) + index(2) = 5) then

16: Remove {eij , ekl} from Gmut

17: Add {eil, ejk} to Gmut

18: else

19: Remove {eij , ekl} from Gmut

20: Add {eik, ejl} to Gmut

21: end if

22: R2 ← CalculateRoust(Gmut)
23: if R2 > R1 then

24: Gmuti

j ← Gmut

25: end if

26: EG
mut = EG

mut − {ekl}
27: if the edge does not cexist then

28: Continue
29: end if

30: end if

31: end if

32: end for

33: end if

34: end for

will be chosen to participate mutation operator. Then every

edge of the selected individual will be traversed (Line 5).

In order to control the frequency of individual’s mutation

operations, we generate another random number rv2 between

[0,1] to compare with the frequency of mutation operator

Pselect (Line 7-8). If rv2 is less than Pselect, we find the target

edge for the current edge (Line 9-10). We sort the degrees

of node i, node j, node k and node l in descending order,

and name them as d1, d2,d3, d4. Then we get the temporary

ratio value Ptemp of degree change, and compare it with

the a threshold of swapping edges Pswap (Lines 11). Only

when Ptemp is less than Pswap, we execute the edge-swapping

operation. In this situation, the scheme of the operation is

determined (Lines 13 - 21). The robustness of topology

before and after the edge-swapping operation are calculated

by CalculateRoust (Lines 14, 22). After the edge-swapping

operation, if the metric R opposed to before does not increase,

the edge-swapping operation will be canceled (Lines 23 - 25).

Algorithm 4 ROCKS

Input: G0, Mpop, Nind, MaxGen,

Pcro, Pmut, Pselect, Pswap.

Output: GR

1: Gp ← Initialization(G0, Mpop, Nind)
2: P cro ← Pcro + (ConCro − Pcro) ∗ rand(Mpop, 1)
3: Pmut ← Pmut + (ConMut − Pmut) ∗ rand(Mpop, 1)
4: genSafe ← 1
5: for i = 1 : Mpop do

6: ObjV i = ObjectFunction(Gpi)
7: end for

8: while (genSafe < MaxGen) do

9: for i = 1 : Mpop do

10: G∗ ← Gpi

11: G∗ = Cros_OP (G∗, Nind, P
cro
i )

12: G∗ = Mut_OP (G∗, Nind, P
mut
i , Pselect, Pswap)

13: ObjV Sel = ObjectFunction(G∗);
14: [Gpi , ObjV i] = ReiCh(Gpi , ObjV i, G∗, ObjV Sel)
15: maxObjV (genSafe, i) = max(ObjV i)
16: end for

17: for i = 1 : Mpop do

18: [MaxSubscript] = MaxPo(Gpi , ObjV i)
19: nexti = i + 1
20: if nexti > Mpop then

21: nexti = mod(nexti, Mpop)
22: end if

23: [MinSubscript] = MinPo(Gpnexti , ObjV nexti)
24: G

pnexti

MinSubscript ← Gpi

MaxSubscript

25: ObjV nexti

MinSubscript ← ObjV i
MaxSubscript

26: end for

27: EliteIndul(MaxObjV, MaxChromG, Gp, ObjV )
28: genSafe = genSafe + 1
29: end while

30: GR ← MaxChromG

Besides, if the target edge for the current edge cannot be found,

the operation of the current edge also will be canceled. This

process continues until every edge of the selected individual

has been visited.

4) ROCKS: Algorithm 4 describes the detailed process of

ROCKS. The variables used in the algorithm are as follows.

• GR: The individual topology that has the current best

robustness in ROCKS.

• Gp: The sets of all current populations, and each row

represents a population.

• P cro: The sets of crossover operator probabilities of all

populations.

• P cro
i : The crossover operator probabilities of ith popula-

tion.

• Pmut: The sets of mutation operator probabilities of all

populations.

• Pmut
i : The mutation operator probabilities of ith

population.

• ConCro: The benchmark of P cro.

• ConMut: The benchmark of Pmut.

• genSafe: The current generation.
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• Gpi : The ith population of ROCKS.

• Gpnexti : The nextith population of ROCKS.

• G∗: The current population.

• ObjV : The sets of fitness values for all populations.

• ObjV i: The sets of fitness values for ith population.

• ObjV Sel: The sets of fitness values of current operating

population.

• MaxSubscript: The index of the best individual in the

current population.

• MinSubscript: The index of the worst individual in the

current population.

• Gpi

MaxSubscript: The best individual topology in ith pop-

ulation.

• G
pnexti

MinSubscript: The worst individual topology in nextith
population.

• ObjV i
MaxSubscript: The fitness value of the best individ-

ual in ith population.

