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Based on the hypothesis that features of the molecular program of
normal wound healing might play an important role in cancer
metastasis, we previously identified consistent features in the
transcriptional response of normal fibroblasts to serum, and used
this ‘‘wound-response signature’’ to reveal links between wound
healing and cancer progression in a variety of common epithelial
tumors. Here, in a consecutive series of 295 early breast cancer
patients, we show that both overall survival and distant
metastasis-free survival are markedly diminished in patients
whose tumors expressed this wound-response signature com-
pared to tumors that did not express this signature. A gene
expression centroid of the wound-response signature provides a
basis for prospectively assigning a prognostic score that can be
scaled to suit different clinical purposes. The wound-response
signature improves risk stratification independently of known
clinico-pathologic risk factors and previously established prognos-
tic signatures based on unsupervised hierarchical clustering
(‘‘molecular subtypes’’) or supervised predictors of metastasis
(‘‘70-gene prognosis signature’’).

microarray � prognosis � wound healing � metastasis � treatment decision

In recent years, microarray analysis of gene expression patterns
has provided a way to improve the diagnosis and risk strati-

fication of many cancers (1–6). Unsupervised analysis of global
gene expression patterns has identified molecularly distinct
subtypes of cancer, distinguished by extensive differences in gene
expression, in diseases that were considered homogeneous based
on classical diagnostic methods (1, 3, 4, 7). The molecular
subtypes are often associated with different clinical outcomes.
Global gene expression pattern can also be examined for features
that correlate with clinical behavior to create prognostic signa-
tures (5, 8). For example in breast cancer, a poor prognosis gene
expression signature in the primary tumor can accurately predict
the risk of subsequent metastases, independent of other well
known clinico-pathologic risk factors (9). However, because
supervised methods are driven by class or outcome prediction,
and the complexity of the models considered is necessarily
limited, the resulting gene sets may be excellent prognostic
markers without revealing much about the underlying biological
mechanisms.

Gene expression patterns provide a common language among
biologic phenomena and allow an alternative approach to infer
physiologic and molecular mechanisms from complex human
disease states (1, 10, 11, 12). Starting with the gene expression
profile of cells manipulated in vitro to simulate a biologic process,
the expression profile can then be used to interpret the gene
expression data of human cancers and test specific hypotheses.
To understand the similarities between wound healing and
cancer, Chang et al. (10) identified a set of ‘‘core serum

response’’ (CSR) genes and their canonical expression pattern in
fibroblasts activated with serum, the soluble fraction of clotted
blood and an important initiator of wound healing in vivo. The
CSR genes were chosen to minimize overlap with cell cycle
genes, but instead appeared to represent other important pro-
cesses in wound healing, such as matrix remodeling, cell motility,
and angiogenesis, processes that are likely also to contribute to
cancer invasion and metastasis. In several common epithelial
tumors such as breast, lung, and gastric cancers, expression of the
wound-response signature predicted poor overall survival and
increased risk of metastasis (10). These initial findings demon-
strate the promise of using hypothesis-driven gene expression
signatures to provide insights from existing gene expression
profiles of cancers. However, as in other methodologies, repro-
ducibility and scales for interpretation need to be evaluated
before this strategy can be generally adopted for biologic dis-
covery and clinical use.

The best validation of a gene signature’s prognostic value is to
test its ability to predict outcome in large independent data sets.
Here we examine a database of 295 breast cancer patients from
the Netherlands Cancer Institute that had previously been used
to identify and validate a prognostic gene expression profile
defined by a set of 70 genes (5, 9). We used this data set to test
the reproducibility of the association between the wound-
response signature and breast cancer progression, and to inves-
tigate how the information from diverse gene expression signa-
tures identified by various means might be integrated both
biologically and for clinical use.

Materials and Methods
Tumor Gene Expression Profiles. RNA isolation, labeling of com-
plementary RNA, competitive hybridization of each tumor
cRNA with pooled reference cRNA from all samples to 25,000
element oligonucleotide microarrays, and measurement of ex-
pression ratios were described (5). Detailed patient information
has been described (9). Adjuvant setting was based on national
guidelines or determined by participation in clinical trails at the
time of diagnosis. Ten of the 151 patients who had lymph
node-negative disease and 120 of the 144 who had lymph
node-positive disease had received adjuvant systemic therapy
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consisting of chemotherapy (90 patients), hormonal therapy
(20), or both (20). Clinical and gene expression data are available
at http:��microarrray-pubs.stanford.edu�wound�NKI, www.rii.
com�publications, or http:��microarrays.nki.nl.

