
Robustness Principles for Public Key Protocols

Ross Anderson and Roger Needham
Cambridge University Computer Laboratory

Pembroke Street, Cambridge, England CB2 3QG

Abstract: We present a number of attacks, some new, on public key pro-
tocols. We also advance a number of principles which may help designers avoid
many of the pitfalls, and help attackers spot errors which can be exploited.

1 Introduction

Cryptographic protocols are typically used to identify a user to a computer
system, to authenticate a transaction, or to set up a key. They typically involve
the exchange of about 2-5 messages, and they are very easy to get wrong: bugs
have been found in well known protocols years after they were first published.
This is quite remarkable; after all, a protocol is a kind of program, and one would
expect to get any other program of this size right by staring at it for a while.

A number of remedies have been proposed. One approach is formal math-
ematical proof, and can range from systematic protocol verification techniques
such as the BAN logic [BAN891 to the case-by-case reduction of security claims
to the intractability of some problem such as factoring.

Another approach is to try to encapsulate our experience of good and bad
practice into rules of thumb; these can help designers avoid many of the pitfalls,
and, equally, help attackers find exploitable errors. A recent paper by Abadi and
Needham undertook this exercise for cryptographic protocols in general [AN94].

The two approaches - formal proofs and structured design rules - are
in many ways complementary. On the one hand, we expect that robust design
principles will help us construct protocols which are more amenable to formal
verification; on the other hand, protocol errors thrown up by formal analysis
may lead us to new insights into the nature of robustness.

Mathematical techniques are also liable to error - quite a few protocols
which had been ‘proved’ secure have been successfully attacked (see, e.g., [PW91]
[DB93] [PW95]). These failures are typically due to assumptions which were not
made explicit, and we believe that robustness principles are a large part of the
solution: if they force us to consider more of the security dependencies, and
from a number of aspects, then we will be less likely to produce a ‘proof’ which
neglects a real weakness.

Our goal here is to push the state of the art a little further and deal with
more complex protocols, and in particular with public key schemes. Curiously
enough, although public key algorithms are based more on mathematics than
secret key algorithms, and have much more compact mathematical descriptions,
public key protocols have proved much harder to deal with by formal methods.

In this paper, we propose a number of principles. We present a number of
new attacks, and give a (hopefully) new perspective on some old ones.

D. Coppersmith (Ed.): Advances in Cryptology - C,RYPTO ’95, LNCS 963, pp. 236-247, 1995.
0 Spnnger-Verlag Berlin Heidelberg 1995

237

2 The Order of Encryption and Signature

We will start by expanding on the fifth principle from [AN94].

Principle 1: Sign before encrypting. If a signature is affixed to encrypted
data, then one cannot assume that the signer has any knowledge of
the data. A third party certainly cannot assume that the signature is
authentic, so nonrepudiation is lost.

This was motivated by attacks in which the opponent could remove a sig-
nature from an encrypted message and replace it with one of his own - X.509
[CCITT88] suffered from such an attack. However, there is an even more power-
ful attack on several protocols which do encryption before signature, including
X.509 and a number of the proposals in IS0 CD 11770 [ISO94a].

Suppose that Alice wishes to use RSA [RSA78] with a modulus of 500 - 600
bits to send Bob the message M. The standard technique would be for her to
first sign the message with her private key and then encrypt it with his public
key. However, suppose that Alice first encrypts A4 under Bob’s public key and
then signs it with her private key. Denoting the modulus, public exponent and
private exponent of party a by n,, e, and d,, and ignoring hashing (as it makes
no difference to our argument), the signed encrypted message would be:

This is vulnerable, and in a novel way. Since Bob can factor ng and its factors
are only 250-300 bits long, he can work out discrete logarithms with respect to
them and then use the Chinese Remainder theorem to get discrete logs modulo
ng. So if he wants to get Alice’s ‘signature’ on a different message, M‘, he can
find x such that

[M’]” = M (mod n g) (2)

He then registers (zeg, n ~) as a public key with a certification authority, and
claims that the message signed by Alice was not M but M’.

This provides a direct attack on CCITT X.509, in which Alice signs a message
of the form {TA, N A , B, X, { Y } e B (mod n ~) } and sends it to Bob. Here TA is
a timestamp, NA is a serial number, and X and Y are user data. I t also breaks
the draft IS0 CD 11770; there, Y consists of A’s name and a random challenge
in key agreement mechanism 5, and A’s name followed by a session key in key
transport mechanisms 2, 5 and 6.

