
Robustness Testing of Java Server Applications
Chen Fu, Ana Milanova, Member, IEEE Computer Society,

Barbara Gershon Ryder, Member, IEEE Computer Society, and

David G. Wonnacott, Member, IEEE Computer Society

Abstract—This paper presents a new compile-time analysis that enables a testing methodology for white-box coverage testing of error

recovery code (i.e., exception handlers) of server applications written in Java, using compiler-directed fault injection. The analysis

allows compiler-generated instrumentation to guide the fault injection and to record the recovery code exercised. (An injected fault is

experienced as a Java exception.) The analysis 1) identifies the exception-flow “def-uses” to be tested in this manner, 2) determines

the kind of fault to be requested at a program point, and 3) finds appropriate locations for code instrumentation. The analysis

incorporates refinements that establish sufficient context sensitivity to ensure relatively precise def-use links and to eliminate some

spurious def-uses due to demonstrably infeasible control flow. A runtime test harness calculates test coverage of these links using an

exception def-catch metric. Experiments with the methodology demonstrate the utility of the increased precision in obtaining good test

coverage on a set of moderately sized server benchmarks.

Index Terms—Reliability, def-use testing, Java, exceptions, test coverage metrics.

�

1 INTRODUCTION

THE emergence of the Internet as a ubiquitous computing
infrastructure means that a wide range of applica-

tions—such as online auctions, instant messaging, grid
weather prediction programs—are being designed as server
applications (typically accessible over the Web). These
applications must meet the challenges of maintaining
performance and availability, while supporting large
numbers of users, who demand reliability from these
programs that are becoming more and more commonplace.
A good analogy is to the telephone system, a technology
that one expects to be “always working;” the national
telephone system demands only minutes of down time per
year from its software. New testing technologies are needed
to address the issue of reliability in this environment.
Besides the traditional testing of functionality, there is a
need to ensure reasonable application response to system/
resources problems, in order to have performance grace-
fully degrade rather than experience application crashes.
The robustness testing research in this paper addresses the
problem of how to test the reliability of server applications
written in Java, in the face of infrequent but anticipatable
system problems that the program may respond to via
Java’s exception handling mechanism.

Traditional fault-injection testing of software in the
operating system community is conducted in a black-box
manner, using a probabilistic analysis to determine whether
or not a software component will work properly when

subjected to specific fault loads and workloads [1]. Testing
is accomplished by simulating faults caused by environ-
mental errors during test through fault injection [2], [3], [4],
[5], [6]. Testers assume that applications run under specific
workloads and then inject faults randomly into the running
code, selecting faults according to distribution functions
derived from observation of real systems. After observing
application reaction to the fault load, the testers derive data
describing the likelihood that the application will deliver
reliable service (i.e., not crash) under the given fault loads
and workloads [1].

Unfortunately, this approach does not ensure that the
error recovery code in an application is ever exercised nor
that the program takes an appropriate action in the presence
of faults. In addition, given the probabilistic nature of the
approach, it is hard to force application execution into the
untested parts of error recovery code during further testing.
Because many server applications are written using
components with unknown internal structure, testers need
to identify vulnerabilities to system problems automatically
(i.e., with the help of software tools). The testing of error
recovery code in server (or any other) applications is
necessary for ensuring the high reliability required of these
systems.

Our methodology uses the tools of white-box def-use
testing to aid a tester of a server application in this task.
There is a large body of existing work on white-box testing
methodologies [7], [8], [9], aimed at exercising as much
application code as possible during testing, and measuring
code coverage using various program constructs such as
control-flow edges, branches, and basic blocks. However,
error recovery code—code which handles errors that occur
with small probability, especially due to interactions with
the computing environment (e.g., disk crashes, network
congestion, operating system bugs)—is almost always left
unexecuted in traditional white-box testing, because it may
not be executable by merely manipulating program inputs.

292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

. C. Fu and B.G. Ryder are with the Rutgers University Department of
Computer Science, Piscataway, NJ 08854.
E-mail: {chenfu, ryder}@cs.rutgers.edu.

. A. Milanova is with the Rensselaer Polytechnic Institute Department of
Computer Science, Troy, NY 12180. E-mail: milanova@cs.rpi.edu.

. D.G. Wonnacott is with the Haverford College Department of Computer
Science, Haverford, PA 19041. E-mail: davew@cs.haverford.edu.

Manuscript received 26 Oct. 2004; revised 4 Feb. 2005; accepted 29 Mar.
2005; published online 26 May 2005.
Recommended for acceptance by G. Rothermel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0247-1004.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Our analysis techniques identify program points vulner-
able to certain faults and the corresponding error recovery
code for these specific system faults. The techniques
provided allow compiler-inserted instrumentation to inject
appropriate faults as needed and to gather recovery code
coverage information. This enables a tester to systematically
exercise the error recovery code, by causing execution of the
vulnerable operations. Thus, the methodology provides a
means to obtain validation of application robustness in the
presence of system faults. Although our experiments are
based on server applications, the technique can be applied
to general Java applications.

In our approach, it is important to be able to identify as
precisely as possible where an exception thrown in response
to an experienced fault (i.e., a def) is handled (i.e., a use)
[10]. A key concern, in general, for def-use testing is how to
minimize the number of spurious def-uses reported by the
analysis. Since these def-uses cannot be exercised by any
test, a human being has to examine them, among the
uncovered def-use links after testing, and determine (if she
can) that they are spurious. This is a time-consuming,
difficult job, especially for large object-oriented applications
that use polymorphism heavily. Therefore, it is crucial to
use a very precise analysis that, while practical in cost, can
eliminate many of these spurious def-uses. This is a key goal
of our new exception-catch link analysis.