Data Analysis. Prognostic signatures. Genes on Stanford cDNA
microarrays and Rosetta�NKI oligonucleotide microarrays were
mapped between different platforms by using Unigene identi-
fiers (build 158, release date January 18, 2003). This older build
of Unigene was used to allow comparison with two published
cross-platform analyses (10, 13). In the unsupervised analysis,
295 tumor samples were grouped by similarity of the expression
pattern of the CSR genes by average linkage clustering by using
the software CLUSTER (14); the gene expression values were
centered by mean. The samples were segregated into two classes
based on the first bifurcation of the clustering dendrogram; the
two classes were identified as ‘‘activated’’ vs. ‘‘quiescent’’ by the
predominant expression of the serum-induced and serum re-
pressed CSR genes (10). Classification of the tumors as having
a good prognosis signature or a poor prognosis signature based
on the expression of 70 genes was as described (9). The five-class
‘‘intrinsic gene’’ signature was assigned by matching the expres-
sion value of the intrinsic genes in the NKI dataset to the nearest
expression centroid of the five classes as described; samples that
did not have correlation �0.1 to any centroid were termed
unclassified (13). A total of 509 probes representing 431 of 487
intrinsic genes were successfully identified in the NKI data set.
Survival analysis. Overall survival was defined by death from any
cause. Distant metastasis-free probability (DMFP) was defined
by a distant metastasis as a first recurrence event; data on all
patients were censored on the date of the last follow-up visit,
death from causes other than breast cancer, the recurrence of
local or regional disease, or the development of a second primary
cancer, including contralateral breast cancer. Kaplan–Meier
survival curves were compared by the Cox–Mantel log-rank test
in WINSTAT FOR EXCEL (R. Fitch Software, Staufen, Germany).
Multivariate analysis by the Cox proportional hazard method was
performed by using the software package SPSS 11.5 (SPSS,
Chicago).
Scaling the wound signature. The patient data set was randomized
into two halves, one for training and one for testing. The two half
sets were matched for all known clinical parameters and risk
factors (Table 2, which is published as supporting information on
the PNAS web site). The serum-activated fibroblast centroid was
as described (10). Pearson correlation of the expression values of
CSR genes of tumor samples to the serum-activated fibroblast
centroid results in a quantitative score reflecting the wound-
response signature for each sample. The higher the correlation
value, the more the sample resembles serum-activated fibro-
blasts (‘‘activated’’ wound-response signature). A negative cor-
relation value indicates the opposite behavior and higher ex-
pression of the ‘‘quiescent’’ wound-response signature. The
threshold for the two classes can be moved up or down from zero
depending on the clinical goal. Sensitivity and specificity for
predicting metastasis as the first recurrence event was calculated
for every threshold between �1 and �1 for the correlation score
in 0.05 increments. The threshold value of negative 0.15 corre-
lation gave 90% sensitivity for metastasis prediction in the
training set, and had equivalent performance in the test set.
Decision tree analysis. To construct a decision tree, we considered
all clinical risk factors and gene expression profiles by using the
Cox proportional hazard model in SPSS, identified the dominant
risk factor (most significant P value) to segregate patients, and
reiterated the process on each subgroup until the patients or risk
factors became exhausted. For gene expression signatures, we
used the correlation value to each canonical centroid as a
continuous variable to capture the possibility that different
thresholds may be optimal in different subgroups. Because 60

patients with lymph node-negative disease in this series were
used to train the 70-gene signature (5), performance of the
decision tree incorporating the 70-gene signature was validated
on the independent subset of patients with lymph node-positive
disease. The threshold for the 70-gene signature has been
reported (5); the threshold for the wound-response signature was
chosen based on outcome data in the training set. Performance
of the decision tree analysis was validated by equal performance
in the randomized training and testing sets of patients. Support
of the decision tree model by nonlinear multivariate analysis is
described in Fig. 4, which is published as supporting information
on the PNAS web site.

