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ABSTRACT

This paper examines robustness issues in .Model Ref- At the present state of our studies, the new richness
erence Adaptive Control systems in the presence of un- conditions provide substantial insight into the type
modeled dynamics and output disturbances. We present and size of excitation required for stability. With
an approximate technique, trend analysis, by which we reasonable designer-known information, one can deter-
can study the evolution of the parameter error trajec- mine a desirable frequency range for the command input
tory under periodic excitation. This analysis provides energy, and the most desirable subset of this range.
new insights upon the size and spectral content of the One can also estimate the amplitude of command input
excitation sufficient to guarantee local stability. required to prevent a dangerous slow drift of the para-

meter error due to an output disturbance of any fre-
I. INTRODUCTION quency.

We present the problem and establish notation in
Several similar Model Reference Adaptive Control- Section II. The approximate analysis technique is

lers (,MRAC's) have been shown to be globally stable presented in Section III, and theorems which justify its
under certain restrictive assumptions, including the use are stated. Sufficient excitation conditions for
assumption that the order and relative degree of the stability are given and discussed. The primary insights
plant are exactly known, and that no disturbances are and results derived from the analysis are briefly stated

present ((1]-(31). Under certain "sufficiently rich" and discussed.

excitation conditions, the origin is globally asymp-
totically stable for the adaptive controller parameter II. THE ADAPTIVE CONTROL SYSTEM

error ([5], 6]).
When the restrictive assumptions are violated, as The designer assumes that the low frecuency portion

they always are in practice, no proof of stability of the single-input-single-output plant can be described

exists [4],[9], [10]. Furthermore, instability can by

occur under excitations which are "sufficiently rich" y(s) = u(s) (1)
in the sense mentioned above. A stronger definition P

of sufficient richness is required to guarantee stabil- where G (s) is of order n. The oles and zeroes of

ity of the adaptive controller in the presence of P
urnmodeled dynamics and disturbances. G (s) are unknown but are assumed to lie within some

The key factor to the stability of the adaptive
known bounds.

controller is the time-evolution of the parameter er-ut/output relationship is
The actual plant input/output relationship is

ror vector. This time-evolution is described by a

complicated set of time-varying nonlinear differen- v(s) = G (s)u(s) + d (s) (2)

tial equations, putting a closed-form analytic solu- p o

tion of reach. where

This paper presents an approximate analysis tech- G (s) = G (s) (1+E (s)) (3)

nique for studying the long term trends of the para- p p p

meter error vector trajectory for an adaptive control- The uantity d s) is an ouut disturbance, and S
ler under periodic excitation. Certain measures of To 

the error of this technique have been proven to ap- is a modeling error due to neglected high-frequency

proach zero as the adaptive gain (which controls the plant d-namics. An upper bound E (X) on the magnitude

rate of adaptation) approaches zero. The relevant
of E (jw) is generally known in practice [7].

theorems are stated here and proven in [8]. Thus the p

analysis technique can be termed a trend analysis for A model output is constructed:

slowly adapting controllers. y (s) = G (s)r(s) (4)
The trend analysis provides a vector field, defined M M)

as a function of the command input, which approximates where r(s) is the command input.

(in a long term sense) the time-derivative of the para- The plant control input for adaptive control is

meter error vector. From this vector field one can

determine potential limit sets of the parameter error u(t) = w (t)k(t) (5)

vector, and associated regions of attraction and ap-
vector, and associated regions of attraction and ap- where- k(t) is a 2n-vector of adjustable parameters, and
proximate rates of convergence. New excitation con-

ditions are defined which are sufficient for stability

Of the adaptive controller in tIe presence of unmodeled

dynamics. Direction of future research are indicated W(t) = H(t) u(t) , (6)

which are required to enable analytic evaluation of

some of the sufficient condition for a controller with

a given adaptive cain.
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where,* denotes convolution and H(t) is the impulse B. Presentation and Validation of the Trend Analvsis

response of a known causal linear time-invariant svs-
tem. The vector W(t) is constructed by the adaptive The trajectory of the adjustable parameter vector
controller. k(t) is critical to the stability of the system. If

If k(t) is assigned a constant value k , a time- k(t) approaches a limit inside K , the system is stable.
-- --o -- -- --s

invariant closed-loop plant results. If k (t) strays outside of K , a rapid onset of instabil-

Classical robustness techniques can be used to deter- -
mine which values of k result in guaranteed stability a y may occur and has been observed.

