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Abstract: Skin cancer is one of the most prevalent of all cancers. Because of its being widespread
and externally observable, there is a potential that machine learning models integrated into artificial
intelligence systems will allow self-screening and automatic analysis in the future. Especially, the
recent success of various deep machine learning models shows promise that, in the future, patients
could self-analyse their external signs of skin cancer by uploading pictures of these signs to an artificial
intelligence system, which runs such a deep learning model and returns the classification results.
However, both patients and dermatologists, who might use such a system to aid their work, need to
know why the system has made a particular decision. Recently, several explanation techniques for the
deep learning algorithm’s decision-making process have been introduced. This study compares two
popular local explanation techniques (integrated gradients and local model-agnostic explanations)
for image data on top of a well-performing (80% accuracy) deep learning algorithm trained on the
HAM10000 dataset, a large public collection of dermatoscopic images. Our results show that both
methods have full local fidelity. However, the integrated gradients explanations perform better with
regard to quantitative evaluation metrics (stability and robustness), while the model-agnostic method
seem to provide more intuitive explanations. We conclude that there is still a long way before such
automatic systems can be used reliably in practice.

Keywords: explainable artificial intelligence; interpretable machine learning; skin cancer; convolutional
neural network; deep learning; integrated gradients; local model-agnostic explanations

1. Introduction

Skin cancer is one of the most prevalent cancer types [1,2]. The Center for Disease
Control and Prevention estimates that there are 44 million visits to dermatologists every
year, with skin lesions being one of the primary reasons for these visits [3]. Automating
some of the tasks dermatologists work with, would not only bring a relief to the rising
workload dermatologists struggle with but also make regular assessments easier and more
affordable to a large number of patients. In recent years, advances in computer vision
techniques and deep neural networks have yielded models that can automatically classify
skin cancer. More specifically, the ability of convolutional neural networks (CNNs) to
learn features have been noted also in the medical image analysis domain [4], and the
dermatology subfield [1,2,5,6]. As a whole, CNNs have become a widely used and “state-
of-art” technique when developing algorithms for medical image classification (including
dermatology) tasks.

To our knowledge, in 2019, Brinker et al. [7] reported, for the first time, an on par
skin cancer classification performance of CNN with dermatologists. Since then, schol-
ars have increasingly published studies of automatic skin lesion classification models
outperforming human domain experts/ dermatologists [8]. In fact, a recent survey by
Haggenmüller et al. [9] reports that in all their reviewed works, AI showed superior or at
least equivalent performance compared with clinicians. However, one of the main disadvan-
tages of CNNs with their many layers and weights is that they are opaque. This means that
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it is unclear why a CNN arrived at a certain decision, making it difficult to trust the models.
Thus, before these models can be integrated into clinical practice, the interpretability gap
needs to be filled [10].

As explained by Selvaraju et al. [11], there are three main reasons why interpretability
matters, and these reasons mostly related to how well the AI system is performing in
comparison to human decision-makers: First, if the human decision-maker is performing
better than the AI system, interpretability is needed mostly as a debugging function (i.e.,
for establishing the reasons why and where the AI is not performing as expected). As
summarized by Maron et al. [12], CNNs can suffer from a variety of flaws, and it is
important to detect these flaws. Secondly, if the human and the AI are more or less on par,
the interpretability need mainly arises to convince users to have confidence and trust in
the AI (e.g., by showing that the human domain expert would decide exactly as the AI
system). Thirdly, if the AI outperforms the human domain expert, the interpretability can
show or teach humans to become better (e.g., by highlighting the most important features
one should pay attention to or providing general rules).

