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Abstract: We present a number of attacks, some new, on public key pro- 
tocols. We also advance a number of principles which may help designers avoid 
many of the pitfalls, and help attackers spot errors which can be exploited. 

1 Introduction 

Cryptographic protocols are typically used to identify a user to a computer 
system, to authenticate a transaction, or to set up a key. They typically involve 
the exchange of about 2-5 messages, and they are very easy to get wrong: bugs 
have been found in well known protocols years after they were first published. 
This is quite remarkable; after all, a protocol is a kind of program, and one would 
expect to get any other program of this size right by staring at it for a while. 

A number of remedies have been proposed. One approach is formal math- 
ematical proof, and can range from systematic protocol verification techniques 
such as the BAN logic [BAN891 to the case-by-case reduction of security claims 
to the intractability of some problem such as factoring. 

Another approach is to try to encapsulate our experience of good and bad 
practice into rules of thumb; these can help designers avoid many of the pitfalls, 
and, equally, help attackers find exploitable errors. A recent paper by Abadi and 
Needham undertook this exercise for cryptographic protocols in general [AN94]. 

The two approaches - formal proofs and structured design rules - are 
in many ways complementary. On the one hand, we expect that robust design 
principles will help us construct protocols which are more amenable to formal 
verification; on the other hand, protocol errors thrown up by formal analysis 
may lead us to new insights into the nature of robustness. 

Mathematical techniques are also liable to error - quite a few protocols 
which had been ‘proved’ secure have been successfully attacked (see, e.g., [PW91] 
[DB93] [PW95]). These failures are typically due to assumptions which were not 
made explicit, and we believe that robustness principles are a large part of the 
solution: if they force us to consider more of the security dependencies, and 
from a number of aspects, then we will be less likely to produce a ‘proof’ which 
neglects a real weakness. 

Our goal here is to push the state of the art a little further and deal with 
more complex protocols, and in particular with public key schemes. Curiously 
enough, although public key algorithms are based more on mathematics than 
secret key algorithms, and have much more compact mathematical descriptions, 
public key protocols have proved much harder to deal with by formal methods. 

In this paper, we propose a number of principles. We present a number of 
new attacks, and give a (hopefully) new perspective on some old ones. 

D. Coppersmith (Ed.): Advances in Cryptology - C,RYPTO ’95, LNCS 963, pp. 236-247, 1995. 
0 Spnnger-Verlag Berlin Heidelberg 1995 
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2 The Order of Encryption and Signature 

We will start by expanding on the fifth principle from [AN94]. 

Principle 1: Sign before encrypting. If a signature is affixed to encrypted 
data, then one cannot assume that the signer has any knowledge of 
the data. A third party certainly cannot assume that the signature is 
authentic, so nonrepudiation is lost. 

This was motivated by attacks in which the opponent could remove a sig- 
nature from an encrypted message and replace it with one of his own - X.509 
[CCITT88] suffered from such an attack. However, there is an even more power- 
ful attack on several protocols which do encryption before signature, including 
X.509 and a number of the proposals in IS0  CD 11770 [ISO94a]. 

Suppose that Alice wishes to use RSA [RSA78] with a modulus of 500 - 600 
bits to send Bob the message M. The standard technique would be for her to  
first sign the message with her private key and then encrypt it with his public 
key. However, suppose that Alice first encrypts A4 under Bob’s public key and 
then signs it with her private key. Denoting the modulus, public exponent and 
private exponent of party a by n,, e, and d,, and ignoring hashing (as it makes 
no difference to our argument), the signed encrypted message would be: 

This is vulnerable, and in a novel way. Since Bob can factor ng and its factors 
are only 250-300 bits long, he can work out discrete logarithms with respect to  
them and then use the Chinese Remainder theorem to get discrete logs modulo 
ng. So if he wants to get Alice’s ‘signature’ on a different message, M‘, he can 
find x such that 

[M’]” = M (mod n g )  (2) 

He then registers (zeg, n ~ )  as a public key with a certification authority, and 
claims that the message signed by Alice was not M but M’. 