-o The differential equations describing the time evol-
of the closed-loon plant. Define K :o be the set of--s ution of k(t) are highly nonlinear and rime-varying,
all such stabilizing k .

a-o and cannot be solved analytically, hence we employ ap-
The adjustable parameter vector k(t) can be consid- 

ered a sum of a constant desired value and an error: proximate analysis echniques. A vector an(t) is
defined which has a much simpler trajectory and which

represents the long term trends of the vector k(t). The
k(t) = k* + k(t) (7)

accurracy of the trend analysis is shown to improve as

k* is such that k(t)=0 and F (s)=O0 results in'y(s)/r(s) the rate of adaptation is reduced.

-=y(s)/r(s). With an appropriately chosen model, such The trend vector trajectory is a function of the

model matching can result in a desirable performance system excitation. The command input studied is period-

improvement over a nonadaptive alternative design [8]. ic and of the form

An error signal is defined: Z

r(t) = r + r. sin(wit+rni);Z< (11)

e(t)= y(t) - yC(t)

- (t)*(wT T(t)k(t) )+T (t) *r(t) +T (t) *d (t) (8) To show the relationship between the trajectory of
1 - 2 3 0 the trend vector k' (t) and the actual trajectory of

where T1 (t), T2 (t), and T3 (t) are impulse responses of k(t), and to aid the definition of the trend, we first

present the limiting case in which the rate of adao-
causal linear systems. The lapiace transform Tl(s) of tation is zero:

Tl(t) is of the form
k(t) = k Pe K vt (12)

TL(s) = T (s)(l+E (s)) (9)
The usual parameter update law (10) may be modified to

where T (s) is a strictly positive real known linear function as an observer:

system.
o

E (s) is unknown but shares the characteris- T

tic shape or E (s). By choosing a grid on the space k(t) = -yw (t)e(t) (13)

of possible plant parameters, one can numerically man With r(t) as in (11), equations (8), (13) and the iden-

the known upper bound on 1E (jW) to an upper bound on tity

E i(j')jT2(jw) , and IT3(u) . Wnen Z (w)=O, sin(x+y) = sin(x)cos(y) + cos(x)sin(y) (14)

E(j) = T2(jw)=0. These upper bounds are important yield

in the aoplication of the trend analysis.
k=~ y(A +A (t))k + yt

The parameter update law is -- c ac -- -dc -ac

k(t) = k~t) = -yw~t~e~t) (10) where = A (t) are 2nx2n and b , b (t) are 2nxl.
k(t) = _(t) = -yw(t)e(t) (10) -dc -ac c 0-ac

The elements of A and b are constants, and the ele-
where the adaptive gain y is any strictly positive -dc -do

scalar constant. ments of A (t) and b (t) are sums of sinusoids of

Equations (8) and (10) characterize the parameter
nonzero frequencV. A and bc are readily-computed

error behavior as a function of w(t). When E (s)-O -do -a

_ ? functions of accessible signals (w(t) which is a func-
and d (s)=O, the adaptive control system is stable in(t and as such can 

o tion of r(t) and y(t)) and as such can be considered

the sense -that e(t)e L2 and all signals are uniformly user-known. Aiding computation and analysis is the
property that each of the frequency components present

bounded. With nonzero unmodeled dynamics, no stability in r(t) contributes independently s present
proof has been given, and potential instability has -cc -de

been demonstrated [4],[9],[10]. In the absence of an output measurement, A.c and

b are a function of r(t) and k , and are defined for
III. PARPTME`R ERROR TRENDS WITH PERIODIC EXCITATION -dc -O

all r(t) of the form of equation (11) and all k B K s

A. Introduction
Exact computation of c and b is no longer so easy.

It is shown in this section that instability is a Nominal values of A and b can be computed a priori

potential but not necessary consequence of unmodeledal values of A
for each possible k B K . The actual values of A

high frequency dynamics. Whether or not instability -o s -do

occurs is largely a function of the command input. b will be a perturbed version of these nominal values.