In this study, we are interested in all three reasons. For our experiments, we use
the well-known HAM10000 data [13], an established public dataset for benchmarking
and training of dermatology tasks. This dataset contains more than 10,000 dermascopic
images spread between seven different types of skin lesions. According to a 2020 paper
by Tschandl et al. [8], human domain expert classification performance for this dataset is
about 64%, while current CNNs clearly outperform the human experts. This means that
the interpretability of such an AI system/CNN model might actually teach humans tricks
or rules helping them to make better decisions/classifications of skin lesions. However,
we also want to make sure that the reasons why these models make particular decisions,
make sense (e.g., that no unreasonable parts of the skin lesion images, such as hair, are
utilized for the classification), and that humans (both domain experts as well as patients)
have more arguments and justification to trust and confide in such AI systems. As pointed
out by Gaube et al. [14], AI systems will only be able to provide real clinical benefit if the
physicians using them can balance trust and skepticism. On the one hand, physicians, who
do not trust the technology, will not use it. On the other hand, blind trust in the technology
can lead to medical error. Explainable AI promises a solution to these problems: provide
explanations to increase trust and informed decision-making; and give reasons/a glass-box
for the AI’s decisions, instead of condoning black-box decisions.

More specifically, explainable AI (XAI), sometimes also called interpretable machine
learning (IML), is an emerging research direction concerned with helping the user or
developer of complex machine learning models to understand the model’s underlying
decision process, and why these models behave the way they do [15–19]. XAI/IML
techniques can be divided into global and local ones. Global interpretation methods
provide explanations for the whole dataset, while the latter provide explanations for
specific instances. Because we rely on the automatic feature extraction by CNNs, we
cannot use intrinsically interpretable classification models that give us model-specific
global explanations (such as random forest, decision tree, or logistic regression). Moreover,
the local ones are more useful for our case, where we want to provide the patient with
classification results and explanations for his/her specific lesion images. Thus, to address
the dermatology AI interpretability issue, we compare two currently popular local XAI/IML
techniques for images; one gradient- and one perturbation-based method:

• Integrated gradients [20], which calculate feature attributions to the prediction by
accumulating gradients along a path from a baseline instance to the specific instance
of interest.

• Local interpretable model-agnostic explanations [21], which build an interpretable
surrogate model around the decision space of the CNN model’s prediction in the local
neighbourhood of the specific instance of interest.

To compare the explanations quantitatively, we compute their performance with
regard to three metrics: robustness, stability, and fidelity. Moreover, we provide the visual
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explanations for the “most interesting” [22,23] explanation cases: those, which the CNN
classifier classifies correctly and incorrectly with the highest probability.

As pointed out in a recent review of explanation techniques for the medical do-
main [19], new XAI/IML are introduced constantly, but metrics and comparison studies
are needed to assess and validate these techniques. To address this research gap, our main
contribution is the qualitative and quantitative comparison of two popular explanation
techniques for a deep CNN model. Although some skin cancer classification studies used
visualizations to explain a few local classifications of their CNN models (e.g., [2,5,24]),
to our knowledge, no study exists that quantitatively compares such explanations through
metrics. Thus, our focus lies on the quality of the XAI/IML techniques that create such
visualizations. In comparison to related work, we quantitatively and qualitatively com-
pare the outcomes of different explanation techniques for the same model and the same
classifications, while related work only showed a few local explanations/visualizations of
randomly (i.e., with no reported rule) picked instances.

The remainder of this paper is structured as follows. Section 2 describes the HAM1000
data and used methods. More specifically, we explicate the deep learning models’
performance–interpretability trade-off, and how XAI/IML techniques work to address this
trade-off. We also depict the quantitative metrics that we used to compare the explanation
techniques. Section 3 presents the experimental results. Section 4 concludes our analysis,
and discusses limitations and future work.

2. Material and Methods
2.1. Data

We used the HAM10000 dataset, a large public collection of dermatoscopic images,
for our experiments. This dataset can be downloaded from the International Skin Imaging
Collaboration (ISIC). (See https://www.isic-archive.com/, accessed on 10 August 2022). It
consists of 10,050 dermoscopic images belonging to seven different classes. More specifi-
cally, 6705 images belong to the melanocytic nevi (nv) class, 1113 belong to the melanoma
(mel) class, 1099 belong to the benign keratosis-like lesions (bkl) class, 514 belong to the
basal cell carcinoma (bcc) class, 327 belong to the actinic keratoses (akiec) class, 142 belong
to the vascular lesions (vasc) class, and 115 images belong to the dermatofibroma (df) class.
Figure 1 shows five randomly picked examples of each of these classes.