Our initial work in this area [11], [12] focused on the
identification of an appropriate definition of coverage for
fault-tolerant server applications, and on the definition of
the compiler/fault-injector interface necessary to measure
and induce coverage of fault-handling code. We pre-
sented a proof-of-concept case study in which a proxy
server application was instrumented by hand, and fault
injection was performed and recorded by executing the
instrumentation.

In [13], we demonstrated that automatic compile-time
analysis was sufficient to analyze the proxy server that we
had studied, as well as several other moderately sized
server applications. This analysis consisted of an exception-
flow analysis phrased as an interprocedural dataflow
problem using limited context sensitivity, coupled with a
novel data reachability analysis to prune infeasible edges
produced by the conservative approximations used in the
initial analysis.

This paper is an extension of [13] that makes the
following additional contributions:

. Reformulating our data reachability analysis as a
general schema that can be instantiated to yield
different algorithms by varying the number of
distinct sets of visible objects (as in the work of Tip
and Palsberg [14]).

. Definition and exploration of several new variants of
our schema (whichwe callC-DataReach,M-DataReach,
and V-DataReach), as well as restatement of our
original data reachability algorithm in our new
schema. This exploration compares the relative
accuracies and computational complexities of these
four variants of our analysis.

. Empirical studies of the use of several variants of our
DataReach algorithm, and several variants of the

earlier stages of our analysis, on our prior bench-
marks and three additional larger applications.
These studies include aggregate accuracy and timing
information, as well as specific discussions of the
cases in which static analysis is difficult.

Overview. The rest of this paper is organized as follows:

In Section 2, we describe our coverage metric, which is a

slight variant of the original metric described in [11], and

give an overview of the compiler-directed fault injection

methodology. In Section 3, we discuss our compile-time

analyses for exception-flow def-uses and our data reach-

ability schema (including the specific instantiations of this

schema used later). In Section 4, we report our empirical

results on the moderate and larger-sized Java applications,

describing the impact on the exception-flow def-uses

obtained by varying the compile-time analysis used. In

Section 5, we describe related work. Finally, we present our

conclusions.

2 MEASURING COVERAGE oF FAULT-HANDLING

CODE

We take advantage of the Java exception handling mechan-

ism to help identify error recovery code. Exceptions in Java

are used to respond to error conditions [15]. Each catch

block is potentially the starting point of error recovery code

for a matching error/exception raised during the lifetime of

the corresponding try block.

2.1 Faults, Exceptions, Coverage Metric

A fault is some component failure (e.g., disk crash or

network congestion [1]). A fault-sensitive operation, which is

either an explicit throw statement or a call to some

unknown method, is affected by a fault in that an exception

is produced when the operation occurs and experiences a

fault as a runtime error.
We begin with a set of faults that are of interest to the

tester—for example, some testing may focus on disk and

network errors. Many Java server applications, as can be

seen from our benchmarks, are I/O intensive. In this paper,

we focus on faults related to Java IOExceptions, which are

related to disk and network errors. Some fault-sensitive

operations correspond to I/O operations in the user code

being tested or the Java or C libraries it calls, but others are

initiated by the Java virtual machine (e.g., those in class

loading and security policy loading). We exclude JVM I/O

from our testing by automatically instrumenting the code to

identify user-instigated I/O.
We denote P to be the set of all fault-sensitive operations

in the code under test that may be affected by any element

in the specific set of faults of interest. We assume P is

known, because the relationship between faults and fault-

sensitive operations can be precalculated once from the Java

libraries and reused for all the programs subject to fault-

injection testing with this same set of faults.
In a given program, each element of P could possibly

produce an exception that reaches some subset of the

program’s catch blocks. By viewing fault-sensitive opera-

tions as the definition points of exceptions and catch

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 293

blocks as uses of exceptions, we can define a coverage
metric in terms of exception-catch (e-c) links.

Definition (e-c link). Given a set P of fault-sensitive operations
that may produce exceptions in response to the faults of
interest, and a set C of catch blocks in a program to be tested,
we say there is a possible e-c link ðp; cÞ between p 2 P and
c 2 C if p could possibly trigger c; we say that a given e-c link
is experienced in a set of test runs T , if p actually transfers
control to c by throwing an exception during a test in T .

Definition (Overall Exception Def-catch Coverage). Given
a set F of the possible e-c links of a program, and a set E of the
e-c links experienced in a set of test runs T , we say the overall
exception def-catch coverage of the program by T is jEj

jF j .

Note that our exception def-catch coverage metric differs
slightly from the overall fault def-catch coveragemetric used in
our earlier work [11] (where it was termed overall fault-catch
coverage), due to the different emphasis of this work. Fault
def-catch coverage measures links from specific faults to
handling code, rather than from fault-sensitive operations
to handling code. For example, consider code in which x
distinct faults could trigger a single fault-sensitive operation
and transfer control to a single catch block. Our fault def-
catch metric would treat this as x links from faults to the
catch block, and our exception def-catch metric would treat
this as one possible e-c link. The exception-based metric is
appropriate here because we wish to emphasize the ability
of static analysis to prune infeasible links. This ability is not
determined by the number of faults that can cause a given
exception, and the use of the fault-based metric would skew
our results by the size of the fault sets chosen for operations
in which our analysis succeeds or fails. For a more detailed
discussion of possible coverage metrics for fault-tolerant
code, see [11], [12].