• ObjV nexti

MinSubscript : The fitness value of the worst indi-

vidual in nextith population.

• MaxObjV : The fitness values of the best individual in

ROCKS.

• MaxChromG: The best individual topology that appears

in ROCKS.

This algorithm works as follows. By using the initialization

function (Algorithm 1), ROCKS assigns different topologies

to each individual of each population based on the original

scale-free WSNs topology (Line 1). In order to assign a

pair of different crossover operator and mutation operator

probabilities for different populations, a sliding variable is

added to Pcro and Pmut (Lines 2 - 3). Before the optimization

starts, the initial fitness values of each population are calcu-

lated (Lines 5 - 7). Then the ROCKS begins. The crossover

operator (Algorithm 2) and mutation operator (Algorithm 3)

are performed on each population in turn (Lines 9 - 12),

and we get the fitness values ObjV Sel of current population

(Line 13) by ObjectFunction. For the genSafeth generation

of ith population, we put it in the (genSafe−1)th generation.

And according to their fitness values, the best individuals are

selected as the genSafeth population by the function ReiCh
(Line 14), which guarantees that the outstanding individuals

of two generations can be retained. The best individual for

each population of each generation is stored in maxObjV
(Line 15). When all the populations have performed the

above operations in one generation, the migration operation

begins.

All populations will be traversed (Line 17). We find out the

index MaxSubscript of the individual with the best fitness

value in ith population by the function MaxPo (Line 18),

and the index MinSubscript of the individual with the worst

fitness value in (i + 1)th population by the function MinPo
(Line 19 - 23). Then we use the MaxSubscriptth individual

topology of ith population to replace the MinSubscriptth
individual topology of (i + 1)th population (Line 24 - 25).

After migration operation, the best individual that appear in the

current populations is searched by the function EliteIndul.
MaxObjV and MaxChromG preserves its fitness values and

topology (Line 27). This process continues until the number of

generations genSafe reaches MaxGen. Finally, the topology

Fig. 7. The effect of parameter Pswap on the performance of ROCKS.

of the best individual that appear in the last generations

MaxChromG is assigned to GR (Line 30).

V. SIMULATION RESULTS

We simulate ROCKS in MATLAB. The nodes are deployed

randomly in a disk area with a diameter equal to 500m.

Considering that each node must have sufficient neighbors in

the initial topology, the communication range is set to 200m,

and each node has 2 edges. We set the number of populations

Mpop as 10, and the number of individuals in a population

Nind as 20. These two parameters are determined to be optimal

for ROCKS by a large number of experiments.

A. The Threshold of Swapping Pswap in

Different Edge Densities

The threshold of swapping edges Pswap is determined by

experiment. The parameters of experiment are set as follows:

N = 100 and MaxGen = 200, and the edge density M is

[2, 3, 4, 5]. The value of Pswap slides from 0.1 to 1 and the

interval is 0.1. Each round of experiments uses the same initial

topology, and all results correspond to the average of k(k >
10) independent runs. Finally, we get the trend of R/R(init)
with the change of Pswap value.

In Fig. 7, the x-axis represents the value of Pswap, and the

y-axis represents the ratio of the optimized R with the initial

R. With the increase of Pswap value, the effect of ROCKS

optimization increases slowly, the optimal value is obtained

at Pswap = 0.9 in different value of M . When the value of

Pswap = 1, the optimization effect declines. Thus, we use

Pswap = 0.9 in the next experiment.

B. Comparison Between Conventional GA and ROCKS

In this section, we make a comparison of the ROCKS and

conventional GA. In order to observe a comprehensive effect

under the same condition, the evolution of 10 independent

populations in conventional GA is compared with ROCKS.

The parameters of the experiment are set as follows: N = 100,

Nind = 20, MaxGen = 200. Besides, the probabilities

of crossover operator and mutation operator in each single
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Fig. 8. The comparison between conventional GA and ROCKS. (a) Conventional GA. (b) ROCKS.

Fig. 9. Comparison between before and after ROCKS. (a) 100 nodes, before optimized, R = 0.1686. (b) 100 nodes, after optimized, R = 0.2537.

population are equal to those in multi-population. The initial

topology of each population is identical in the two experi-

ments. Fig. 8(a) shows the trend of the best individual fitness

values of each generation in the evolution of 10 indepen-

dent populations. And Fig. 8(b) shows the trend of the best

individual fitness values of each generation in the evolution

of ROCKS.