Results
Prognostic Value of a Wound Response Gene Expression Signature in
Breast Cancer. To validate the prognostic value of the wound-
response signature, we examined the expression of the core
serum response genes in 295 consecutive patients with early
breast cancer treated at the Netherlands Cancer Institute. A

Fig. 1. Performance of a ‘‘wound response’’ gene expression signature in
predicting breast cancer progression. (A) Unsupervised hierarchical clustering
of 295 breast cancer samples using 442 available CSR genes. Each row repre-
sents a gene; each column represents a sample. The level of expression of each
gene, in each sample, relative to the mean level of expression of that gene
across all of the samples, is represented by using a red–green color scale as
shown in the key; gray indicates missing data. The transcriptional response of
each gene in the fibroblast serum response is shown on the right bar (red
indicates increased expression, and green indicates reduced expression in
response to serum). The dendrogram at the top indicates the similarities
among the samples in their expression of the CSR genes. Two main groups of
tumors were observed: one group with a gene expression pattern similar to
that of serum-activated fibroblasts, termed ‘‘activated,’’ and a second group
with a reciprocal expression pattern of CSR genes, termed ‘‘quiescent.’’ Two
small subsets of the quiescent group with more heterogeneous expression
patterns are indicated by yellow bars. (B and C) Kaplan–Meier survival curves
for the two classes of tumors. Patients with tumor expression the activated
wound-response signature had worse overall survival (OS) and DMFP com-
pared to those with a quiescent wound-response signature. A total of 126
tumors were classified as activated, and 169 tumors were classified as quies-
cent. For activated vs. quiescent groups, 10-year OS are 50% vs. 84% (P � 5.6 �
10�10) and 10-year DMFP are 51% vs. 75% (P � 8.6 � 10�6), respectively.
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total of 442 probes representing 380 of 459 core serum response
genes were successfully identified in this data set. To determine
whether the CSR genes showed coherent expression in this set
of patients, we grouped the expression patterns of genes and
patients by similarity using hierarchical clustering (14). As
reported in two smaller groups of breast cancer patients (10), the
CSR genes showed a coordinated and biphasic pattern of
expression (Fig. 1A). Breast cancer samples showed predomi-
nant expression of either serum-induced or serum-repressed
genes, allowing us to assign each sample to the activated or
quiescent wound-response signature. We tested for association
between the wound-response signature and the occurrence and
timing of several key clinical outcomes. Patients with the acti-
vated wound-response signature (n � 126, 42.7%) had a signif-
icantly decreased distant metastasis-free probability (P � 8.6 �
10�6) and overall survival (P � 5.6 � 10�10) in univariate
analysis (Fig. 1 B and C). We noted that two small subsets of
patients within the quiescent group had more heterogeneous
gene expression patterns (Fig. 1 A, yellow bars); these patients
had an intermediate risk of metastasis and death from their
tumors (Fig. 5, which is published as supporting information on
the PNAS web site).

We extended the analysis by separately testing the association
between the activated wound-response signature and clinical
outcome in subsets of breast cancer patients: patients with
tumors �2.0 cm (T1 tumors), patients with lymph node negative
disease, and patients with lymph node positive disease. In each
of these subsets of breast cancer patients, patients with tumors
showing an activated wound-response signature had significantly
worse distant metastasis-free probability and overall survival
compared to those with a quiescent wound signature (Fig. 6,
which is published as supporting information on the PNAS web
site). These results confirm that the wound-response signature is
a powerful prognostic indicator in breast cancer.

A Scalable Prognostic Score Based on the Wound-Response Signature.
The previous analyses depended on stratifying tumors within a
predefined group, relative to which each tumor is evaluated. To
allow practical clinical use of the wound signature, we needed to
develop a method to evaluate the presence and strength of this
signature independently in any newly diagnosed cancer. Classi-
fication by hierarchical clustering provided a mathematically
reasonable but biologically arbitrary threshold for assigning a
cancer to one of two groups; it is preferable to treat the threshold

as a parameter and quantify the confidence with which patients
are assigned to each class. The threshold for calling a tumor
sample wound-like could then be scaled to favor sensitivity or
specificity, depending on the clinical scenario. For example, in a
screening setting, it may be preferable to favor sensitivity,
whereas a clinical test to determine therapies associated with
high morbidity should have high specificity.