Coverage metrics are generally used to evaluate a test
suite, but they are also influenced by the accuracy of the
coverage analysis tool. A high overall exception def-catch
coverage indicates a thorough test, but a low coverage may
result from either insufficient testing (i.e., a small E) or an
overly conservative estimate of F , the set of possible e-c links.
As in other forms of coverage testing, it is unacceptable for
F to omit any e-c links possible at runtime, so our analysis
must be conservative, producing a superset of F in the

presence of imprecision. This is a common problem in
software testing; it is addressed by using an analysis that is
as precise as possible to eliminate many infeasible paths and
by human tester examination. As we will see in Section 4,
the precision of our analysis has a significant impact on the
coverage results for the benchmarks.

2.2 Fault Injection Framework

Once we have calculated the possible e-c links for a program

with the analysis in Section 3, then for a specific fault-

sensitive operation, we have identified the catch blocks

that may handle the resulting exception, if it occurs. Given

the semantics of Java, there must be a vulnerable statement

executed during the corresponding try block, that resulted

in the execution of the fault-sensitive operation. The tester

must try to have execution exercise both this vulnerable

statement, often a call, and the fault-sensitive operation, so

that the recovery code is reached. Obtaining test data to

accomplish this task is the same test case generation

problem presented by any def-use coverage metric.
Fig. 1 shows the organization of our fault-injection

system. The box labeled compile time shows that for a
chosen set of faults, corresponding to some set of exceptions
and their fault-sensitive operations, the analysis presented
in Section 3 calculates the possible e-c links and the
vulnerable statements that are susceptible to them. The
compiler uses the set of e-c links to identify where to place
instrumentation that will communicate with Mendosus [16],
the fault injection engine, during execution. This commu-
nication will request the injection of a particular fault when
execution reaches the try block containing the vulnerable
operation. The compiler also instruments the code to record
the execution of the corresponding catch block. The tester
runs the program and gathers the observed e-c links from that
run. The tester then may have to try to make the program
execute other vulnerable statements (i.e., by varying the
inputs) in order to cover more of the possible e-c links.
Finally, the test harness calculates the overall exception def-
catch coverage for this test suite.

3 COMPILE-TIME ANALYSIS

Fig. 2 illustrates the high level structure of the two-
phased compile-time exception-catch link analysis which
we designed to calculate e-c links in Java programs.

294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 1. Compiler-directed fault injection framework.

Fig. 2. Two phases of exception-catch link analysis.

Exception-flow analysis takes a static representation (i.e.,
AST) of a Java program as well as its call graph, and
produces the e-c link set of the given program. Each of the
DataReach analysis algorithms described in this section
can serve as a postpass filter that uses the reference
points-to graph [17], [18] of the program to discard as
many infeasible e-c links in the set produced by exception-
flow analysis as possible, so as to increase the precision of
the entire analysis. We present three distinct DataReach
algorithms and report on empirical findings obtained with
two of them. Intuitively, our two analysis phases can vary
in their precision, because they effectively are parameter-
ized by the points-to and call graph construction analysis
used as their inputs. Various analysis choices are
available for call graph construction [19], [20], [21] which
differ in their cost and the precision of the resulting
graph. The empirical results discussed in Section 4 show
that the precision of the call graph and points-to graph
has significant impact on the precision of the final e-c link
set obtained.

3.1 Exception-Flow Analysis

In Java, if code in some method throws an exception1 either
the exception is handled within the method by defining a
catch block for it, or the method declares in its signature
that it might throw this kind of exception when called. In
the latter case, its callers must either handle the exception or
declare that they throw it as well [15]. We want to find the
relationship between catch blocks and fault-sensitive
operations. We use “throw statement” to represent all
fault-sensitive operations in our discussions for simplicity;
we actually mean all instructions or calls that may throw
some exception, if a fault occurs.

A naive analysis that relies only on examination of user
declared exception types in catch blocks and method
signatures is too inaccurate to yield information of practical
use. Our exception-flow analysis is an interprocedural
dataflow analysis that calculates for each catch block, all
the throw statements whose exceptions could potentially
be handled by that catch. This is a form of def-use analysis.

We define exception-flow as the flow of each exception
thrown per throw statement along the exception handing
path [22]—from the throw statement to the catch block
where it is handled.

According to the semantics of exception handling in Java
[15], we can assume there exists a variable for each
executing Java thread that refers to the currently active
exception object. During execution, any throw and catch

operations are definitions and uses of that variable,
respectively. Thus, we can apply a variant of the traditional
Reaching-Definition [23] dataflow analysis to this problem,
but there are some unique aspects of exception-flow that
require special handling:

1. Types are associated with each use and definition. A
use (i.e., a catch) kills all the reaching definitions
whose type is the same as or a subtype of the type of
the use. Interfaces, when used as the parameter of

catch clauses, have the same effect as abstract
classes with their implementors as subclasses.

2. The key control-flow statements in a method are
try and catch blocks, throw statements and
method calls. All other statements do not affect
the exception-flow solution (given that the call
graph is an input to this problem). The order of
these statements within a method is of no conse-
quence. What is important is whether or not a
throw or method call is contained in a try block
nest.2 Therefore, within a method, we are only
interested in paths from the method entry to each
try-catch block or to a throw or a method call
not contained in any try-catch block.

The analysis is interprocedural because of the nature of
exception handling: An exception propagates along the
dynamic call stack until a proper handler is reached. The
dataflow is in the reverse direction with respect to execution
flow on the call graph; thus, exception-flow is a backward
dataflow problem. Our analysis is performed on a call
graph whose edge annotations record the corresponding
call sites since call sites may occur within different
try-catch blocks, which clearly affects the solution.3

Within each method, the analysis calculates those excep-
tions which reach the entry to that method, by considering
throws and method calls not contained within any try-

catch block and those try-catch blocks within the
method. The former statements yield some of the exceptions
possibly raised and not handled in the method. Statements
within the try-catch blocks may also yield unhandled
exceptions, depending on the types of the respective catch
blocks. Thus, the program representation used is a variant
of a call graph, where each method node has an inner
structure consisting of an edge from the entry node to each
uncovered throw or method call, and an edge to each
outermost try-catch block.