These 10,015 dermoscopic images were collected over a time period of 20 years from
the department of dermatology at the Medical University of Viena, Austria, and the
skin cancer practice of Cliff Rosendahl in Queensland, Australia (see [13] for a detailed
description of this dataset). Since then, they have become a widely used dataset for
dermatology benchmarking and training.

As mentioned in the introduction, human domain expert classification performance
for this dataset is about 64% [8], while current ML models mostly outperform the human
experts in classification accuracy. In a recent article, Cassidy et al. [1] compared several
popular deep learning architectures for this dataset and reported the best performance for
EfficientNetB0 with an accuracy of 62.1% (see Table 13 in [1]). Eestava et al. [2] reported
a higher accuracy (72.1%), but they used external data to augment the dataset and the
72.1% is only for the classification into three types (i.e., benign, malignant, and neoplastic).
Tschandl et al. [8] used a 34-layer residual network and achieved an accuracy of 80.3%
on the classification into the seven classes in the data (i.e., askiec, bcc, bkl, df, mel, nv,
and vasc). This is similar to the accuracy we achieve with a significantly simpler model
(see Section 3), and a result that outperforms human expert classifications and that ranks
in the top quartile of all ML models developed for the HAM10000 dataset [8].

A full overview of related work using the ISIC data and skin cancer classification
models is out of scope for this article. Moreover, it would shift its focus which lies on the
explanations of the classifications. A plethora of articles reviewing skin cancer classification
models exist already. Thus, we refer the interested reader to one these overviews. For exam-
ple, Table 1 by Cassidy et al. [1] provides a very recent overview of research papers using
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ISIC data for skin cancer classification, Höhn et al. [25] survey approaches of integrating
patient data into skin cancer CNN classification models, Gulzar and Khan [26] compare
studies that use U-Net and attention-based methods for skin lesion image segmentation,
and the study by Thurnhofer-Hemsi and Domínguez [6] includes a recent summary of
papers using specifically the HAM10000 dataset for deep learning skin cancer classification
models. In addition, articles have been published that highlight the increasing perfor-
mance with transfer learning approaches [27], the significance of specific techniques for the
multi-class classification [28], and the usefulness of CNN ensemble techniques [29].

Figure 1. Example images from the seven different classes of skin lesion. For each class (from top to
bottom row: askiec, bcc, bkl, df, mel, nv, and vasc), five randomly sampled instances are shown.

2.2. Methods

All experiments were performed in Python 3.9.7, using tensorflow version 2.8.1. Ex-
planations were created using the open-source packages alibi-explain [30] and LIME [21].

2.2.1. Deep Learning

Deep learning networks are based on artificial neural networks, which are composed
of neurons organized in layers [31]. In comparison to traditional or “shallow” neural
networks, deep networks use multiple layers to progressively extract higher-level features
from the raw input [32,33]. This automatic feature extraction is one of the main advantages
of deep learning since not everything needs to be programmed explicitly [34]. It is also one
the reasons why deep learning networks have shown exceptional performance, especially
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in (medical) image analysis, where manual feature engineering is a time-consuming and
error-prone process [4]. However, this advantage comes with the trade-off that deep
learning models, with their many kinds of processing layers and multitudes of weights, are
also reckoned to be one of the least interpretable machine learning models [18].