'Low frequency components of the command aid in correct A bound on the perturbation can be calculated. The

parameter adjustment, while high frequency components compute
sign of the real part of the eige-nvalues of the computed

contribute -o misadjustment. .n output disturancenever be changed by inclusion of any stable un-

any frequency contributes to a hazardous "drift" of -do /
the parameter error. An excitation condition is given modeled dynamics, but the presence of unnodeled dynamics

which is bothr necessary and sufficient for local (with in Tl(s) can cause such a change.

respect to the parameter error) stability of the adap- To avoid confusion between the various sources of

tive controller. Rate of adaptation is also a factor; eror we will subsequently ignore the issue of a rior

an excitation condition which is sufficient for the calculation of A and b without an outpu measure-calculation of A and bd without an outnut measure-
stability of a slowly adapting system may not be suf- -do -dc

ficient for the stability of a rapidly adapting systaem ment, and shall concentrate only on the errors relevant



to the stability of the system. For notational simpli-
city, the dependence of A and , and later A and i- (t)-(t) tt ot+T]

A', on either r(t), y(t) cr r(t), k (t), shall usually
-o Corollary: If the seauence {k(t +mT)},m={1,2,3...j

not be shown explicitly. 
ntefine the trend converges to a limit k , then k(t) converces to a ball

defined by
k'(t) = YA. k + yb. tk 

(15) _D <

k'(t ) = k(t ) 
- o - o for some constant E.

A.ll theorems to follow are proven in [83. we have thus provided analytic justification for
the use of a trend analysis in the study of an adaptive

Thecrem 1: There exists a T>O such that controller. The trend analysis can be made arbitrarily

k' (t +mT)=k(t +mT) for all positive integers m. accurrate by choice of a suitably small adaptive gain y,
- o - o which is the designer's prerogative.

Theorem 2: If A. k + b. f0, then
-c-o -cc C. Sufficient Conditions for Stability

(ki(t0+t I)-k (to t1) 1 we now proceed to discuss the qualities of the trend
1m = O itself and to present sufficient conditions for stabil-

l l (t +t11 )IIity of the adaptive system.
Given r(t) only, A' is a continuous function of

1nd jlk(to+t )- (t t)| is uniformly bounded. (t ). Consider the trend vector field F(R ,r,y)
defined on K c R

2
n by associating the corresponding

hne adaptive control problem is fundamentally dif- s
ferent than the parameter observer problem above. TAS A'(k ,r,y) with each point I in K-0 s
while Theorems 1 and 2 and eqn. (15) aid in the under- As Y approaches zero, the direction of A' approaches
stazding of the trend analysis approach, they do not a limit (see equation (17)):
provide justification for use of the trend analysis in
.ie control problem. We now provide such justification. A' A k(t o)+bc

Let the parameter update law be given by eqn. (10). - = ' = I t (19)
'et A, and b be computed as before, assuming cons- ¥° 2 i -c 2

---c dc
tant parameters. Define the trend vector By the corollary to Theorem 3, the direction of A ap-

proaches this same limit as y approaches zero. Let

k' = yAd f' + c yb F (R ,r) be defined by associating the corresponding
-dc- -dc `L a

vector A' (: ,r) with each point k in K .
k'(t ) = k(t )e K (17) - s
= 0 0 S

We now state, without proof, the first sufficient
onsider any T satisfying theorem 1. richness condition of this paper:

Defne A = k(t +T) k(t Condition 1:
-- o - O

r(t) is sufficient for local stability in the limit as
'= k' (t +T) - k(t ) (18) y approaches zero if the system

0o -0o

-heorem 3: Given any 6>0 and choice of a p-norm there x = F (x,r) (20)

exists a y >0 such that for all Y<~Y has a locally stable equilibrium point.
0 ° For the case of a specific choice of a nonzero y, we

Ila-AIl must take into account the error of the approximate
trend analysis. Because this can be done a variety of

<6 ways, a variety of sufficient conditions can be gener-
I p ated. Two will be presented here.