The expression pattern of CSR genes in serum-treated fibro-
blasts served as the prototype of the ‘‘activated’’ profile of the
wound-response signature (10). Thus, we considered a strategy
based on the correlation of the expression profile of CSR genes
in each tumor sample to a vector representing the centroid of the
differential expression in response to serum in cultured fibro-
blasts from 10 anatomic sites (10). The correlation value to the
gene expression centroid of serum-activated fibroblast generates
a continuous score that can be scaled. To evaluate the prognostic
utility of the scalable wound signature, multivariate analysis of
the wound signature with known clinical and pathologic risk
factors for breast cancer progression showed that the wound
signature is an independent predictor of metastasis and death
and provides more prognostic information than any of the classic
risk factors in the multivariate model (Table 1, hazard ratio of 7
and 11, respectively, P � 0.01). Because the expression pattern
of CSR genes in serum-activated fibroblasts was discovered
completely independently of tumor gene expression data or
clinical outcome, the prognostic power of the serum-activated
fibroblast centroid in breast cancer provides strong evidence
of the biologic link between a wound response and cancer
progression.

Incorporating the Wound-Response Signature for Improved Clinical
Decision Making. Because the wound-response signature provides
improved risk prediction compared to traditional criteria, we
examined the utility of a scalable wound signature in a clinical
scenario: the decision to treat with adjuvant chemotherapy in
early breast cancer. Approximately 30% of women with early
breast cancer have clinically occult metastatic disease, and
treatment with chemotherapy in addition to surgical excision and
radiotherapy improves their outcomes (15). Uniform treatment
of early breast cancer in women younger than 50 years of age with
chemotherapy increases the 10-year survival from 71% to 78%
(absolute benefit of 7%) for lymph node negative disease and
from 42% to 53% (absolute benefit of 11%) for lymph node
positive disease, but at the cost of exposing a large number of

Table 1. Multivariate analysis of risk factors for death and metastasis as the first recurrence event in early breast cancer

Death Metastasis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Wound response signature 11.18 (2.52–49.6) 0.001 7.25 (1.75–30.0) 0.006
Age, per decade 0.66 (0.45–0.95) 0.027 0.71 (0.50–1.00) 0.052
Diameter of tumor, per cm 1.02 (0.98–1.04) 0.270 1.03 (1.01–1.06) 0.008
Lymph node status, per positive node 1.05 (0.94–1.16) 0.371 1.10 (1.01–1.21) 0.035
Tumor grade

Grade 2 vs. 1 2.86 (0.96–8.5) 0.059 1.87 (0.86–4.07) 0.117
Grade 3 vs. 1 3.14 (1.02–9.6) 0.045 1.70 (0.74–3.90) 0.212

Vascular invasion
1–3 vessels vs. 0 vessels 0.95 (0.35–2.52) 0.918 0.78 (0.32–1.87) 0.57
�3 vessels vs. 0 vessels 1.88 (1.13–3.11) 0.014 1.65 (1.02–2.68) 0.043

Estrogen receptor status, positive vs. negative 0.49 (0.29–0.83) 0.008 0.82 (0.47–1.41) 0.468
Mastectomy, vs. breast conserving therapy 1.23 (0.76–2.01) 0.401 1.28 (0.80–2.04) 0.311
No adjuvant therapy, vs. chemo or hormonal therapy 1.42 (0.80–2.52) 0.291 2.24 (1.32–3.82) 0.003

The correlation value to the serum-activated fibroblast centroid was modeled as a continuous variable; the hazard ratio per �1.0 correlation value is reported
and represents the different risks at two ends of the spectrum. CI, confidence interval. The hazard ratio per �0.1 correlation value for death and metastasis are
1.27 (95% CI � 1.10–1.48) and 1.22 (95% CI � 1.06–1.40), respectively. Parameters found to be significant (P � 0.05) in the Cox proportional hazard model are
shown in bold.
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women who do not benefit (89–93% of all breast cancer patients)
to the morbidities of chemotherapy. The absolute benefit of
chemotherapy for older patients is even smaller (3.3% for
node-negative and 2.7% for node-positive patients) (15). Clinical
parameters, such as lymph node status, tumor size, and histo-
logical grade, can provide prognostic information (16) and are
summarized in commonly used clinical guides for deciding
whether to treat with chemotherapy such as the National Insti-
tute of Health (NIH) (17) or St. Gallen (18) consensus criteria.
Nonetheless, risk stratification based on clinical parameters is far
from perfect and, as a result, many women who are unlikely to
benefit are treated with chemotherapy.