Deep learning models can be categorized into multi-layer neural networks that take
non-structured data as input, and CNNs that take structured data as input. For (medical)
image analysis, CNNs are the most common choice, because of the structural characteristic
of images, that is, the structural information among neighbouring pixels or voxels is another
source of information [4,33,35]. The core building blocks of a CNN are convolutional
layers (giving CNNs their name), pooling layers, and fully connected layers [4,36]. The
convolutional layers produce feature maps by applying convolutional operations to the
input. More specifically, the units of the convolution layer l compute their activations
A(l)

j based only on a spatially contiguous subset of units in the feature maps A(l−1)
j of the

preceding layer l − 1 by convolving the kernels k(l)ij as follows:

A(l)
j = f (

M(l−1)

∑
i=1

A(l−1)
j ∗ k(l)ij + b(l)j ) (1)

with M(l−1) being the number of feature maps in the l − 1 layer, ∗ being a convolution
operator, b(l)j being a bias parameter, and f (·) being a non-linear activation function.
Pooling layers can be added to down-sample the feature maps of the preceding convolution
layer and, through that, “squeeze” the amount of information that is passed on to the next
layer. Fully connected layers are the ones solving the final classification problem with the
data they have from the previous layer [31].

Table 1 reports the summary and overall architecture of the CNN used in this study. We
built our CNN with the Keras Sequential API and trained it by using 150 epochs, a batch size
of 10, the Adam optimizer with categorical cross-entropy as the loss function, and 0.0001 as
the learning rate. As the non-linear activation function (i.e., f (·) in Equation (1)) we chose
the rectified linear unit (ReLU) activation function.

Table 1. Summary and overall architecture of the CNN model used in this study.

Layer Type Output Shape Number of Parameters

conv2d Conv2D (None, 200, 150, 32) 896
conv2d_1 Conv2D (None, 200, 150, 32) 9248

max_pooling2d Max_Pooling2D (None, 100, 75, 32) 0
dropout Dropout (None, 100, 75, 32) 0

conv2d_2 Conv2D (None, 100, 75, 64) 18,496
conv2d_3 Conv2D (None, 100, 75, 64) 36,928

max_pooling2d_1 Max_Pooling2D (None, 50, 37, 64) 0
dropout_1 Dropout (None, 50, 37, 64) 0

flatten Flatten (None, 118,400) 0
dense Dense (None, 128) 15,155,328

dropout_2 Dropout (None, 128) 0
dense_1 Dense (None, 7) 903

2.2.2. Explanation Techniques

Explainable artificial intelligence (XAI), sometimes also called interpretable machine
learning (IML), is a new research area. Several surveys about this topic have been published
recently [15–17,19] underlining its topicality. Explainability is presented either as inherent
characteristic of an algorithm or as an approximation by other methods [37]. The latter is
highly important for methods that have until recently been labeled as “black-box”, such
as artificial neural networks. To explain their predictions, however, numerous methods
exist today [37,38]. Generally, predictive modelling implies a trade-off: the reason for the
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prediction versus how accurate it is. This means that the performance of complex models
with non-linear combinations of inputs usually is better, but such models are harder or
even impossible to understand. As pointed out before, deep learning models are typically
on the extreme ends: they usually outperform all other machine learning techniques with
regard to predictive accuracy (especially in image analysis tasks), but they are also the least
interpretable. XAI/IML refer to approaches attempting to make machine learning models
more explainable.

The need for interpretability arises from an incompleteness in problem formaliza-
tion [39], which means that for certain problems or tasks it is not enough to obtain the
prediction (the what). The model must also explain how it came to the prediction (the
why), because a correct prediction only partially solves the original problem. The following
reasons drive the demand for interpretability and explanations [40]: compliance and trust
related to uptake of health care applications, transparency and reproducibility of the AI
decision-making process, and potentially mitigation of bias in health care. The challenge
when using AI models as black boxes has resulted in a lack of accountability and trust in
the decisions which XAI aims to rectify.

Generally, XAI/IML methods can be categorized into

• Intrinsic versus post hoc;
• Global versus local;
• Model-specific versus model-agnostic;
• Perturbation- or occlusion-based versus gradient-based.