This provides a direct attack on CCITT X.509, in which Alice signs a message 
of the form {TA,  N A ,  B, X, { Y } e B  (mod n ~ ) }  and sends it to Bob. Here TA is 
a timestamp, NA is a serial number, and X and Y are user data. I t  also breaks 
the draft IS0 CD 11770; there, Y consists of A’s name and a random challenge 
in key agreement mechanism 5, and A’s name followed by a session key in key 
transport mechanisms 2, 5 and 6. 

The attack is not limited to RSA: it works with ElGamal too [Elg85], provided 
this time that Bob can choose his own modulus. %call that in ElGamal the 
message rn is encrypted to ( r ,  c )  where T = gk (mod p), 
the message key is k, the recipient’s private key is I, and his public key is 
y = 9”. Suppose that Bob selects a so-called ‘trapdoor’ modulus, under which 

(mod p ) ,  c = ykrn 
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he can work out discrete logarithms [RLS+92]. Then, for any given m', r and c, 
he can find a suitable y' such that ( f l ) k  = rn'/c. 

The obvious countermeasure, of requiring all users to share the same modu- 
lus, may be politically difficult, as attempts have been made in the past to foist 
suspect moduli on the user community [And93a]. 

Key spoofing attacks are also possible on symmetric systems. For example, 
given a message M and a ciphertext C, the effort required to find a key such 
that C = { M } K  is about 25s when the algorithm used is single key DES, but 
thanks to the birthday problem it is only 228 or so with double key DES. There 
are systems where a single, double DES encrypted block is used to authorise a 
payment, such as described in [And92b] - although that particular system is 
not vulnerable as one of the two keys is fixed. 

With public key systems, key spoofing attacks seem easy to prevent - just 
always sign before encrypting. However, inverting the order of encryption and 
signature is a surprisingly common misfeature. A recent internet cash proposal 
[Oto94] also used it, and Kailar pointed out that this destroyed accountability 
in the invoicing system [Kai95]. Our attack goes'further; it could allow invoices 
to be forged. It also dents a protocol for anonymous credit cards [LMP94I1. 

Encryption before signature can also cause problems for formal verification 
techniques. The BAN logic ignores the algorithm issues, but at least it will not 
verify that Alice signed M in equation (1) above as she has no jurisdiction over 
ng. Kailar's logic also rejects a signed encrypted message. 

However, the verification tools which do try to deal with algorithm properties 
(such as those discussed in [KMM94]) do not seem able to deal with this attack at 
all. In order to fix this, the scope of their assumptions may need to be extended; 
one conventionally worries about the factorisation properties of RSA keys, not 
their discrete log properties, and the worry about trapdoor primes has been that 
users might be attacked by authority, rather than by each other. 

In any case, it is prudent to sign before encrypting. 

3 Spot the Oracle 

Nonrepudiation is complicated by the fact that signature and decryption are 
the same operation in RSA, which many people use as their mental model of 
public key cryptography. They are actually quite different in their semantics: 
decryption can be simulated, while signature cannot. By this we mean that an 
opponent can exhibit a ciphertext and its decryption into a meaningful message, 
while he cannot exhibit a meaningful message and its signature (unless it is one 
he has seen previously). 

Consider for example the following protocol by Woo and Lam [WL92]: 

message 2 in the extension of credit protocol can be arbitrarily manipulated by Ep 
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Message 1 A - S: A, B 
Message 2 S - A: CB 
Message 3 A - B: {A, NA}KB 
Message 4 B - S: A, B, {NA}KS 
Message 5 S - B: CA, { { N A ,  KAB, A, B}KS-I}KB 
Message 6 B -A: {{NA,KAB,A,B}KS-I}KA 
Message 7 A - B: {NA}K*~ 

Here we are using the standard notation from [BAN89]: CX is a certificate 
containing the public key K X  of participant S; the corresponding private key 
is KX-’; Nx is a nonce generated by participant X; h;as is a shared secret 
between Alice and Bob (which it is the purpose of the protocol to generate), and 
Sam is the key distribution centre. 