The attack is not limited to RSA: it works with ElGamal too [Elg85], provided
this time that Bob can choose his own modulus. %call that in ElGamal the
message rn is encrypted to (r , c) where T = gk (mod p),
the message key is k, the recipient’s private key is I, and his public key is
y = 9”. Suppose that Bob selects a so-called ‘trapdoor’ modulus, under which

(mod p) , c = ykrn

238

he can work out discrete logarithms [RLS+92]. Then, for any given m', r and c,
he can find a suitable y' such that (f l) k = rn'/c.

The obvious countermeasure, of requiring all users to share the same modu-
lus, may be politically difficult, as attempts have been made in the past to foist
suspect moduli on the user community [And93a].

Key spoofing attacks are also possible on symmetric systems. For example,
given a message M and a ciphertext C, the effort required to find a key such
that C = { M } K is about 25s when the algorithm used is single key DES, but
thanks to the birthday problem it is only 228 or so with double key DES. There
are systems where a single, double DES encrypted block is used to authorise a
payment, such as described in [And92b] - although that particular system is
not vulnerable as one of the two keys is fixed.

With public key systems, key spoofing attacks seem easy to prevent - just
always sign before encrypting. However, inverting the order of encryption and
signature is a surprisingly common misfeature. A recent internet cash proposal
[Oto94] also used it, and Kailar pointed out that this destroyed accountability
in the invoicing system [Kai95]. Our attack goes'further; it could allow invoices
to be forged. It also dents a protocol for anonymous credit cards [LMP94I1.

Encryption before signature can also cause problems for formal verification
techniques. The BAN logic ignores the algorithm issues, but at least it will not
verify that Alice signed M in equation (1) above as she has no jurisdiction over
ng. Kailar's logic also rejects a signed encrypted message.

However, the verification tools which do try to deal with algorithm properties
(such as those discussed in [KMM94]) do not seem able to deal with this attack at
all. In order to fix this, the scope of their assumptions may need to be extended;
one conventionally worries about the factorisation properties of RSA keys, not
their discrete log properties, and the worry about trapdoor primes has been that
users might be attacked by authority, rather than by each other.

In any case, it is prudent to sign before encrypting.

3 Spot the Oracle

Nonrepudiation is complicated by the fact that signature and decryption are
the same operation in RSA, which many people use as their mental model of
public key cryptography. They are actually quite different in their semantics:
decryption can be simulated, while signature cannot. By this we mean that an
opponent can exhibit a ciphertext and its decryption into a meaningful message,
while he cannot exhibit a meaningful message and its signature (unless it is one
he has seen previously).

Consider for example the following protocol by Woo and Lam [WL92]:

message 2 in the extension of credit protocol can be arbitrarily manipulated by Ep

239

Message 1 A - S: A, B
Message 2 S - A: CB
Message 3 A - B: {A, NA}KB
Message 4 B - S: A, B, {NA}KS
Message 5 S - B: CA, { { N A , KAB, A, B}KS-I}KB
Message 6 B -A: {{NA,KAB,A,B}KS-I}KA
Message 7 A - B: {NA}K*~

Here we are using the standard notation from [BAN89]: CX is a certificate
containing the public key K X of participant S; the corresponding private key
is KX-’; Nx is a nonce generated by participant X; h;as is a shared secret
between Alice and Bob (which it is the purpose of the protocol to generate), and
Sam is the key distribution centre.

There are a number of problems with this protocol, including the obvious
one that Bob has no assurance of freshness (he does not check a nonce or see
a timestamp). However, a subtler and more serious problem is that Alice never
signs anything; the only use made of her secret is to decrypt a message sent to
her by Bob. The consequence of this is that Bob can only prove Alice’s presence
to himself - he cannot prove anything to an outsider, as he could easily have
simulated the entire protocol run. The effect that such details can have on the
beliefs of third parties is one of the interesting (and difficult) features of public
key protocols: few of the actual or proposed standards provide a robust nonre-
pudiation mechanism, and yet there is a substantial risk that many of them may
be used as if they did.

We shall return to this topic later. For the meantime let us just say that we
must be careful what we mean by ‘Bob’. This may be ‘whoever controls Bob’s
signing key’, or it may be ‘whoever controls Bob’s decryption key’. Both keys are
written as KB-’ in the standard notation, but they are actually rather different.