Intrinsic XAI/IML methods refer to techniques that are explainable by themselves (e.g.,
due to their simple structure, such as linear regression models), while post hoc methods
explain the model’s logic in retrospect after it was trained. Moreover, one distinguishes
between local and global explanations. Although modular global explanations provide
interpretation for the model as a whole, approaching it holistically, a local explanation
provides interpretation for a specific observation (such as one particular image). Further-
more, an explanation technique can be model-specific if it depends on (parts of) its model,
or model-agnostic, if it can be applied to any model. Occlusion- or perturbation-based
methods manipulate parts of the image to generate explanations, while gradient-based
methods compute the gradient of the prediction (or classification score) with respect to the
input features.

Another way to categorize XAI/IML methods is the manner in which they provide ex-
planations. They can be either based on examples (e.g., [41–43]), counterfactuals (e.g., [44]),
hidden semantics (e.g., [45]), rules (e.g., [46–48]), or features/attributions/saliency
(e.g., [49–52]). The most common explanation for classification models are the latter, that is,
feature importances [22]. Feature importances rely on feature scoring and ranking to quan-
tify and improve the understandability of a model, and thereby explain its behaviour [53].
If the model is trained on images (i.e., features refer to (super-)pixels of the images), one
also speaks about “saliency maps” or “pixel attribution” explanation methods. Saliency
of features to rank their explanatory power is applicable in both feature selection and as a
post hoc explainability approach [16,54].

Both XAI/IML methods we use in this work, that is, integrated gradients by Sun-
dararajan et al. [20] and local model-agnostic explanations (LIME) by Ribeiro et al. [21],
provide explanations as feature importances. Moreover, they are both post hoc methods
that are applied after model training. However, LIME is model-agnostic and can be applied
to any model, while integrated gradients can only be applied to any differentiable model.
Moreover, LIME is perturbation-based and integrated gradients is gradient-based.

For neural networks, one measure of feature importance/saliency is the input sen-
sitivity, that is, the partial derivative of the network’s output with respect to its input.
For shallow networks, feature assessment originating from this idea was proposed by
Dimopoulos et al. [55]. Use of a partial derivative method was rediscovered within the
context of deep neural networks by Simonyan et al. [56], where it was used to generate an
image-specific saliency map for visual interpretation of a CNN classifier. However, these
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early gradient-based techniques suffer from the saturation problem [20,57]. Meaning that
the more a model learns the relationship between the range of an individual feature and
the prediction, the gradient for this feature will become increasingly small and even go to
zero. To solve this saturation problem, the integrated gradients technique by Sundarara-
jan et al. [20] accumulates gradients along a path from a baseline instance x′ to the specific
instance of interest. The integrated gradient for a particular instance x is defined as

(xi − x′i)×
∫ 1

α=0

δF(x′ + α× (x− x′))
δxi

dα (2)

where i is a feature (pixel), and δF(x)
δxi

is the gradient of F(x) along the ith feature.
LIME is perturbation-based and does not need access to any model internals. It works

for tabular, text, and image data. It takes the instance x for which the prediction should be
explained and permutes depending on the data type, either its feature values (for tabular
and text data) or its superpixels (i.e., interconnected pixels with similar colour) for image
data. These permuted instances are then weighted by their distance to x, the model f is used
to predict the permuted instances, and a new surrogate model g is trained. Optimization
is used to find a local surrogate model with low complexity but high agreement with the
prediction of the original model. In short, LIME is defined as follows:

ξ = arg min
g∈G

L( f , g, πx) + Ω(g), (3)

where πx is the proximity measure to define locality around x, and Ω(g) is the complexity
of g.

2.2.3. Metrics

There is no general consensus among scholars on how the quality and reliability of
explanation techniques should be assessed [58]. Generally, one can distinguish between
human-centred qualitative evaluations and more objective metrics [58]. In this paper,
we provide qualitative visual explanations only for the “most interesting cases” [22],
and focus the main validation assessment to the latter. More precisely, we use three
objective quantitative evaluation metrics: robustness, stability, and fidelity.