It can be seen from the experiments that the ROCKS

achieves a great improvement in optimization compared with

the conventional GA. As shown in Fig. 8(a), the evolution of

each population is independent in the conventional GA. And

the optimization effect of each population is affected by the

values of crossover operator and mutation operator probabili-

ties. The optimization results are very different, and the final

optimal value also cannot reach a high level in the conven-

tional GA. ROCKS (as shown in Fig. 8(b)) uses co-evolution

and migration operations among populations. The excellent

individuals are introduced to the other populations in every

generation, which avoids falling into local optimum caused

by an inappropriate pair of crossover and mutation operator

probabilities. The above experiments show that through using

the co-evolution of the ROCKS, premature convergence can be

avoided effectively, and a better optimization result can be got.

Fig. 8(b) also illustrates that the metric R increases with the

number of generations of ROCKS. At the beginning, the metric

R of the initial topology is low, and the value of R increases

obviously from 1st to 70th generation. After 70th generation,

the optimization result increases slowly due to the value of R
has increased to a high level.

C. Comparison Between Before and After ROCKS

In order to compare the network topology changes before

and after the experiment, we designed the experiment in this

section. The parameters of the experiment are set as follows:

N = 100, Nind = 20, MaxGen = 200.

As shown in Fig. 9, the total number of nodes in scale-free

WSNs topology is 100. The initial topology is shown

in Fig. 9 (a). The size of the node represents its degree, and

the greater diameter of the node means that it has the greater

degree. The metric R is 0.1686 before optimization, and the

metric R increases to 0.2537 after optimization. We can see

that the nodes which have similar degrees connect with each

other in Fig. 9(b). Finally, our proposed algorithm makes the

network topology close to the onion-like structure.
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Fig. 10. The comparison between difference operations of ROCKS.

D. Comparison Among Difference Operations of ROCKS

we designed the experiment in this section to observe the

effect of different operations in optimizing the robustness of

network topology. The parameters of the experiment are set

as follows: Nind = 20, MaxGen = 200, and total number of

nodes N is [100, 150, 200, 250, 300].
Fig. 10 shows the comparison between difference operations

of ROCKS. The blue line represents the initial network. The

green line represents using crossover operator only. And the

orange line represents using crossover operator and mutation

operator. The purple line represents ROCKS, which include

migration operator. As the number of nodes increases, the opti-

mization effect shows a downward trend. Besides, all operators

improve the optimization effect. Especially, when all operators

are grouped together in ROCKS, the best optimization can be

obtained.

E. Comparison on the Network Connectivity

Before and After ROCKS

In order to observe the attack effect intuitively, the number

of nodes in the maximally connected subgraph after removing

the attacked node is used to measure the status of network

connectivity. As shown in Fig. 11, the green line represents

the initial topology, and the orange line represents the topology

optimized by ROCKS. Besides, the blue line represents a fully

connected network, in which all the nodes are connected to

each other.

Random attack refers to that we select randomly nodes and

remove all the edges with them. In order to observe the effect

of random attack visually, we only attack a node each time

until all the nodes have been attacked. The attack strategy is

attacking a node randomly every second.

As shown in Fig. 11(a) and Fig. 11(b), After one random

attack, the number of nodes in the maximal connected sub-

graph of fully connected network only reduces one. It can

be seen that the two lines are basically consistent. After

the optimization, the robustness of network against random

attack is consistent with the initial topology, which means

the characteristic of topology against random attack is not

destroyed.

Fig. 11. Comparison on the network connectivity before and after ROCKS.
(a) 100 nodes under random attacks. (b) 200 nodes under random attacks.
(c) 100 nodes under malicious attacks. (d) 200 nodes under malicious attacks.

Malicious attack of network refers to attack the important

nodes, which leads to the collapse of entire network within

short time. Unlike the random attack, malicious attack is a
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purposeful attack. We calculate the degrees of each node in

the experiment. The bigger the degree of a node, which means

that it connects with more nodes, the more important it is in

the network. In order to simulate malicious attack, the node

with the biggest degree is the first target to be attacked. The

attack strategy is attacking a node purposefully every second.

The initial topology and the optimized topology are compared

under the same conditions against malicious attack, and the

number of nodes in maximal connected subgraph after each

malicious attack are recorded.

As shown in Fig. 11(c) and Fig. 11(d), the orange line

is closer to the blue line, which means that the topology

after optimized by ROCKS is closer to the fully connected

network ubder against malicious attack. For malicious attacks,

the optimized network is more robust than initial network.

Thus, ROCKS can significantly enhance the robustness of

network against malicious attack.