There are a number of problems with this protocol, including the obvious 
one that Bob has no assurance of freshness (he does not check a nonce or see 
a timestamp). However, a subtler and more serious problem is that Alice never 
signs anything; the only use made of her secret is to decrypt a message sent to 
her by Bob. The consequence of this is that Bob can only prove Alice’s presence 
to himself - he cannot prove anything to an outsider, as he could easily have 
simulated the entire protocol run. The effect that such details can have on the 
beliefs of third parties is one of the interesting (and difficult) features of public 
key protocols: few of the actual or proposed standards provide a robust nonre- 
pudiation mechanism, and yet there is a substantial risk that many of them may 
be used as if they did. 

We shall return to this topic later. For the meantime let us just say that we 
must be careful what we mean by ‘Bob’. This may be ‘whoever controls Bob’s 
signing key’, or it may be ‘whoever controls Bob’s decryption key’. Both keys are 
written as KB-’ in the standard notation, but they are actually rather different. 

Principle 2: Be careful how entities are distinguished. If possible avoid 
using the same key for two different purposes (such as signing and de- 
cryption), and be sure to distinguish different runs of the same protocol 
from each other. 

Beaver’s attack on Den Boer’s oblivious transfer protocol falls into this cat- 
egory: when the same public key primitive is reused in the oblivious transfer 
context, various sneaky attacks become possible [Bea92]. Also, Landrock re- 
cently pointed out that if someone uses the same key in the IS0 protocols for 
signature and zero knowledge proof, there is a massive security failure: the zero 
knowledge protocol can be used as an oracle to generate signatures [Lan95]. 

Woo and Lam’s protocol also suffers from an oracle problem: if decryption 
and signature are performed using the same key, then Sam can be impersonated. 
This is because between messages 4 and 5 ,  he decrypts a nonce NA sent to him 
encrypted under his own public key. 

Even where keys are only used for one purpose, there may still be an oracle 
attack; a recent example was found in the documentation for Lotus Notes In- 
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ternals [Dwo94]. Oracle at.tacks can be fixed in various ways, such as by explicit 
typing of nonces, or by using different keys for different purposes (as Lotus ap- 
parently do in their current implementations). However, they can sometimes be 
quite subtle, and an interesting example is the attack found by Simmons on the 
TMN (Tatebayashi-Matsuzaki-Newmann) scheme. 

Here, two users want to do a key exchange, but with a trusted server doing 
most of the work (we can think of the users as smartcards). If Alice and Bob 
are the users, and the trusted server Sam can factor N, then the protocol goes 
as follows: 

Message 1 A -+ S : r i  
Message 3 B -+ S : r i  
Message 3 S -, A : r A  @ rg 

(mod N) 
(mod N) 

Each party chooses a random number, cubes it, and sends in to Sam. He 
extracts cube roots, xors the two random numbers together, and sends the result 
to Alice. The idea is that Alice and Bob can now use rg as a shared secret key. 
However, Simmons pointed out that if Charlie and David conspire, or ifjust one 
user (David) generates predictable random numbers r D ,  then Charlie can get 
hold of rg in the following way [Sim94]: 

Message 1 C -, S : rLrE 
Message 2 D 4 S : r; 
Message 3 S ---L C : r8r-c' @ r D  

(mod n) 
(mod n) 

We will sum all this up simply as 

Principle 3: Be careful when signing or decrypting data that you never 
let yourself be used as an oracle by your opponent. 

4 Count the Bits 

We mentioned above the need to distinguish different runs of the same protocol. 
This means, for example, that systems based on discrete log typically need a 
fresh message key for each session, which brings us to  the topic of subliminal 
channels. 

The message keys in ElGamal type schemes contain various covert channels. 
For example, 160 of the 320 signature bits in the digital signature standard give 
security - apparently making the computational security 0 ( 2 8 0 )  - but the 
other 160 bits are available for covert communication [Sim94b]. 