Because the presence of the wound-response signature in the
primary tumor is associated with an increased risk of subsequent
metastasis, we used a scalable wound-response signature to
identify a subset of patients with a predicted risk of subsequent
metastasis of �10%. Within this low-risk population, the ex-
pected absolute benefit from chemotherapy would be very small
and the decision to forego chemotherapy might be justified. We
used the serum-activated fibroblast centroid to assign a corre-
lation score to each tumor in the data set. We set a threshold for
the correlation score that was able to identify 90% of all patients
with subsequent metastasis; this threshold was validated by first
learning the threshold in half of the samples and showing an
equivalent performance in the remaining half of the data set.

We then tested whether this scaled wound-response signature
provided improved risk stratification compared to traditional
clinical criteria. Indeed, patients who were assigned as high risk
by the NIH or St. Gallen consensus criteria had heterogeneous
outcomes, and within these sets of conventional ‘‘high risk’’
patients, the supervised wound response score was able to
identify a subset of patients with a low risk of subsequent
metastasis (Fig. 2 A and B). A total of 185 of the patients
represented in the NKI data set had never received adjuvant
chemotherapy; the clinical outcomes of these patients allowed us
to examine the appropriateness of decision for chemotherapy
provided by the clinical guidelines or wound signature. As shown
in Fig. 2C, the majority of patients who did not develop
metastasis in this series were stratified as high risk by the NIH
or St. Gallen criteria, and according to these criteria would have
been treated with chemotherapy that would not benefit them.
The wound-response signature appropriately identified 90% of
patients who developed metastases as the first recurrence (the
end point of the supervised scaling), and at the same time would
have spared 30% of women who did not develop metastasis from
exposure to chemotherapy. These results illustrate the potential
utility and improved risk stratification that might be achieved by
scaling the wound-response signature to fit the prognostic goals
in a clinical setting.

Integration of Diverse Gene Expression Signatures. How can we
integrate the information from disparate prognostic signatures
that have been identified for breast cancer to optimize risk
stratification? We focused on three signatures that have been
validated in independent studies and represent distinct analytic
strategies. Perou et al. (3) used an unsupervised clustering
strategy to identify subtypes of locally advanced breast tumors
with pervasive differences in global gene expression patterns; the
subtypes are thought to represent distinct biologic entities and
were associated with different risk of metastasis (4, 13). At least
five subtypes were distinguished, termed basal-like, ErbB2,
luminal A, luminal B, and normal-like, and can be identified by
the pattern of expression of a set of 500 ‘‘intrinsic genes.’’ In
contrast, van ’t Veer et al. (5) selected a 70-gene signature based
on the association of expression each gene with the likelihood of
metastasis within 5 years. The 70-gene signature was trained on
a subset of the 295 patients studied in the present work and
validated on the entire group of 295 patients (9). Finally, the

wound-response signature was identified in a hypothesis-
initiated approach that specifically tested the relationship be-
tween tumor progression and a gene expression program iden-
tified in an experimental model of a wound response (10).
Importantly, these prognostic signatures are defined by expres-
sion patterns of distinct sets of genes with little overlap: only 22
genes are shared by two signatures (18 of these genes were shared
between wound response and the intrinsic gene list), and no gene
is present in all three signatures.

We used each of the three signatures to evaluate this series of
295 breast tumors and found that, despite their different deri-
vations, the signatures gave overlapping and generally consistent
predictions of outcomes (Fig. 3A). Many primary tumors from
patients that developed subsequent metastasis and died ex-
pressed both the 70-gene poor prognosis signature and the
wound-response signature. A small group of tumors with poor
outcome were not identified as having a poor prognosis by the
70-gene signature but were highlighted by the wound-response
signature (right side of Fig. 3A). Similarly, almost all of the
basal-like subgroup, so termed because they express markers
characteristic of the basal epithelial cells in breast ducts, ex-