We define for each method the set of throw statements
that can reach its entry:

Definition (ReachingThrows(method M)). The set of all
throw statements for which there exists an exception
handling path [22] from the throw statement to method M,
and the exceptions are not handled in method M.

Fig. 3 gives an example illustrating the definition of
ReachingThrows. We can see that the call site bar() inside
method foo() is inside the try block, so that Sock-

etException thrown in bar() will be handled (i.e.,
killed) in foo() because it is a subclass of IOException.
However, exception OtherException, also thrown by
bar() while not a subclass of IOException, will not be
handled and, thus, appears in ReachingThrows(foo). If the
call to bar() had not been placed within a try-catch

block in foo(), both exceptions (i.e., SocketException,
OtherException) would appear in ReachingThrows(foo).
Therefore, our analysis can be considered to have some
flow-sensitive aspects, in that it captures the relation of

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 295

1. We are only considering checked exceptions, since exceptions related
to I/O faults are checked.

2. In Java, try blocks can be nested within each other. Handlers are
associated with exceptions in inner to outer order [15].

3. Adding these annotations is not difficult for any call graph
construction algorithm.

try-catch blocks to the call sites and throw statements

within them.
The dataflow equations for the ReachingThrows problem

are defined on the annotated call graph of the program.4 We

define RT(m), the ReachingThrows at the entry to method

m, as

RT ðmÞ ¼

ft 2 T jtypeðgenðtÞÞ � killðtrynestðtÞÞ 6¼ ;g

[
[

cs2CS

[

m02targetsðcsÞ

ft 2 RT ðm0ÞjtypeðgenðtÞÞ � killðtrynestðcsÞÞ 6¼ ;g;

where T is the set of throw statements in m, gen(t) is set of

the exception objects thrown by t, type(gen(t)) is the set of

types of the objects in gen(t), trynest(k) is the (possibly

empty) nest of trycatch blocks containing statement k,

kill(trynest(k)) is the set of exception types handled by the

catch blocks that correspond to trynest(k) or ; if trynest(k)

is empty, CS is the set of call sites in m, and targets(cs) is the

set of all runtime target methods that can be reached by call

site cs (there can be more than one target of a polymorphic

call). Note also that the set difference operation must

respect the exception inheritance hierarchy; subtraction of a

kill set including exception type et must remove any

exceptions of subtypes of et as well as et itself. These

dataflow equations are consistent with the definition of a

monotone dataflow analysis framework [24] and, therefore,

amenable to fixed-point iteration.5

By performing exception-flow analysis, we can find all

the e-c links ðti; hjÞwhere a throw ti can potentially trigger a

catch block hj. Furthermore, interprocedural propagation

path of ti can be recorded by adding annotations onto

elements of ReachingThrow. Thus, call chains from hj to ti
can be calculated on demand after the exception-flow

analysis to help the human tester understand why a specific
e-c link is not covered in some test.

Worst case complexity. The dataflow problem so
defined is distributive and 2-bounded [24]; therefore, the
complexity of the analysis is Oðn2Þwhere n is the number of
methods. Given our program representation, the time cost
of processing each method to find the constant terms in
these equations is linear in the number of try-catch

blocks, call sites and throw statements in the method,
which is bounded above by k, the maximum number of
statements in a method; this adds a kn term to the above
complexity. Therefore, the overall worst case complexity is
Oðn2 þ knÞ.

The exception-flow analysis described above relies on
having an annotated call graph for the program. In order
to increase precision, we added selective context sensitivity
to the points-to analysis that we use to build the call graph.
Rather than building a full and costly context-sensitive
points-to analysis, we performed selective constructor
inlining; that is, we inlined each constructor at its call
sites, when that constructor contained a this reference field
initialization using one of its parameters. Without this
transformation, a context-insensitive analysis would make
it seem that the same-named fields of all objects initialized
in this constructor could point to all the parameters so
used [25], [26]. We run a context-insensitive points-to
analysis after this transformation and, thus, obtain some
degree of context sensitivity for constructors. This elim-
inates some imprecision and obtains a more precise call
graph and points-to graph for both our exception-flow and
DataReach analysis phases.

3.2 Data Reachability Analysis

Wewant to use a fairly precise program analysis to eliminate
as many infeasible interprocedural paths as possible, to
reduce the work that otherwise must be done by human
testers when e-c links based on these paths cannot be covered.
Fig. 4 is an example of typical use of the Java network-disk
I/O packages. Fig. 5 illustrates how infeasible e-c links are
introduced even given a fairly precise call graph for the code.
Aswe can see, the try block in readFile is only vulnerable
to disk faults and the try block in readNet is only
vulnerable to network faults. But, exception-flow informa-
tion is merged in BufferedInputStream.fill()

6 and
propagated to both readFile and readNet; thus, two
infeasible e-c links are introduced reducing the achievable
runtime coverage to 50 percent or less.

This inaccuracy can be resolved by using a different
program representation such as a call tree [27] instead of a
call graph. However, constructing a call tree by compile-
time analysis is too expensive and once constructed, this
representation is too large to scale appropriately. For
example, to remove the infeasible e-c links in Fig. 5, the call
tree algorithm must be able to find that there are only
two feasible call chains which share a middle segment of
length 3. Separating these two chains would require a
context-sensitive points-to analysis analogous to 4-CFA [28],

296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 3. Example of ReachingThrows.