Counting bits is not always as straightforward, as it may involve specific 
properties of the public key primitive. One of the earliest examples of an at- 
tack on a public key protocol is due to  DeMillo and Merritt, who showed that 
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a poker protocol leaked information through quadratic characters [DM83]. A 
similar attack has been reported by Lomas on a protocol of Mm. 

Subliminal channels may seem rather abstract, but counting the precise 
amount of redundancy can bring us right down into the muddy details of par- 
ticular implementations. It has been known since the earliest days of public key 
cryptography [DH76] that digital signatures are inherently vulnerable to attacks 
by forward search - an attacker applies your public key to a lot of random sig- 
natures until (with luck) she gets something which she can pass off as a message 
from you. 

Such attacks can in principle be prevented by putting enough redundancy in 
each message t$o be signed. However, it is common to rely on naming information 
and counters for this purpose, and this can lead to  errors - especially if neither 
the cryptologist, nor the system designer pays attention to the other’s work. 

Consider IS0  11166 [IS094b]. Here, as in X.509 and IS0 CD 11770, encryp- 
tion is done before signature; but as the RSA exponent is fixed, the key spoofing 
attack of section 2 above does not work. However, an attacker can just as easily 
replace the modulus and do a forward search. 

How much effort will this take? In IS0 11166, the protected message consists 
of a key used to  authenticate banking transactions, an eight bit key control 
vector, and a 56 bit counter. However, the standard specifies that  if the user 
receives a count which is higher than the retained value, he should accept it and 
send a service message confirming the new count. Assuming that the attacker 
can intercept and discard this message, the counter contains only one bit of real 
redundancy, and so forging a message is trivial. 

The effects of this are surprisingly subtle. For example, public key certificates 
must be checked anew with every key service message. If they are cached in the 
local host after checking, then programmers could forge a key service message 
to  their own bank and could then authenticate a bogus transaction. 

Another problem with IS0  11166 is that  the redundancy in the key certifi- 
cates is rather low. It is apparently 45 bits for a short certificate, but depends 
on the redundancy of the namespace for a long certificate; this means that the 
redundancy will steadily deteriorate. If in future there were 30,000 banks shar- 
ing the US banking namespace, then the search effort might be as little as 242 
modular multiplications - a large computation, but not large enough to  stop a 
determined attacker. We conclude 

Principle 4: Account for all the bits - how many provide equivocation, 
redundancy, computational complexity, and so on. Make sure that the 
redundancy you need is based on mechanisms which are robust in the 
application context, and that any extra bits cannot be used against you 
in some way. 
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5 Assume Nothing 

We will next look at a number of related types of protocol failure, which are nicely 
illustrated by a pernicious attack which Burmester found on protocols by Goas, 
Gunter, Yacobi and the EC's RIPE project team [Bur94]. These protocols try to 
fortify Diffie Hellman key exchange by adding authentication. As an example, we 
will consider the Goss protocol [GosSO], which is apparently used in the German 
railway system. 

Here, there is a common prime p and a generator g of a high order subgroup 
of Z;. Each user lJ has a secret key xu and a public key = g x u .  At each 
run of the protocol, user U generates the random number ru. Alice and Bob 
exchange the message key ~7 @ ~2 aa follows: 

Message 1 A -+ B : CA,grA 
Message 2 B -+ A : CB,grE 

(mod p) 
(mod p) 

Burmester showed that there is a triangle attack: if old session keys can be 
obtained by an attacker, then Charlie can discover the key shared between Alice 
and Bob by using suitably chosen values in subsequent exchanges with them. 
The details can be found in [Bur94]. 

There is an easier way to look at this attack: Alice supplies g r A  to Bob, and 
Bob returns to her ( g ' A ) = B  - so Alice can try to send him an arbitrary z and 
get back z " B .  In fact, she gets back yLB @ z"B and knows only the first of these 
two terms, but given the key which Bob thought he generated she can work out 
ztB. Thus if Bob lets old message keys leak, he will have allowed himself to be 
used as an oracle for his own secret operation, namely raising numbers to the 
exponent tg. 