Fig. 2. A scalable wound-response signature as a guide for chemotherapy.
(A) Wound-response signature adds prognostic information within the group
of high-risk patients identified by NIH consensus criteria. According to the NIH
criteria, 284 patients are high risk and advised to undergo adjuvant chemo-
therapy; 72 patients had tumor-positive lymph nodes. Patients were classified
by using the serum activated fibroblast centroid (threshold � �0.15). The
10-years DMFP for the activated (n � 221) vs. quiescent (n � 61) is 58% vs. 83%,
respectively (P � 0.0002). (B) Wound-response signature stratifies St. Gallen
criteria high-risk patients. According to St. Gallen criteria, 271 patients are
high risk and advised to undergo adjuvant treatment; 72 patients had tumor-
positive lymph nodes. When the supervised wound signature was used, the
10-years DMFP for the activated (n � 217) vs. quiescent (n � 56) group is 59%
vs. 83%, respectively (P � 0.0005). (C) Graphical representation of number of
patients advised to undergo adjuvant systemic treatment and their eventual
outcomes based on the supervised wound-response signature or the NIH or St.
Gallen criteria in the 185 patients in this data set that did not receive adjuvant
chemotherapy. Forty patients had tumor-positive lymph nodes. Yellow indi-
cates chemotherapy, blue indicates no chemotherapy. The bar at left shows
which patients have developed distant metastasis as first event: black indi-
cates distant metastasis; white indicated no metastasis. Thus, blue in the lower
bar indicates the potentially undertreated patients, yellow in the upper bar
shows the potentially overtreated patients.
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pressed the 70-gene poor prognosis signature and the activated
wound-response signature (P � 0.001, �2 test). These results thus
strongly support the idea that the basal-like tumors represent a
distinct disease entity with an aggressive clinical course. How-
ever, apart from the basal-like subtype, many tumors had
expression patterns that were indeterminate with respect to the
subtypes as defined by the intrinsic genes; �100 of the 295
tumors could not be confidently assigned to any of the five
subtypes defined by Perou et al. (3) and Sørlie et al. (4) (Fig. 7,
which is published as supporting information on the PNAS web
site). The limited ability to classify these cancers based on the
available data may be due to the incomplete representation of
genes that define the intrinsic gene list in this data set, or due to
the fact that the genes that define this classification system were
identified in locally advanced breast cancer samples and may not
be optimal for classifying earlier stage cancers. In multivariate
analysis combining (additively) known clinical risk factors with
all three signatures, the 70-gene signature and wound-response
signature provided independent and significant prognostic in-
formation, whereas the intrinsic genes did not (i.e., their prog-
nostic information was subsumed by the other parameters in the
model; Tables 3 and 4 and Supporting Text, which are published
as supporting information on the PNAS web site).

As an alternative approach to considering information from
multiple gene expression signatures for clinical risk stratification,

we developed and tested a decision tree algorithm. At each node
in the decision tree, we considered all clinical risk factors and
gene expression profiles, selected the parameter and threshold
that best segregated the patients with divergent outcomes, and
reiterated the process on each resulting subgroup until the
patients or risk factors were exhausted. We discovered that, in
decision trees incorporating gene expression signatures, the
70-gene and wound-response signatures were sufficient to cap-
ture most of the prognostic information in only two steps (Fig.
3 B–D). Modeling of nonlinear interactions between the gene
expression signatures and clinical risk factors independently
yielded a similar conclusion (Fig. 4). For patients with early
breast cancer and lymph node involvement, the key clinical
decision is whether and how to treat with adjuvant chemother-
apy. As reported (9), patients with the favorable 70-gene profile
had �90% metastasis-free probability (group 0). Patients whose
cancers had a poor-prognosis 70-gene profile, but lacked the
activated wound-response signature, have a risk profile similar to
the aggregated average baseline (group 1); patients whose
cancers had both the activated wound-response signature and the
70-gene poor prognosis signature had a risk of metastatic disease
�6.4-fold higher than did patients in group 0 (10-year DMFP of
89%, 78%, and 47%, respectively). Thus, the patients in group
0 might reasonably consider foregoing adjuvant chemotherapy,
whereas the patients in group 2 have a risk profile more similar