4. Under certain conditions [15], finallys behave like catches and/or
throws. Our algorithm handles these situations correctly, but we omit the
details involving finallys for brevity.

5. The iteration is only necessary here to handle interprocedural loops.
Our implementation uses a prioritized (postorder) worklist.

6. We use a fully qualified naming convention in our examples; that is,
we express all method names in a ClassName.MethodName format, even
for instance methods.

[29], an expensive analysis. In many cases the length of the

shared segment is even longer (e.g., when you need to wrap

the basic InputStream with more than one filter class, such

as BufferedInputStream and DataInputStream).
The intuitive idea of our approach is to use data

reachability to confirm control-flow reachability, in that

interprocedural paths requiring receiver objects of a

specific type can be shown to be infeasible if those type

of objects are not reachable through dereferences at the

relevant call site. Continuing with Fig. 4, consider the call

site fsrc.read() in method readFile. We want to

know whether SocketInputStream.read() can be

called during the lifetime of fsrc.read(). In the

explanation below, we refer to fsrc.read() as the

original call and to the polymorphic call site in Buffer-

edInputStream.fill() as the target call site, which may

reach SocketInputStream.read() according to the call

graph. The receiver variable of the target call site is denoted

as rt. The argument about data reachability relies on the

following intuition: If SocketInputStream.read() is

called, some object of type SocketInputStream must

have been created previously to serve as the receiver. There

are only three ways this can occur:

1. The object is created during the lifetime of the
original call and passed to the target call site by
assignments between method return values and
local variables.

2. The object is associated with rt by field dereferences
of 1) one of the global variables (i.e., Java static
fields) or 2) one of the objects created during the
lifetime of the original call, that occur during the
lifetime of the original call.

3. The object is associated with rt by field dereferences
of one of the arguments of the original call
(including the receiver), that occur during the
lifetime of the original call.

In this specific case, fsrc points to a BufferedIn-

putStream object whose in field points to a FileIn-

putStream. In BufferedInputStream.fill(),
this.in is assigned to rt and a call to rt.read(...)

is issued. According to the rules above, FileInput-

Stream.read(...) is reachable because a FileInput-

Stream object is reachable from rt by field dereference.
However, no SocketInputStream is reachable through
transitive field dereferences, via the fields accessed, from
either the arguments, receiver of the original call, or any
static field loaded, and no such object is created. Thus, it is
clear that during the lifetime of the original call site, rt
cannot point to an object with type SocketInputStream.
Therefore, the polymorphic call cannot be dispatched to
SocketInputStream, and the corresponding e-c link is
infeasible.

Therefore, given an original call site, we can express the
feasibility of a particular call path in terms of whether some
data reachability is possible according to the conditions
above. Note, we only consider object fields and static fields
loaded in methods reachable from the original call. Clearly, we
need reasonably precise points-to information [30], [17] to
obtain the high-quality data reachability information.

The rest of this section describes DataReach, the original
data reachability algorithm from [13] and discusses sources
of its imprecision. Section 3.3 presents a schema of
successively more precise data reachability algorithms.

3.2.1 Original DataReach Algorithm

In previous work [13], we introduced a data reachability

algorithm referred to as DataReach that requires as input a

points-to graph. The nodes of the points-to graph are the

reference variables in the program and the object names

that represent the set of heap objects created during

program execution. Our analysis assumes a common object

naming scheme which assigns one object name per

allocation site; other more precise object naming schemes

are possible as well but they tend to be more expensive [25].

Let O denote the set of object names. Function Pt: Ref !

PðOÞ takes as an argument a reference variable or a

reference object field and returns a subset of PðOÞ, the

powerset of O. DataReach is defined in terms of three sets:

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 297

Fig. 5. Call graph for Java I/O usage.

Fig. 4. Code example for Java I/O usage.

U , F , and R. Set U is initialized to the set of objects passed

as actual arguments at the original call; intuitively, it

contains the universe of objects that may flow to the target

call from the original call. Set F is the set of all instance

fields that are read during the lifetime of the call. As the

algorithm examines static and instance field accesses in the

methods reachable during the lifetime of the original call, it

adds to U those objects that thereby become reachable. In

other words, the algorithm adds object oj to U if and only if

there is a path oi!
f0
o1 . . .!

fk
oj in the points-to graph, where

field identifiers f0; . . . fk 2 F and oi 2 U before this addition.

Set R denotes the set of methods reachable during the

lifetime of the original call.
The DataReach algorithm can be specified by the

following constraints (using the constraint-based formalism
from [14]). The statement of these constraints is followed by
a discussion of their meaning.

. input: Pt: Ref ! PðOÞ.

. initialize: M 2 R for each target M at original call
PtðvÞ � U for each actual argument v at original call
F ¼ ;.

1. For each method M, each virtual call site
e:mð. . .Þ in M, each object o2PtðeÞ where
StaticLookupðo;mÞ ¼ M 0:
ðM 2 RÞ ^ ðo 2 UÞ) M 0 2 R:

2. For each method M and for each object creation
statement si: . . . ¼ new oi in M:
ðM 2 RÞ) oi 2 U .

3. For each methodM and for each static field read
statement si: . . .¼C:f in M:
ðM 2 RÞ)PtðC:fÞ�U .

4. For each method M and for each instance field
read statement si: . . . ¼ r:f in M:
ðM 2 RÞ) f 2 F .

5. ðo 2 UÞ ^ ðf 2 F Þ) Ptðo:fÞ � U .