Anyway, Burmester described the flaw in these protocols not as an oracle 
attack but it8 a consequence of failing to consider what might happen if a coun- 
terparty failed to keep an old message key secret. A number of other protocols 
fail if a message key is later revealed, and some early examples can be found in 
[BAN89]; Simmons' attack on the T M N  protocol provides another example. We 
therefore propose as our next principle: 

Principle 5: Do not assume the secrecy of anybody else's 'secrets' (ex- 
cept possibly those of a certification authority). 

A related error is to make simplifying assumptions about the kind of messages 
which an opponent might insert in the course of an attack. The weakness in the 
Goss protocol which we discussed above can also be interpreted in this way: once 
one sees that the number received from the other party is not necessarily g' , for 
some r known to either the other player or an attacker, but can be any number 
z ,  then the existence of an oracle attack becomes obvious. 

However, there have been other attacks in the same mould which principle 
5 does not tackle. Desmedt and Burmester broke a 'proven' secure protocol 
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by showing that the opponent did not have to act in a nice (simulatable) way 
[DB93], and a number of server assisted signature schemes have also failed in 
this way [And92b]. We therefore state as a separate principle: 

Principle 6: Do not assume that a message you receive has a particular 
form (such as g+ for known r )  unless you can check this. 

Next, we have to look at conspiracy attacks on threshold schemes and other 
multiparty constructions. These have caused a lot of confusion in the past, and 
perhaps the obvious thing to say would be something like “It is prudent to make 
explicit the number of conspirators against whom security is claimed”. 

But we need to go further. One of the present authors proposed a scheme for 
hiding trapdoors in RSA public keys [And93a] which turned out to be vulnerable 
to an attack by lattice basis reduction once a certain number of keys had been 
generated [Ka193]. We have also seen above that some encryption algorithms are 
vulnerable to key spoofing. So the next principle is a bit more general: 

Principle 7: Be explicit about the security parameters of crypto prim- 
itives. A key generation routine should be claimed as good for so many 
keys; a threshold scheme for resistance to so many conspirators; a block 
cipher for so many blocks; and so on. 

Of course, some of the above principles overlap, and Burrnester’s attack is 
particularly interesting as it can be construed in different ways - as the con- 
sequence of the Goss protocol’s failing to observe principles 3, 5 or 6 (at least). 
However, we are not trying to provide a minimal set of principles; a certain 
redundancy of robustness concepts is unlikely to do us any harm. 

Finally, there are principles which are either too algorithm specific, or too 
general, for the level of abstraction at which we are trying to operate. Consider 
for example Coppersmith’s attack on NIKS-TAS, a scheme which combines dis- 
crete exponentiation with combinatorics [Cop94]. One might formulate a prin- 
ciple that one should shield secrets behind the public key primitive rather than 
the combinatorics, or one might adopt Coppersmith’s own conclusion that in a 
discrete log scheme one should always have the secret information ‘upstairs’ and 
the public information ‘downstairs’. However, it is unclear that either of these 
is general enough for our list. 

At higher levels of abstraction, we have ‘engineering commonsense’ such as 
the KISS principle (‘Keep It Simple Stupid’), which cryptographers often ignore. 
Many highly complex schemes are proposed for digital cash and other applim 
tions, and many of them turn out to be unsound (e.g., [TT94]). Proof is no 
panacea: several ‘proven’ secure systems fail because of unexamined assump- 
tions [PW91] [PW95], and others omit to provide desirable properties such as 
unlinkability [Yac94] and arbitration [Kai95]. Of course, particular schemes may 
breach one or more of our principles, as they often concatenate a number of 
public key primitives without hashing or redundancy in order to achieve exotic 
effects. This is a subject of ongoing research interest. 
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6 The Explicitness Principle 

Looking at  the above seven principles, we are led to ask whether there is any 
overarching principle of which the others are in some sense instances. We propose 
the following, which one of us put forward in the computer security context in 
[And94a] and the other in the general protocol context in [AN94]. 