Principle 2: Be careful how entities are distinguished. If possible avoid
using the same key for two different purposes (such as signing and de-
cryption), and be sure to distinguish different runs of the same protocol
from each other.

Beaver’s attack on Den Boer’s oblivious transfer protocol falls into this cat-
egory: when the same public key primitive is reused in the oblivious transfer
context, various sneaky attacks become possible [Bea92]. Also, Landrock re-
cently pointed out that if someone uses the same key in the IS0 protocols for
signature and zero knowledge proof, there is a massive security failure: the zero
knowledge protocol can be used as an oracle to generate signatures [Lan95].

Woo and Lam’s protocol also suffers from an oracle problem: if decryption
and signature are performed using the same key, then Sam can be impersonated.
This is because between messages 4 and 5 , he decrypts a nonce NA sent to him
encrypted under his own public key.

Even where keys are only used for one purpose, there may still be an oracle
attack; a recent example was found in the documentation for Lotus Notes In-

240

ternals [Dwo94]. Oracle at.tacks can be fixed in various ways, such as by explicit
typing of nonces, or by using different keys for different purposes (as Lotus ap-
parently do in their current implementations). However, they can sometimes be
quite subtle, and an interesting example is the attack found by Simmons on the
TMN (Tatebayashi-Matsuzaki-Newmann) scheme.

Here, two users want to do a key exchange, but with a trusted server doing
most of the work (we can think of the users as smartcards). If Alice and Bob
are the users, and the trusted server Sam can factor N, then the protocol goes
as follows:

Message 1 A -+ S : r i
Message 3 B -+ S : r i
Message 3 S -, A : r A @ rg

(mod N)
(mod N)

Each party chooses a random number, cubes it, and sends in to Sam. He
extracts cube roots, xors the two random numbers together, and sends the result
to Alice. The idea is that Alice and Bob can now use rg as a shared secret key.
However, Simmons pointed out that if Charlie and David conspire, or ifjust one
user (David) generates predictable random numbers r D , then Charlie can get
hold of rg in the following way [Sim94]:

Message 1 C -, S : rLrE
Message 2 D 4 S : r;
Message 3 S ---L C : r8r-c' @ r D

(mod n)
(mod n)

We will sum all this up simply as

Principle 3: Be careful when signing or decrypting data that you never
let yourself be used as an oracle by your opponent.

4 Count the Bits

We mentioned above the need to distinguish different runs of the same protocol.
This means, for example, that systems based on discrete log typically need a
fresh message key for each session, which brings us to the topic of subliminal
channels.

The message keys in ElGamal type schemes contain various covert channels.
For example, 160 of the 320 signature bits in the digital signature standard give
security - apparently making the computational security 0 (2 8 0) - but the
other 160 bits are available for covert communication [Sim94b].

Counting bits is not always as straightforward, as it may involve specific
properties of the public key primitive. One of the earliest examples of an at-
tack on a public key protocol is due to DeMillo and Merritt, who showed that

241

a poker protocol leaked information through quadratic characters [DM83]. A
similar attack has been reported by Lomas on a protocol of Mm.

Subliminal channels may seem rather abstract, but counting the precise
amount of redundancy can bring us right down into the muddy details of par-
ticular implementations. It has been known since the earliest days of public key
cryptography [DH76] that digital signatures are inherently vulnerable to attacks
by forward search - an attacker applies your public key to a lot of random sig-
natures until (with luck) she gets something which she can pass off as a message
from you.

Such attacks can in principle be prevented by putting enough redundancy in
each message t$o be signed. However, it is common to rely on naming information
and counters for this purpose, and this can lead to errors - especially if neither
the cryptologist, nor the system designer pays attention to the other’s work.

Consider IS0 11166 [IS094b]. Here, as in X.509 and IS0 CD 11770, encryp-
tion is done before signature; but as the RSA exponent is fixed, the key spoofing
attack of section 2 above does not work. However, an attacker can just as easily
replace the modulus and do a forward search.

How much effort will this take? In IS0 11166, the protected message consists
of a key used to authenticate banking transactions, an eight bit key control
vector, and a 56 bit counter. However, the standard specifies that if the user
receives a count which is higher than the retained value, he should accept it and
send a service message confirming the new count. Assuming that the attacker
can intercept and discard this message, the counter contains only one bit of real
redundancy, and so forging a message is trivial.