The algorithm initializes the set of reachable methods R
to the set of targets at the original call, U to the set of objects
pointed to by the actual arguments at the original call
(including all possible receivers), and the set of accessed
fields F to the empty set. Auxiliary function StaticLookup
returns the dynamic target of the call, based on the static
type of the receiver object o and the compile-time target m.
Constraint 1 specifies the addition of new methods to the
set of reachable methods at virtual calls; a new method M 0

is added to R only if the receiver object that triggers the
invocation of M 0 is in the set U . For brevity, static calls are
omitted from the discussion since they can be trivially
handled. Constraint 2 specifies that an object is added to set
U whenever there is an object creation statement in a
reachable method. Similarly, constraint 3 specifies that
objects are added to U whenever a static field is accessed.
Finally, constraint 4 collects the set of field identifiers
accessed in reachable methods, and constraint 5 accounts
for the computation of the transitive closure of U with
respect to the set of accessed fields F .

The solution of these constraints can be used to judge
whether or not an edge in the call graph downstream from
the original call site, can be reached on a statically feasible

path from that call site. The algorithm starts from the given

call site and judges the feasibility of each encountered call

edge using set U , before actually following the edge. The

algorithm outputs R, the set of all methods reachable

through data reachability from the given original call site.

Recall the intended use of our DataReach algorithm. If there

is no feasible path of calls to the target method during the

lifetime of the original call, then the corresponding e-c link is

proven spurious.

3.2.2 Imprecision of DataReach

The original data reachability algorithm produced relatively

precise results which led to an average of 84 percent e-c link

coverage on an initial set of benchmarks [13]. However,

examples from several new benchmark programs reveal

that in many cases its conservative estimate is not sufficient.

Therefore, there is a need to investigate more precise

analysis.

Example. Consider the example in Fig. 6. Assume we start

DataReach analysis at original call c1 in method Read1.

Set U will contain objects o1, o2, and o5 and every object

reachable from them along fields accessed in the reach-

able methods A.m, A.n, and Hashtable.put. Since

298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 6. Imprecision of DataReach Algorithm.

context-insensitive points-to analysis and even some of
the practical context-sensitive ones (e.g., 1-CFA) do not
distinguish between objects stored in different containers
or maps, any object that is stored in a Hashtable object
will be reachable from o5 along a path of field accesses in
F . Thus, the set of objects reachable from o5 includes o4
and we have fo1; o2; o4; o5g � U . As a result, both
Y.read and Z.read are determined to be feasible
targets at call x.read() and the analysis erroneously
concludes that both the throw in Y.read and the
throw in Z.read will be handled by the catch block in
method Read1. Similarly, starting DataReach from
original call c2 in method Read2, the analysis determines
that both the throw in Y.read and the throw in
Z.read will be handled by the catch block in method
Read2. It is easy to see that the only two feasible e-c links
are 1) between throw new SomeIOException and the
catch in Read1, and 2) between throw new Other-

IOException and the catch in Read2. Similar
patterns in actual benchmark code led us to investigate
a more precise analysis.

3.3 A Schema for Data Reachability Analysis

We propose a new general schema for data reachability
analysis, that includes our original DataReach algorithm as
an instantiation. Similarly to the call graph construction
algorithms by Tip and Palsberg [14], our schema can be
instantiated to yield different algorithms by varying the
number of sets used to calculate the objects which are
visible in methods reachable from the original call, (i.e., the
set from which the possible receivers at the target call are
drawn). DataReach keeps a single set U . The new data
reachability algorithms in our schema keep separate sets for
program entities such as classes, methods, and reference
variables. The major differences with Tip and Palsberg’s
algorithms are that 1) our algorithm propagates objects
rather than class types, and 2) our algorithm is formulated
on a partial program rather than on a complete program. The
algorithms in our schema keep specialized local informa-
tion for program entities such as methods and reference
variables, which results in increased precision for data
reachability calculations. For example, consider the set of
statements in Fig. 6. Clearly, the Hashtable object o5
created in method A.n does not flow to A.m; thus, the
precision of the data reachability analysis will benefit if
instead of keeping a single set U throughout the analysis, a
set UM is kept for each method M.

This paper discusses three instantiations of the schema:
one set U valid throughout the data reachability analysis
(i.e., the original DataReach discussed above), separate sets
UM for each method M (this instantiation is referred to as
M-DataReach), and separate sets UV for each reference
variable V (referred to as V-DataReach). It is possible to
define an algorithm, where there is a set per class by
aggregating the method sets for all methods in that class
into a single set UC (referred to as C-DataReach); for brevity,
we omit a detailed discussion of this instantiation.

3.3.1 Separate Sets for Methods (M-DataReach)

The M-DataReach algorithm keeps distinct sets UM and
FM for each method M; UM is computed with respect to

FM from the points-to graph given as input to the
algorithm. Analogously to [14], ParamTypesðMÞ is used
for the set of static types of the arguments of method M

(excluding the implicit parameter this), and the notation
ReturnTypeðMÞ is used for the static return type of M.
MatchingObjectsðt; UÞ denotes the set of objects in U of
type t (or of a subtype of t). We extend the notation
MatchingObjectsð:Þ to apply to a set of types as follows:

MatchingObjectsðT; UÞ ¼
[

t2T

MatchingObjectsðt; UÞ:

The following constraints define M-DataReach:

. input: Pt: Ref ! PðOÞ.

. initialize: M 2 R for each target M at original call
PtðvÞ � UM for each actual argument v at original
call and for each target M UN ¼ ; for each nontarget
method N FM ¼ ; for each method M.