First, we measure the robustness of the explanation techniques using the Lipschitz indi-
cator proposed by Alvarez-Melis and Jaakkola [59]. This Lipschitz indicator gives the per-
sistence of an explanation method to withstand small perturbations of the input that do not
change the prediction of the model. More precisely, Alvarez-Melis and Jaakkola proposed
to artificially perturb the features of each object xi ∈ X, so that Nε(xi) = ||xi − xj|| ≤ ε,
and then computing the quantity

LX(xi) = arg max
xj∈Nε(xi)≤ε

|| f (xi)− f (xj)||
||xi − xj||

(4)

to measure whether the explanation technique is robust in a Lipschitz sense. As pointed
out in [59], there is no single ideal value for this robustness estimate, because it is highly
dataset dependent. However, a smaller value corresponds to more robustness [59]. To
measure the robustness of our explanation techniques, we compute the mean and standard
deviation of the Lipschitz indicator for all naturally similar instances in the test set (i.e.,
those test set instances that belong to the same class), so that we do not have perturb any
instances artificially.

Second, we measure the stability or identity [60] of the explanation technique by
repeating the explanation generation for the same instance and model with the same
configuration arguments. If the explanation technique results in different explanations,
the technique is not stable. To measure the degree of stability, we simply compute the
explanation for each instance in the test set twice with the same configurations and take
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the percentage of same explanations from all the explanations pairs in the test set. A higher
percentage means more stability.

Third, we measure the fidelity. The fidelity metric indicates how closely the surrogate
model reflects the real model. By definition, the fidelity of an intrinsically explainable
model-specific explanation is always 100%, as it harnesses the original model. However,
for model-agnostic explanation techniques, which (such as LIME) are based on local
surrogate models, the fidelity is an important objective quality metric. As pointed out by
Carvalho et al. [38], an explanation with low fidelity is essentially useless. Similarly as the
stability, we report the local fidelity of the explanation technique as percentage for each
observation in the test set. Meaning for each observation in the test set, we compute the
prediction of the original model and the prediction of the (surrogate) explanation model
and report the percentage of agreement.

3. Experimental Results
3.1. Convolutional Neural Network

First, the data were divided into a train (80%) and a test (20%) sets. Second, the train
set was divided further into a training (90%) and a validation (10%) set. Because of the
high imbalance of the classes, we used a stratified split to ensure that the fraction of images
from the same class was similar in train and validation sets [61]. To prevent data snooping,
only the training and validation set were used during model training, and the test set was
kept separately the whole time and used only to test the final the model.

The final model had a performance of 80% accuracy on the test set. Figure 2 shows
the confusion matrix of the test set for our final model, and Figure 3 shows the percent-
age of correct classifications as a bar plot. As expected, performance was best for the
melanocytic nevi (nv) class, which had the most images to learn from. It was worst for the
actinic keratoses (akiec) class, which had the third least images to learn from, and, thus,
is one of the minority classes in the dataset. More training images of the minority classes
(i.e., dermatofibroma, vascular lesions, and actinic keratoses) would help the classifier to
extract more specific characteristics of these three classes and, thus, improve the overall
classification performance.

Figure 2. Classification result (confusion matrix) of the test set on the trained CNN model.
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Figure 3. Percentage of correct classifications per class.

3.2. Explanations

We computed the feature (pixel) attributions using integrated gradients and LIME
on top of the CNN for each image in the test set. Because both explanation techniques
provide only local explanations, it is clearly infeasible to show explanations for all the
images. Therefore, similarly to Saarela and Jauhiainen [22], we show the explanations
for the “most interesting” instances for each class, that is, those images from the test set
that the CNN classified correctly and those that the CNN classified incorrectly with the
highest probability.

Figure 4 shows the feature (pixel) attributions using the two explanation techniques
for those images in the test set that the CNN classified correctly with the highest probability.
Figure 5 shows the integrated gradients and LIME explanations for those images, where
the CNN did not perform as wanted, that is, those images in the test set that the CNN
misclassified with the highest probability. For all classes (except the melanocytic nevi class),
the test set images that were misclassified with the highest probability, were classified as
belonging to the melanocytic nevi (nv) class. This makes sense as the classifier is clearly
biased towards the majority class. The melanocytic nevi test image that was misclassified
with the highest probability belonged to the basal cell carcinoma class.