The effects of this are surprisingly subtle. For example, public key certificates
must be checked anew with every key service message. If they are cached in the
local host after checking, then programmers could forge a key service message
to their own bank and could then authenticate a bogus transaction.

Another problem with IS0 11166 is that the redundancy in the key certifi-
cates is rather low. It is apparently 45 bits for a short certificate, but depends
on the redundancy of the namespace for a long certificate; this means that the
redundancy will steadily deteriorate. If in future there were 30,000 banks shar-
ing the US banking namespace, then the search effort might be as little as 242
modular multiplications - a large computation, but not large enough to stop a
determined attacker. We conclude

Principle 4: Account for all the bits - how many provide equivocation,
redundancy, computational complexity, and so on. Make sure that the
redundancy you need is based on mechanisms which are robust in the
application context, and that any extra bits cannot be used against you
in some way.

242

5 Assume Nothing

We will next look at a number of related types of protocol failure, which are nicely
illustrated by a pernicious attack which Burmester found on protocols by Goas,
Gunter, Yacobi and the EC's RIPE project team [Bur94]. These protocols try to
fortify Diffie Hellman key exchange by adding authentication. As an example, we
will consider the Goss protocol [GosSO], which is apparently used in the German
railway system.

Here, there is a common prime p and a generator g of a high order subgroup
of Z;. Each user lJ has a secret key xu and a public key = g x u . At each
run of the protocol, user U generates the random number ru. Alice and Bob
exchange the message key ~7 @ ~2 aa follows:

Message 1 A -+ B : CA,grA
Message 2 B -+ A : CB,grE

(mod p)
(mod p)

Burmester showed that there is a triangle attack: if old session keys can be
obtained by an attacker, then Charlie can discover the key shared between Alice
and Bob by using suitably chosen values in subsequent exchanges with them.
The details can be found in [Bur94].

There is an easier way to look at this attack: Alice supplies g r A to Bob, and
Bob returns to her (g ' A) = B - so Alice can try to send him an arbitrary z and
get back z " B . In fact, she gets back yLB @ z"B and knows only the first of these
two terms, but given the key which Bob thought he generated she can work out
ztB. Thus if Bob lets old message keys leak, he will have allowed himself to be
used as an oracle for his own secret operation, namely raising numbers to the
exponent tg.

Anyway, Burmester described the flaw in these protocols not as an oracle
attack but it8 a consequence of failing to consider what might happen if a coun-
terparty failed to keep an old message key secret. A number of other protocols
fail if a message key is later revealed, and some early examples can be found in
[BAN89]; Simmons' attack on the T M N protocol provides another example. We
therefore propose as our next principle:

Principle 5: Do not assume the secrecy of anybody else's 'secrets' (ex-
cept possibly those of a certification authority).

A related error is to make simplifying assumptions about the kind of messages
which an opponent might insert in the course of an attack. The weakness in the
Goss protocol which we discussed above can also be interpreted in this way: once
one sees that the number received from the other party is not necessarily g' , for
some r known to either the other player or an attacker, but can be any number
z , then the existence of an oracle attack becomes obvious.

However, there have been other attacks in the same mould which principle
5 does not tackle. Desmedt and Burmester broke a 'proven' secure protocol

243

by showing that the opponent did not have to act in a nice (simulatable) way
[DB93], and a number of server assisted signature schemes have also failed in
this way [And92b]. We therefore state as a separate principle:

Principle 6: Do not assume that a message you receive has a particular
form (such as g+ for known r) unless you can check this.

Next, we have to look at conspiracy attacks on threshold schemes and other
multiparty constructions. These have caused a lot of confusion in the past, and
perhaps the obvious thing to say would be something like “It is prudent to make
explicit the number of conspirators against whom security is claimed”.

But we need to go further. One of the present authors proposed a scheme for
hiding trapdoors in RSA public keys [And93a] which turned out to be vulnerable
to an attack by lattice basis reduction once a certain number of keys had been
generated [Ka193]. We have also seen above that some encryption algorithms are
vulnerable to key spoofing. So the next principle is a bit more general:

Principle 7: Be explicit about the security parameters of crypto prim-
itives. A key generation routine should be claimed as good for so many
keys; a threshold scheme for resistance to so many conspirators; a block
cipher for so many blocks; and so on.

Of course, some of the above principles overlap, and Burrnester’s attack is
particularly interesting as it can be construed in different ways - as the con-
sequence of the Goss protocol’s failing to observe principles 3, 5 or 6 (at least).
However, we are not trying to provide a minimal set of principles; a certain
redundancy of robustness concepts is unlikely to do us any harm.