1. For each method M, each virtual call site
e:mð. . .Þ occurring in M, each object o 2 PtðeÞ
where StaticLookupðo;mÞ ¼ M 0:

ðM 2 RÞ ^ ðo 2 UMÞ)

M 0 2 R ^

MatchingObjectsðParamTypesðM 0Þ;UM Þ�UM0^

MatchingObjectsðReturnTypeðM 0Þ;UM0 Þ�UM^

o 2 UM 0 :

8

>

>

>

<

>

>

>

:

2. For each method M and for each object creation
statement si: . . . ¼ new oi in M:
ðM 2 RÞ) oi 2 UM .

3. For each methodM and for each static field read
statement si: . . . ¼ C:f in M:
ðM 2 RÞ) PtðC:fÞ � UM .

4. For each method M and for each instance field
read statement si: . . . ¼ r:f in M:
ðM 2 RÞ) f 2 FM .

5. ðo 2 UMÞ ^ ðf 2 FMÞ) Ptðo:fÞ � UM .

Intuitively, constraint 1 refines the analogous constraint
from DataReach. First, the receiver object o at a virtual call
in method M should be available in UM . Second, set UM of
the callee is updated with the objects from set UM of M that
match the parameter types of the callee. Third, set UM of the
caller M is updated with the objects from set UM 0 of the
callee M 0 matching the return types of the callee. Con-
straints 2 and 3, respectively, gather objects created in M,
and objects that flow to M due to static field reads. Finally,
constraint 4 gathers the set of instance fields that may be
accessed in M, and constraint 5 computes the transitive
closure of UM by only traversing points-to graph edges
corresponding to fields in FM .

Example. Consider the code in Fig. 6. After initialization
at original call c1, we have UA:m ¼ fo1; o2g. Applying
constraint 1 at call n(x) results in objects o1 and o2
being added to UA:n; no objects flow back to UA:m.
Since no fields are accessed in A.m, the closure is
UA:m ¼ fo1; o2g. Therefore, the only possible receiver at
call x.read() is o2 and the only possible exception

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 299

that may be thrown back to the original call is

SomeIOException.

3.3.2 Separate Sets for Variables (V-DataReach)

Additional precision over M-DataReach can be achieved

by distinguishing the object sets for each reference

variable. For this instantiation of the schema, called

V-DataReach, the algorithm keeps distinct sets UV for

each reference variable V . This analysis takes advantage

of a predicate MethodLocalðoÞ which returns true if object

o does not escape its creating method, and false otherwise.

This information can be trivially computed from a points-

to graph as shown in [17].
The following constraints define V-DataReach, in analo-

gous way to the two previous instantiations of the schema:

. input: Pt: Ref ! PðOÞ.

. initialize: M 2 R for each target M at original call
Uai � UM:fi for actuals ai and formals M:fi. Initialize
UM:this of targets M accordingly. Initialize all other
Uv, Uo:f and Local to ;.

1. For each method M, each virtual call site l ¼
e:mðe1; . . . ; enÞ occurring in M, each o 2 PtðeÞ
where StaticLookupðo;mÞ ¼ M 0:

ðM 2 RÞ ^ ðo 2 UeÞ)

M 0 2 R ^

Uei � UM 0:fi where fi are the formal parameters of M 0 ^

UM 0:ret var � Ul ^

o 2 UM 0:this:

8

>

>

>

<

>

>

>

:

2. For each method M and for each reference
assignment statement si: l ¼ r in M:
ðM 2 RÞ) Ur � Ul.

3. For each method M and for each object creation
statement si: l ¼ new oi in M:

ðM 2 RÞ) oi 2 Ul

ðM 2 RÞ ^MethodLocalðoiÞ) oi 2 Local:

�

4. For each methodM and for each static field read
statement l ¼ C:f in M:
ðM 2 RÞ) PtðC:fÞ � Ul.

5. For each method M, for each instance field write
statement l:f¼ r in M and each oi2 PtðlÞ, where
oi 2 Local: ðM 2 RÞ ^ ðoi 2 UlÞ) Ur � Uoi:f .

6. For each method M, for each instance field read
statement l ¼ r:f in M and each oi 2 PtðrÞ:

ðM 2 RÞ ^ ðoi 2 UrÞ)

oi 2 Local) Uoi:f � Ul ^

oi =2 Local) Ptðoi:fÞ � Ul:

�

Intuitively, constraints 1-4 refine the corresponding

constraints from M-DataReach. V-DataReach keeps flow

information per reference variable instead of per method;

therefore it produces more precise results. The following

example illustrates the benefits of these constraints.

Example. Consider the set of statements in Fig. 7. Starting
from original call c1 in Read1, M-DataReachwill compute
UA:m ¼ fo1; o2; o3g. At target call site x1.read() in A.m

the two possible receivers according to the input points-to
graph are o1 and o2. Since both o1 and o2 are in UA:m, they
are determined to be valid receivers; therefore, the throw
SomeIOException and the throw OtherIOExcep-

tion statements flow to the catch in Read1. In contrast,
V-DataReach is able to avoid this imprecision because it
keeps separate setsUx1 andUx2 for x1 and x2, respectively.