Previous work (see, e.g., [62]) mainly compared feature attributions/maps for Ima-
geNet labels (e.g., cats or dogs). The feature maps learned on the medical images are more
challenging to interpret. For example, while it makes sense that a network classifies an
animal with sharp ears and whiskers as a cat, there are no such clear rules for skin lesions
types. Such approaches commonly use clustering and dimension reduction methods and
are applicable to strictly defined domains. For example, Dindorf et al. proposed an explain-
able pathology independent classifier for spinal posture [63]. The authors used SVM and
random forest as the ML classifiers and then applied LIME to explain the prediction of the
ML classifier. However, for our data, it seems that the integrated gradients method is able to
harness the shape of the lesions. The LIME explanations seem to use more features/pixels
to explain, and seem, therefore, somewhat more intuitive.
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Most approaches to assurance of safety and reliability of interpretations and as a result
their explainability emphasize verification and validation, although the definitions of the
terms can vary. The International Medical Devices Regulator Forum (IMDRF) define the
terms as follows: Verification—confirmation through provision of objective evidence that
specified requirements have been fulfilled; and Validation—confirmation through provision
of objective evidence that the requirements for a specific intended use or application
have been fulfilled [64]. Explainability is of particularly high value when compliance is
required and for applications where predictive performance is not enough [39]. Generally,
models which use deep learning, SVM, or gradient boosting are considered non-transparent
and require additional model agnostic methods to ensure safety and reproducibility and
extract explanations.

Figure 4. Attribution maps/visual explanation of the explanation techniques for the true positive
with the highest probability in the test set for each class. From left to right: original preprocessed
image of the class, integrated gradient explanation, integrated gradient explanation overlayed on the
true positive image, LIME explanation, LIME explanation overlayed on the true positive image.
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Figure 5. Attribution maps/visual explanation of the explanation techniques for those images in
the test set that the classifier misclassified with the highest probability. From left to right: original
preprocessed image of the class that the classifier misclassified with the highest probability, integrated
gradient explanation, integrated gradient explanation overlayed on the misclassified image, LIME
explanation, LIME explanation overlayed on the misclassified image.

3.3. Metrics and Axioms

Table 2 reports the three quantitative quality indicators (see Section 2.2.3) for the
different explanation techniques. Regarding the local fidelity, the two explanation techniques
were on par; both showed full fidelity. Since the integrated gradients method uses the
original model, its fidelity is by default 100%. For LIME, the local fidelity on all instances
in the test set was also 100%. The local surrogate models that LIME built to explain the
predictions of the test instances predicted in all 2003 cases (i.e., all observations in the test
set), the same class out of the seven skin lesion classes as the original model. Note that this
also means that the local surrogate model predicted the wrong class if the original model
predicted the wrong class (see Figure 2 for the test set predictions).

Regarding the stability and robustness, the integrated gradient method clearly out-
performed LIME. Although integrated gradients always gave the same results (feature
attributions) when the explanation was repeated for the same instance and same settings
(100% stability on the test set), LIME always gave a different result (0% stability on the
test set).
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Table 2. Quantitative quality indicators for the different explanation techniques.

Integrated Gradients

akiec bcc bkl df nv mel vasc

Lipschitz Robustness 0.0012 0.001 0.0014 0.0008 0.0018 0.0014 0.0012
mean (± std) ±0.0003 ±0.0005 ±0.0004 ±0.0005 ±0.0006 ±0.0004 ±0.0005

Stability % 100 100 100 100 100 100 100

Local Fidelity % 100 100 100 100 100 100 100

LIME

Lipschitz Robustness 0.0004 0.0004 0.0007 0.0005 0.0009 0.0004 0.0002
mean (± std) ±0.0002 ±0.0001 ±0.0002 ±0.0003 ±0.0003 ±0.0001 ±0.0001

Stability % 0 0 0 0 0 0 0

Local Fidelity % 100 100 100 100 100 100 100

Similarly, the integrated gradient method proved to be more robust than LIME. For all
classes, the Lipschitz robustness indicator [59] was smaller (i.e., better) for the integrated
gradients explanation technique than for LIME. To visualize this difference, Figure 6 shows
the Lipschitz robustness indicator for the two explanation techniques, as an example, for the
test instances of the basal cell carcinoma (bcc) class.