Principle 8: Robust security is about explicitness; one must be explicit 
about any properties which can be used to attack a public key primi- 
tive, such as multiplicative homomorphism, as well as the usual security 
properties such as naming, typing, freshness, the starting assumptions 
and what one is trying to achieve. 

With symmetric key algorithms it is often possible to treat the algorithm 
as a black box, as symmetric block ciphers have a certain amount of muddle in 
them. For example, it is not common to find that the internals of DES interact 
malignantly with the way you use it. However, the known asymmetric algorithms 
are much more structured2, and depend on fairly straightforward mathematical 
operations such as integer or matrix multiplication. Thus they are much more 
likely to interact with other things in the protocols they are used with, and we 
have to be that much more careful. 

Thus it is prudent to hash data before signing it, using a hash function which 
does not interact with the signature scheme. In an ideal world, signature schemes 
would be proof against adaptive chosen ciphertext attacks, but in the real world 
it seems that we can only achieve this by combining hashing with signature, and 
by being very explicit about what properties of our signature scheme we wish 
our hash function to mask. 

A good example is correlation freedom. Until fairly recently, it was thought 
sufficient for a hash function to  be one-way and collision-free [Dam87]. Then 
at Crypto 92, Okamoto defined correlation freedom to be the property that we 
cannot find M # M' with h ( M )  and h(M')  agreeing in more bits than we would 
expect to find from random chance. He conjectured that correlation freedom was 
strictly stronger than collision freedom, and this was proved in [And93b]. Since 
then, Vaudenay has shown that MD4 is not correlation free, and Knudsen has 
established the same for the hasing mode of SAFER K-64 [Knu95]. 

Here, the explicitness principle is wider than the concept of resistance to 
adaptive chosen ciphertext attacks. For example, we may also have to protect 
message keys: in the Schnorr signature scheme [Sch89], we must not have h(g', rn) 
equal to f(k) + h(g'+', rn) for any function f which our opponent is able to 
compute. I t  is also wider than any possible set of freedom properties (collision 
freedom, correlation freedom, multiplication freedom, ...) [And93b]. 

The explicitness principle can be applied to algorithms as well as protocols. 
We saw above, for example, that algorithm designers should be explicit about the 

It was conjectured to one of us by JWS Cassels in 1977 that  this was necessarily so, 
and that asymmetric algorithms would in consequence always be rather fragile. 
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difficulty of finding key collisions on a given message-ciphertext pair. Another 
example is the persistence of attacks on hash functions based on modular multi- 
plication, such as that proposed with X.509, where a failure to make the round 
function sufficiently multiplication free leads to attacks based on techniques such 
as lattice basis reduction [Cop89]. However extending the explicitness principle 
too far into the domain of algorithms would take us away from the subject matter 
of this paper. 

Finally, our standard disclaimer: the weaknesses we have discussed do not 
necessarily imply that any given system based on a protocol criticised above 
is insecure, as there are many ways to implement compensating controls. How- 
ever, it is prudent to avoid using standards which are questionable, and which 
make security depend closely on application detail. Once the application code is 
brought inside our security perimeter, we lose the advantages of a trusted com- 
puting base; we run the risk of unpredictable security failures as documented in 
[And94a]; and we acquire the legal exposures described in [And94b]. Ignoring 
prudent design practice can be just as expensive in cryptography as in other 
branches of engineering. 

7 Conclusion 

We have tried to extend the prudent engineering principles of Abadi and Need- 
ham to the world of public key protocols, which are even more prone than con- 
ventional ones to subtle errors, and thus may be even more in need of robustness 
guidelines. We do not claim that our proposed principles are either necessary or 
sufficient, just that they are useful; at least, we have found them to be useful 
both in looking for attacks and in explaining this subject to new students. 

Acknowledgement: We are grateful to Martin Abadi for a number of help- 
ful comments. 
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