Fig. 3. Integration of diverse gene expression signatures for risk prediction. (A) Compendium of gene expression signatures in 295 breast tumors. Shown are
correlation values to canonical centroids of classes defined by intrinsic genes (basal, luminal A, luminal B, ErbB2, vs. normal-like), by the 70 genes (poor prognosis
vs. good), and by the wound signature (activated vs. quiescent). Orange indicates positive correlation; blue indicates anticorrelation. Each row is a class; each
column is a sample. (Lower) Corresponding clinical outcomes; black vertical bar indicated death or metastasis as the first recurrence event. (B) Summary of decision
tree analysis. At each node, the dominant risk factor in multivariate analysis is used to segregate patients, and the process is repeated in each subgroup until
patients or risk factors became exhausted. We found that the 70-gene signature was able to identify a group of patients with very good prognosis (group 0),
and then the wound signature could divide the patients called ‘‘poor’’ by the 70-gene signature into those with moderate and significantly worse outcomes
(groups 1 and 2). (C) Distribution of 144 lymph node-positive patients among the three groups defined in B. Because the 70-gene signature was identified by
using a select subset of 60 patients with lymph node-negative disease, the decision tree incorporating the 70-gene signature was performed on the independent
lymph node-positive subset to have an unbiased evaluation of risk prediction. Hazard ratios of metastasis risk after adjusting for all other factors listed in Table
1 are shown for the three subgroups stratified by the decision tree. (D) Distant metastasis free probabilities of patients stratified by the decision tree
analysis. A total of 55, 32, and 57 patients are in group 0, 1, and 2, respectively, and 10 years DMFP for the three groups were 89%, 78%, and 47%, respectively
(P � 6.94 � 10�6).
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to patients with locally advanced disease and might be recom-
mended for dose-dense or taxane-based adjuvant chemotherapy
(19, 20). Together, these results illustrate that adding the wound-
response signature to existing clinical, pathologic, and gene
expression prognostic factors can significantly improve risk
stratification and clinical decision making.

Discussion
We used an independent data set to confirm that a wound-
response gene expression signature is a powerful predictor of
clinical outcome in patients with early stage breast cancers.
Together with our previous results on locally advanced breast,
lung, and gastric cancer, these findings reinforce the concept that
a gene expression program related to the physiological response
to a wound is frequently activated in common human epithelial
tumors, and confers increased risk of metastasis and cancer
progression. In the future, methods that simplify the evaluation
of this molecular signature will be required for allowing routine
use of the wound-response signature in clinical decision making.
Prospective studies are needed to determine whether treatment
decisions based on the wound-response signature might benefit
patients.

The molecular mechanisms that activate, sustain, and even-
tually shut off the wound-response-like gene expression program
in tumors should be investigated. By delineating the risk for
metastasis based on the wound-response signature, it is possible
that these high-risk breast cancer patients might some day
benefit from therapies that target the wound response.

We have examined approaches to parameterize the wound-
response signature so that it can be evaluated in tumors indi-
vidually to yield a quantitative score; the interpretation of the
wound signature score can then be rationally directed to suit the
clinical task. As a first step toward integrating diverse prognostic
signatures, we examined the interactions and information pro-
vided by three independent methods for using global gene
expression patterns to classify breast cancers and predict their
course: one that defined five molecular subtypes, one that was
discovered by directly fitting to survival data, and one based on

an in vitro model of a wound response. The different signatures
each classified tumors into coherent and internally consistent
groups, and where the signatures diverged, the combined infor-
mation gave improved risk stratification compared to individual
signatures. These results show that diverse analytic strategies are
continuing to identify distinct molecular features that are related
to poor prognosis in these tumors. Visualizing the connections
between the different gene expression signatures suggests po-
tential explanations for disparate clinical outcomes and sets the
stage for directed experimentation. For example, the high level
activation of the wound signatures in the basal-like subtype of
breast cancers raises the possibility that basal epithelial cells in
breast ducts have distinct roles in wound healing and may
differentially regulate the CSR genes.

Direct approaches to building prognostic models from global
gene expression data, by simply fitting the models to clinical
outcome features are restricted to a palette of relatively simple
models to avoid overfitting. An optimal model, reflecting the
underlying pathogenic mechanisms, may be poorly represented
of any of the models evaluated in these top-down supervised
approaches and thus never discovered. Our results illustrate the
potential advantages of a ‘‘bottom-up’’ approach building from
gene expression signatures, developed to represent specific
hypothesis about underlying pathogenic mechanism. Such an
approach has the potential to outperform the top-down model-
independent approaches in improving cancer stratification and
clinical decision making. Moreover, this model-dependent bot-
tom-up approach has the advantage of providing specific testable
ideas about pathogenic mechanism and thereby potential targets
for treatment.
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