Figure 6. Lipschitz robustness estimate for LIME and integrated gradient explanations for test
instances of the basal cell carcinoma (bcc) class. The explanations of the integrated gradient technique
are clearly robuster than the LIME explanations.

In sum, the integrated gradients explanation technique seems better with regard to
the quantitative evaluation metrics. However, one should keep in mind that LIME is
model-agnostic, while the integrated gradients method can only be applied if the original
model is differentiable. Because of this, the LIME explainer is also more portable and can
be used even if the original model would be changed.

4. Discussion and Conclusions

In this paper, we compared two currently popular XAI/IML explanation techniques
applied on top of a well-performing deep CNN classification model classifying seven types
of skin lesion. Both XAI/IML techniques showed a hundred percent fidelity to the original
CNN model. However, integrated gradients was clearly better with regard to the other two
quantitative metrics (stability and robustness). In comparison, LIME explanations were
not stable (each run produced a different explanation) and less robust than the integrated
gradients explanation, but the qualitative visualization seemed to use more features and
were somewhat more intuitive. Moreover, in contrast to the integrated gradients, which
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depend on the model internals’ gradient, the LIME explainer is model-agnostic, and thus
more portable and applicable also when the classification model is changed.

Limitations and Future Work

The results presented in this paper are limited by the number of models, explanation
techniques, and metrics used. Moreover, they are specific to the used dataset. A plethora of
different explanation techniques exists and although we used explanation techniques from
two different branches (see Section 2.2.2), that is, one gradient-based model-dependent and
one perturbation-based model-agnostic, there are many more XAI/IML techniques that
would be interesting to compare.

In particular, it would be interesting to build easier, more traditional classification
models with manual feature engineering in future work, and compare the hand-engineered
features to the automatically generated ones from the CNN. More precisely, it would
be interesting to use a classifier that provides modular global feature importance, such
as those that any tree-based classifier or logistic regression models supply, and analyse
their differences.

Another direction for future work would be to improve the CNN model and augment
the used data. In this work, we focused on the explainability techniques. However, novel
approaches for medical image analysis using CNNs (see, e.g., [65]), and special strategies to
deal with the imbalanced data (see, e.g., [61]), such as employing a weighted cross entropy
loss function, or collecting and integrating more images of the minority classes would
certainly improve the classification performance and might also yield more interpretable
models. In addition, future works could also use effective techniques, such as colour
constancy algorithms, to improve the quality of the over a 20-year-long period collected
dermoscopic images, and should use, also, other datasets to increase the generalizability of
findings. Finally, we hope that future work will follow our study and compare not only
accuracy but also explainability and explanation approaches for given models.

Before an automatic AI skin lesion classification system with integrated explanation
techniques can be used reliably in practice, future work should also look into which expla-
nation should be offered if several, maybe even conflicting ones, are available. As a whole,
this papers offers a framework for building an explainable AI skin cancer classification
system, but a set of questions, including legal ones, remain to be answered before such a
system could be integrated into clinical practice.
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Abbreviations
The following abbreviations are used in this manuscript:
AI Artificial Intelligence
AKIEC Actinic Keratoses
BCC Basal Cell Carcinoma
BKL Benign Keratosis-like Lesions
CNN Convolutional Neural Networks
DF Dermatofibroma
IML Interpretable Machine Learning
IG Integrated Gradients
IMDRF International Medical Devices Regulator Forum
ISIC International Skin Imaging Collaboration
LIME Local Interpretable Model-agnostic Explanations
ML Machine Learning
MEL Melanoma
NV Melanocytic Nevi
SVM Support Vector Machine
XAI Explainable Artificial Intelligence
VASC Vascular lesions
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