Finally, there are principles which are either too algorithm specific, or too
general, for the level of abstraction at which we are trying to operate. Consider
for example Coppersmith’s attack on NIKS-TAS, a scheme which combines dis-
crete exponentiation with combinatorics [Cop94]. One might formulate a prin-
ciple that one should shield secrets behind the public key primitive rather than
the combinatorics, or one might adopt Coppersmith’s own conclusion that in a
discrete log scheme one should always have the secret information ‘upstairs’ and
the public information ‘downstairs’. However, it is unclear that either of these
is general enough for our list.

At higher levels of abstraction, we have ‘engineering commonsense’ such as
the KISS principle (‘Keep It Simple Stupid’), which cryptographers often ignore.
Many highly complex schemes are proposed for digital cash and other applim
tions, and many of them turn out to be unsound (e.g., [TT94]). Proof is no
panacea: several ‘proven’ secure systems fail because of unexamined assump-
tions [PW91] [PW95], and others omit to provide desirable properties such as
unlinkability [Yac94] and arbitration [Kai95]. Of course, particular schemes may
breach one or more of our principles, as they often concatenate a number of
public key primitives without hashing or redundancy in order to achieve exotic
effects. This is a subject of ongoing research interest.

244

6 The Explicitness Principle

Looking at the above seven principles, we are led to ask whether there is any
overarching principle of which the others are in some sense instances. We propose
the following, which one of us put forward in the computer security context in
[And94a] and the other in the general protocol context in [AN94].

Principle 8: Robust security is about explicitness; one must be explicit
about any properties which can be used to attack a public key primi-
tive, such as multiplicative homomorphism, as well as the usual security
properties such as naming, typing, freshness, the starting assumptions
and what one is trying to achieve.

With symmetric key algorithms it is often possible to treat the algorithm
as a black box, as symmetric block ciphers have a certain amount of muddle in
them. For example, it is not common to find that the internals of DES interact
malignantly with the way you use it. However, the known asymmetric algorithms
are much more structured2, and depend on fairly straightforward mathematical
operations such as integer or matrix multiplication. Thus they are much more
likely to interact with other things in the protocols they are used with, and we
have to be that much more careful.

Thus it is prudent to hash data before signing it, using a hash function which
does not interact with the signature scheme. In an ideal world, signature schemes
would be proof against adaptive chosen ciphertext attacks, but in the real world
it seems that we can only achieve this by combining hashing with signature, and
by being very explicit about what properties of our signature scheme we wish
our hash function to mask.

A good example is correlation freedom. Until fairly recently, it was thought
sufficient for a hash function to be one-way and collision-free [Dam87]. Then
at Crypto 92, Okamoto defined correlation freedom to be the property that we
cannot find M # M' with h (M) and h(M') agreeing in more bits than we would
expect to find from random chance. He conjectured that correlation freedom was
strictly stronger than collision freedom, and this was proved in [And93b]. Since
then, Vaudenay has shown that MD4 is not correlation free, and Knudsen has
established the same for the hasing mode of SAFER K-64 [Knu95].

Here, the explicitness principle is wider than the concept of resistance to
adaptive chosen ciphertext attacks. For example, we may also have to protect
message keys: in the Schnorr signature scheme [Sch89], we must not have h(g', rn)
equal to f(k) + h(g'+', rn) for any function f which our opponent is able to
compute. I t is also wider than any possible set of freedom properties (collision
freedom, correlation freedom, multiplication freedom, ...) [And93b].

The explicitness principle can be applied to algorithms as well as protocols.
We saw above, for example, that algorithm designers should be explicit about the

It was conjectured to one of us by JWS Cassels in 1977 that this was necessarily so,
and that asymmetric algorithms would in consequence always be rather fragile.

245

difficulty of finding key collisions on a given message-ciphertext pair. Another
example is the persistence of attacks on hash functions based on modular multi-
plication, such as that proposed with X.509, where a failure to make the round
function sufficiently multiplication free leads to attacks based on techniques such
as lattice basis reduction [Cop89]. However extending the explicitness principle
too far into the domain of algorithms would take us away from the subject matter
of this paper.