In the process we will define constant upper bounds
Corcllary: Given any 6 there exists a y1 such that for on various tvlpes of errors. A discussion of the com-

all Y<y putation of such bounds shall be given later.
1 Given any scalar constant p, and vector constant x,

KL/(P'·e!L~~~ >I define
1- 1 1 <6 defines {!:!l|- il 2 | } (21)

2I' A|2
~2 ~~2 ~z .= _Inx- l'(K )-H(K )|| (22)

where <-,-> denotes the dot product. 1 - K 1 -_ -° 2
Theorem 3 is somewhat analogous to Theorem 1.

.at=-er than exact matching of the trend and the actual = 2 -= -- 2 < P- 1 (23)
trajectory at a selected point in time, we now have
near matching with a fractional error which can be made (24)
arbitrarily small. The corollary states that the angle -o 1
bert-een the vector directions A and A' can be made ar- t eft t +T]
.it-arily small by sufficiently slow adaptation. 1 o o

Theorem 3 treats the error at a specific point in V {v: vER
2
n lvil < 1} (25)

t-re. For the intermediate points, we have the 2-

following: K' = {K :i +z v~K, vev} (26)
-S - -a 2- 2' -

Theorem 4: Given a choice of a p-norm, there exists a
The bounds z1 and z2 are known to exist for sufficiently

constant C such that
small y, and in fact approach zero as y approaches zero.



Condition 2: The proof is simple and is left to the reader. A few

words must now be said about the practical applicationr(t) is sufficient for local stability of tne adaptive
of these conditions, lest the reader be mislead as to

controller if there exists a S >0 and an x such that
31 the present state of our research.

1s Testing of condition 1 for stability in the limit

_ - (~7:-o) 6, f231 (27) is currently feasible. Equilibri= points R_ are
-+ , (27) defined by -

Partial oroof: The use of K' rather than K in the FL = (37)
S S

condition is a subtlety that shall not be discussed Since FL( ,r) is continuous, one can check for local

here.
stability of an equilibrium point through linearization.

enot k(t ) = (28) Testing of conditions 2 and 3 is not feasible with-
- o -o

out further research. Computation of the bounds z
k(t +T) = k = k +6 (29)(to+T) = - = k + (29) 2' and z3 is not currently possible. The theorems

=t = k + A' (30) contained herein guarantee that any desired value for
any of these bounds can be achieved through the use of

if condition 2 is satisfied, then some sufficiently small y, but the value of y required
is not clear due to the nature of the proofs.

tI
'
i -

~'fi - P z (31) The stabilization technique employed in [8] involves
2 selection of a reference input which is sufficient for

Thus stability in the limit as y approaches zero, followed
by an arbitrary selection of a "small" value for y.

i - 1 < I-iz - !3 -R{-xI 11 -{ Simulations indicate that 1) thi-s process is often
2 2(32) very overconservative, and 2) the meaning of "small"

< z1 + p -z1 = p changes substantially with different plants, models,
and excitations. Tight bounds on zl, z2, z3 as a

Therefore 1function of these different elements shows promise of

e3 ; m=0,1,2,... (33) allowing the use of much a larger y (hence faster adap-
-n- m

tation) with confidence.

and 3, is a locally stable region for 2(t). Completicn D. Trend Analysis Results
D. Trend Analysis Results

of the proof would involve a demonstration that equa-~of the proof would involve a demonstration that equa- The trend analysis technique constitutes an analyt-
tion (33) and 6Ks implies boundedness of other sys- ic quantification of the relationship between parameter
tem signals.

emn signals. 1ondition 2 requires that be ~ oriented convergence and the spectral components of the excita-
n effect, condition 2 requires that F be oriented - i