F. Comparison Between ROCKS and Other Algorithms in

Different Edge Densities

In this subsection, we compare the ROCKS with the

Hill Climbing algorithm [29] and the Simulated Annealing

algorithm [27] for robust optimization under different edge

densities. The parameters of the experiment are set as follows:

N = 100, Mpop = 10, Nind = 20, MaxGen = 200, and the

edge density M is [1, 2, 3, 4, 5]. The edge density M represents

the number of edges connected to each node in the original

topology. The same comparison tests are in the same condition,

which means that the initial topology is the same. All results

correspond to the average of k (k > 10) independent runs.

In the simulation of Hill climbing, each edge of topology is

traversed. For every selected edge, the rest edges are traversed

until find an edge in its communication range. The metric

R of the new combinations in the two reconnected edges

will be calculated. Select the combination in which metric

R is increased to reconnect the two edges. If metric R do

not increase, the two edges will not be swapped. The above

operation will continue until all edges are traversed.In the

simulation of Simulated Annealing, each edge of topology

is traversed. For every selected edge, an edge in its com-

munication range will be found in the reset edges. For the

two selected edges, the metric R of the candidate edge-swap

operation will be calculated. If metric R increases, we accept

candidate edge-swap operation. If metric R is decreased, can-

didate edge-swap operation will be accepted in a determined

probability T , which is called simulation temperature and is

set as 0.001. If the decrease in metric R is accepted, the value

of probability T will be halved.

It can be seen from Fig. 12 that with the increase of the

edge density of the scale-free WSNs, all the three algorithms

improve the metric R over the initial network topology signifi-

cantly, which means the ability of the network topology against

malicious attacks increases gradually. With the increase of net-

work edges density, both the three algorithms present a similar

trends. The optimization compared with the initial topology is

not obvious when the edge density is too large or too small.

A appropriate edge density can make the optimization effects

Fig. 12. Comparison between ROCKS and other algorithms in different edge
densities.

of the three algorithms more easy to observe. Besides, for

different edges densities of scale-free WSNs topology, ROCKS

always has a better optimization results compared with the

traditional optimization algorithms.

G. Comparison Between ROCKS and Other Algorithms in

Different Network Sizes

Based on the original scale-free WSNs topology, we com-

pare our algorithm with two existing algorithms, namely Hill

Climbing algorithm and Simulated Annealing algorithm.

The working principles of Hill Climbing and Simulated

Annealing are briefed as follows: Hill Climbing belongs to

local search algorithms. The Hill Climbing algorithm only

compares with the previous optimization state and the next

optimization state. When it is better than the previous state

and the next state, it considers the current state as the optimal

solution. Although the efficiency of Hill Climbing is relatively

high, the quality of the optimal solution is relatively poor.

Simulated Annealing introduces random factors to its search

process. Simulated Annealing accepts a solution that is worse

than the current solution with a certain probability, so it is

possible to jump out of this local optimal solution and reach

a global optimal solution.

Both of these algorithms keep the initial degree of every

node unchanged in experiment. Fig. 13 shows that the

optimization results of Hill Climbing algorithm, Simulated

Annealing algorithm and our proposed algorithm in different

sizes of scale-free WSNs topology. The size of scale-free

topologies is set as 100, 150, 200, 250, 300 nodes, respectively.

The results are the average of k (k > 10) independent experi-

ments and each scale-free WSNs topology remains connected

after optimization.

As can be seen in Fig. 13, all the three algorithms improve

the robustness of the initial topology significantly. The per-

formance of the Simulated Annealing algorithm is better

than the Hill Climbing algorithm. All the three algorithms

present a downward trend with the increase of network sizes.

ROCKS always has the best performance results in robustness

optimization than the other two algorithms in WSNs.
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Fig. 13. Comparison between ROCKS and other algorithms in different
network sizes.

VI. CONCLUSION

Due to the characteristics of WSNs, such as limited com-

munication range and limited node degree, the traditional

BA model in wired network is no longer suitable. We first

gave an adapted method from the BA model to construct

scale-free topologies for WSNs. Then, we proposed a scheme

called ROCKS to optimize the robustness of the constructed

scale-free topologies. In this ROCKS, we designed two novel

operators, namely crossover operator and mutation operator.

Under the evolution of these two operators, the initial degree

of each node is unchanged, thus the scale-free property is

preserved. Finally, we simulate our algorithm and two existing

algorithms on their performances in improving the robustness

of scale-free WSNs topologies under different edge densi-

ties and network sizes. The experiment results show that

our algorithm can significantly improve the robustness of

scale-free WSNs against malicious attacks. With the network

size increasing, the values of R in two existing algorithms drop

quickly, but ROCKS still maintains the values of R at a high

level.

ROCKS is designed for enhancing the robustness of WSNs

in a centralized system, which needs the information of the

entire scale-free network topology.We will further focus on

WSNs in a distributed system, and explore the application of

multi-population co-evolution algorithm in it.
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