Finally, our standard disclaimer: the weaknesses we have discussed do not
necessarily imply that any given system based on a protocol criticised above
is insecure, as there are many ways to implement compensating controls. How-
ever, it is prudent to avoid using standards which are questionable, and which
make security depend closely on application detail. Once the application code is
brought inside our security perimeter, we lose the advantages of a trusted com-
puting base; we run the risk of unpredictable security failures as documented in
[And94a]; and we acquire the legal exposures described in [And94b]. Ignoring
prudent design practice can be just as expensive in cryptography as in other
branches of engineering.

7 Conclusion

We have tried to extend the prudent engineering principles of Abadi and Need-
ham to the world of public key protocols, which are even more prone than con-
ventional ones to subtle errors, and thus may be even more in need of robustness
guidelines. We do not claim that our proposed principles are either necessary or
sufficient, just that they are useful; at least, we have found them to be useful
both in looking for attacks and in explaining this subject to new students.

Acknowledgement: We are grateful to Martin Abadi for a number of help-
ful comments.

References

[And92a]

[And92b]

[And93a]

[And93b]

RJ Anderson, ‘Attack on server-assisted authentication protocols”, in Eiec-
tronics Letters v 28 no 15 (16th July 1992) p 1473
RJ Anderson, “UEPS - A Second Generation Electronic Wallet”, Computer
Security - ESORICS 92, Springer LNCS v 648 in 411-418
RJ Anderson, “A practical RSA trapdoor”, in Electronics Letters v 29 no
11 (27th May 1993) p 995
RJ Anderson, “The Classification of Hash Functions”, in Codes and Ciphers
(proceedings of fourth IMA Conference on Cryptography and Coding, De-
cember 1993), published by IMA (1995) pp 83-93
RJ Anderson, “Why Cryptosystems Fail”, in Communications of the ACM
v 37 no 11 (November 1994) pp 32-40
RJ Anderson, “Liability and Computer Security - Nine Principles”, in
Computer Security - ESORICS 94, Springer LNCS v 875 pp 231-245

[And94a]

[And94b]

246

[AN941

[Bea92]

[BAN891

[Bur941

[COP891

[COP941

M Abadi, RM Needham, ‘Prudent Engineering Pmctice for Cryptogmphic
Protocols’, DEC SRC Research Report 125 (June 1 1994)
D Beaver, “How to Break a ‘Secure’ Oblivious Transfer Protocol”, in Ad-
vances in Cryptology - EUROCRYPT ’92, Springer LNCS v 658 pp 284-
296
M Burrows, M Abadi, RM Needham, “A Logic of Authentication”, in Pro-
ceedings of the Royal Society of London A v 426 (1989) pp 233-271; earlier
version published as DEC SRC Research Report 39
M Burmester, “On the Risk of Opening Distributed Keys”, in Advances in
Cwptology - CRYPTO ’94, Springer LNCS v 839 pp 308-317
D Coppersmith, “Analysis of ISO/CCITT Document X.509 Annex D”,
submitted to IS0
D Coppersmith, “Attack on the Cryptographic Scheme NIKS-TAS”, in
Advances in Cryptology - CRYPTO ’94, Springer LNCS v 839 pp 294-
307

[CCITT88] CCITT X.509 and IS0 9594-8, “The Directory - Authentication Frame-

[Dam871

[Dwo94]

[DB93]

[DH76]

[DM831

[Ells851

[FS86]

[GOS~O]

[ISO94a]

[ISO94b]

[KaigS]

[Kd93]

[Knu95]

work”, CCITT Blue Book, Geneva, March 1988
IB Damgfird, “Collision free hash functions and public key signature
schemes”, in Advances in Cryptology - EUROCRYPT ’87, Springer LNCS

C Dwork, “Distributed Computing Column”, ACM SIGACT News v 26
mo 1 (Mar 94) pp 17-19
Y Desmedt, M Burmester, “Towards Practical ‘Proven Secure’ Autheuti-
cated Key Distribution”, in 1st ACM Conference on Computer and Com-
munications Security (ACM November 1993) pp 228-231
W Diffie, ME Hellman, “New Directions in Cryptography”, in IEEE Tmns-
actions on Information Theory, IT-22 no 6 (November 1976) p 644-654
R DeMiIlo, M Merritt, “Protocols for Data Security”, in IEEE Computer
v 16 no 2 (Feb 1983) pp 39-50
T El-Gamal, “A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”, in IEEE Transaction3 on Information Theory
IT-31 no 4 (July 1985) pp 469-472
A Fiat, A Shamir, “How To Prove Yourself Practical Solutions to Identi-
fication and Signature Problems”, in Advances in Cryptology - CRYPTO
86, Springer LNCS v 263 pp 186-194
KC Goes, ‘cryptogmphic method and apparatus for public key exchange with]
authentication’, US patent no. 4,956,863 (September 11, 1990)
IS0 DIS 11770, ‘Information Technology - Security Techniques - Key
Management - Part 3: Mechanisms using asymmetric techniques ’, I S 0