...... ' iton. As such it has provided new nfo.mat:on and
inward arou.nd the boundary of a region, and that this
nward ound the xco boundary of a region, and tgat this insights into the stability of model reference adaptive
inward orientation exceed the error bound using a shall e stated

control systems. Some of these results shall be stated
?ar_-icular standard of measurement. Condition 3 to

here witchout derivation.
follow has a similar interpretation but employs a dif-

Though the stability problems of adaptive control-
lraent star.dard of measurement.

lers has been well publicized recently, it is worth
For any positive p <P , define

For Positive P3 P 1, define emphasizing that the trend analysis provides analytic
'3 = {i|2x fI < } (34) verification of the potential instability of MRAC's.

~3 2-- -3342 3 It also provides verification of a potential stability

I < Czr: +p ij~c-xI i, (35) of the controllers and a means of obtaining stability
2 2+3 without a modification of the basic algorithm. One

can determine a periodic excitation which is capable

-t~'(~ ,r),A~k ,r)> of stabilizing the system, and add this excitation to
-- m-o ---- ) the command input.

z =max arccos
3= saxI fco *k ,r) i Ii(k ,r) | The excitation should be chosen to provide stability
-0o 1 1 -o0° 2 _- -oo 2 in the limit (condition 1), and allow wide margins for

(36) the errors with the unknown bounds z1 , z2 , and z3 .

Determination of such an excitation is simplified by
-hat is z is an upper bound on the angle between L'
'' . r'3 -- an empirically observed property of Lhe matrix

and A for all :~ in 1. For a sufficiently small Y, z3 (_,r). Given r, A and b vary relatively slowly

exists; as y approaches zero, z3 approaches zero. with i, such that the properties of F (X,r, ) in some

neighborhood of an equilibrium point k are revealed
Condition 3: by considering the FL resulting from the re-defined

r(t) is sufficient for local stability of the adaptive trend
controller if there exists P a, P3 and x such that k' = (k ,r)k' + dc (38)

0<P < 3 I K' and
_15X (t o ) = s

(x--o ),A'(-O Hence we have, as a minimal condition for asymptotic
arccos - iu i the

arcc (x-i7-s o _ it t 90- z3 stability in the limit of an ecuilibrium point the

-I ° 2 ~ 2 requirement that all the eigenvalues of A (_ ,r) lie
--dc '

for all k oS1 n -3 where -93 denotes the complement of in the open left half plane
- 1 3 3 in the oen left half ane.

'3' We can place further requirements on A (and

voreovser any trajectory of i(t) which enters -1 con- hence indirectly on r(t)) to allow a margin for errors
verges to 54' of the type appearing in conditions 2 and 3. For

example, a large margin for z3 of equation (36) would



be provided by an A. which gives a small value (large provides a tool for designing a remedy to the stability

ain te negative direction) to z , where problem through the filtering of the command input and
4 the addition of a persistent excitation to the command.

x A. x
z - max - - (39) IV. CONCLUSIONS

4 max T

-xx For several promising adaptive algorit-hms, in the
For the case of two adjustable parameters, the smallest absence of u.nodeled dynamics and output disturbances,
values of Z4 are obtained by choice of a command with weak richness conditions on the excitation guarantee

convergence of th-e adaptive controller parameter error
frequency content concentrated near the model bandwi conveencef e adative cntoller aameer eror

to zero. Under more realistic assumptions, convergence
Spectral components of the command above a threshold to zero

frequency serve to ncrease z . Acting alone these to zero parameter error must be given up. To achieve
T 4 the weaker goal of stability and bounded parameter er-

high frequency components yield an A. with positive ror without a modification of the algorithm, one must
eigenvalues. impose stronger conditions on the excitation. One can

The threshold frequency wT is the frequency at which develop such conditions through the approximate analy-

Tl(ju) has a phase of 900 (see equation (8)). This has sis technique sketched in this paper. Valuable
insights have resulted as to the type and size of ex-

an interesting correspondence to the strictly positive citation required. Further research is required to
real requirement placed on T (s) in nominal-system enhance the usefulness of the new richness conditions.
stability proofs [1].
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