IS0 11166-1:1994, ‘Banking - Key management by means of asymmet-
ric algorithms - Part I: Principles, procedures and formats ’, and Par t 2:
Approved algorithms using the RSA cryptosystem ’, 15 November 1994
R Kailar, “Reasoning about Accountability in Protocols for Electronic
Commerce”, accepted for Oakland 95
B Kaliski, “Anderson’s RSA trapdoor can be broken”, in Electronics Letters
v 29 no 15 (22nd July 1993) pp 1387-1388
L Knudsen, “A Weakness in SAFER K-64”, this volume

304 pp 203-216

IST/33/-/2:94/211

247

[K M M94]

[Lan95]

[LMP94]

[Oto941

[PW91]

[PW95]

[RLS+92]

[RSA78]

[Sch89]

[Sim94a]

[Sim94b]

[TMN89]

[TT94]

[Vau94]

[WL92]

rYac941

R Kemmerer, C Meadows, J Millen, “Three Systems for Cryptographic
Protocol Verification”, in Journal of Cryptology v 7 no 2 (Spring 1994) pp

P Landrock, talk given at Combridge Protocols Workshop, 19-21 April
1995
“Anonymous Credit Cards”, SH Low, NF Maxemchuk, S Paul, in Proceed-
ings of 2nd ACM Conference on Computer and Communications Security

K O’Toole, The Internet Billing Server - Transaction Protocol Alterna-
tives”, Carnegie Mellon University report IN1 TR 1994-1 (April 26, 1994)
B Pfitzmann, M Waidner, “How to Break and repair a ‘Provable Secure’
Untraceable Payment System”, in Aktmcts of Crypto ’91 pp 8-14 to 8-19
B Pfitzmann, M Waidner, “How to Break Another ‘Provably Secure’ Pay-
ment System”, to appear in proceedings of Eurocrypt 95
RA Rueppel, AK Lenstra, ME Smid, KS McCurley, Y Desmedt, A Odlyzko,
P Landrock, “The Eurocrypt ’92 Controversial Issue - Trapdoor Primes
and Moduli”, in Advances in cryptology - EUROCRYPT ’92, Springer

RL Rivest, A Shamir, L Adleman, “A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems”, in Communications of the ACM

C P Schnorr, “Efficient identification and signatures for smart cards”, in
Advances in Cryptology - CRYPTO ’89, Springer LNCS 436, pp 239-251
GJ Simmons, “Cryptanalysis and Protocol Failures” , in Communications
of the A CM v 37 no 11 (November 1994) pp 56-65
GJ Simmons, “Subliminal Channels; Past and Present”, in European Trans-
actions on Telecommunications v 6 no 4 (July/Aug 1994) pp 459-473
M Tatebayashi, N Matsuzaki, DB Newman, “Key distribution protocol
for digital mobile communication systems”, in Aduance in Cryptology -
CRYPTO ’89, Springer LNCS 435 pp 324-333
L Tang, D Tygar, “A fast off-line electronic currency protocol for smart
cards”, in proceedings of the First Smart Card Research and Advanced Ap-
plication Conference (University of Lille, Oct 94) pp 89-100
S Vaudenay, “On the need of multipermutations - Cryptanalysis of MD4
and SAFER”, in ‘Fast Software Encryption’, proceedings of KU Leuven
workshop on cryptographic algorithms (Springer, to appear)
TYC Woo, SS Lam, “Authentication for Distributed Systems”, in IEEE
Computer (January 1992) pp 39-52
Y Yacobi, “Efficient Electronic Money”, in Preproceedings of Asiacrypt 94

79-130

(ACM, NOV 94) pp 108-117

LNCS v 668 pp 194-199

21 (1978) pp 120-126

pp 131-140

	Robustness Principles for Public Key Protocols
	Introduction
	The Order of Encryption and Signature
	Spot the Oracle
	Count the Bits
	Assume Nothing
	The Explicitness Principle
	Conclusion
	References