Constraints 5 and 6 refine constraint 5 fromM-DataReach.
Note that constraint 3 collects set Local; this set contains
objects o instantiated during the traversal of reachable
methods that do not escape their creating method. Clearly,
since the objects in Local do not escape their creating
method, they do not escape the lifetime of the original call.
The role of constraint 5 is to separate instance field writes to
objects in Local. For those objects, all field writes occur
during the lifetime of the original call and the values
assigned to their fields can be collected from the right-hand-
side of the field write statement in set Uo:f . Constraint 6
accounts for propagating field values. For objects o 2 Local
(i.e., objects whose lifetime does not exceed the lifetime of the
original call), the values of an accessed field f are collected
from sets Uo:f . For objects o =2 Local (i.e., objects whose
lifetime may exceed the lifetime of the original call) the
possible field values are approximated from the global

300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 7. Imprecision of M-DataReach algorithm on different references.

points-to solution since those fields may be set outside of the
original call. The following example taken from the
HttpClient benchmark illustrates the additional precision
gained from separating writes to fields of local objects.

Example. Consider the example in Fig. 8. Starting
V-DataReach from original call c1 in getDmy we have
UgetData:w ¼ fo1g and UgetData:a ¼ fo2g. Clearly, object o1
does not escape its creating method (i.e., its lifetime does
not exceed the lifetime of the original call); therefore, the
instance fields of o1 are assigned during the lifetime of
the original call. Therefore, as a result of constraint 5 for
instance field write this.f = a in the constructor of
class W, we have Uo1:f ¼ fo2g. Similarly, as a result of
constraint 6 for instance field read a = this.f in
W.read, the set Ua will be read from the set Uo1:f .
Therefore, Uread:a ¼ fo2g and as a result the only possible
target at the call a.read() is Dmy.read. Consequently,
V-DataReach concludes that no exception will be thrown
and caught in getDmy. In contrast, if Ua was read from
Ptðo1:fÞ, Uread:a would be fo2; o3g, so we have to consider
this e-c link feasible while it is actually not. With
M-DataReach, UW:read ¼ fo1; o2; o3g, so the same impreci-
sion occurs. Analogously, V-DataReach concludes that
starting from original call c2 the exception in Res.read

may be thrown and caught in getRes which leads to the
only e-c link.

3.3.3 Complexity of Algorithms in Schema

For a given program, let C be the number of classes, M be
the number of methods, V be the number of reference
variables, including static fields, O be the number of object
allocation sites, and F be the number of instance field
identifiers.

The complexity of a data reachability analysis that fits
our schema depends on the number k of U sets kept during
propagation. The overall complexity can be broken into
three components: 1) the complexity of generating inclusion
constraints for program statements (constraints 1-3 for
DataReach and M-DataReach, and 1-4 for V-DataReach),
2) the complexity of solving the system of inclusion
constraints, and 3) the complexity of computing the field
closure for sets U (constraints 4 and 5 for DataReach and

M-DataReach and 5 and 6 for V-DataReach). The complex-
ity of constraint generation is dominated by the time to
process virtual calls. Let E be the number of call graph
edges and let there be an array ao for each object o indexed
by the unique identifiers i of sets Ui. Field ao½i�:value equals
1 if o 2 Ui and 0 if o =2 U ; field ao½i�:edges contains the set of
call graph edges triggered whenever ao½i�:value becomes 1
(i.e., whenever o is added to Ui). Constraints for virtual calls
are generated whenever o is added to Ui. Since each edge
can belong to at most O � ao½i�:edges sets, the complexity of
1) is OðO � EÞ. The complexity of 2) is OðO � k2Þ since for
every Ui there are at most O objects that can be propagated
through Ui to at most k sets Uj. Finally, the complexity of
3) is OðO2 � F � kÞ. Therefore, the complexity of our
algorithms parameterized by k, the number of U sets, is:
OðO � E þO � k2 þO2 � F � kÞ.

Table 1 summarizes our analysis in order of growing
precision and complexity, because E is dominated by M2

and V 2.

4 EMPIRICAL RESULTS

In this section, we report our empirical findings and discuss
some case histories from our experiments, whose goal was
to demonstrate the effectiveness of our methodology. Initial
findings on a set of four moderate-sized Java server
applications have been reported previously in [13]. In this
paper, we report the results of additional analysis applied
to these programs and present extensive inspection results
of them. New experiments with three additional, larger

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 301

Fig. 8. Imprecision of M-DataReach algorithm on local objects.

TABLE 1
Data Reachability Algorithms

applications, including one written with the Tomcat frame-

work, are presented and discussed as well.

4.1 Experimental Setup and Benchmarks

We implemented Exception-flow analysis and DataReach/

M-DataReach analysis as two separate modules in the Java

analysis and transformation framework Soot [18] version

2.0.1, using a 2.8GHz P-IV PC with Linux 2.4.20-13.9 and the

SUN JVM 1.3.1_08 for Linux. By separating the two phases

of our analysis, we were able to show the gains from adding

the DataReach/M-DataReach postpass. Soot provides a call

graph builder using Class Hierarchy Analysis (CHA) [19],

and Spark, a field-sensitive, flow-insensitive and context-

insensitive points-to analysis (a form of 0-CFA) [29], [31],

[17], [30]. We implemented another call graph builder using

Rapid Type Analysis (RTA) [20]. We also implemented the

instrumentation phase as a separate module in Soot, which

automatically instruments the program according to the set

of possible e-c links, as described in the end of Section 2.
We experimented with the following seven different

analysis configurations:7

1. CHA—Build call graph with Class Hierarchy
Analysis.

2. RTA—Build call graph with Rapid Type Analysis.
3. PTA—Build call graph using Spark.
4. InPTA—Build call graph with Spark plus selective

constructor inlining.
5. PTA-DR—Use Spark to provide the points-to graph

and call graph and use DataReach as a postpass
filter.

6. InPTA-DR—Use Spark plus selective constructor
inlining to provide the points-to graph and the call
graph, and use DataReach as a postpass filter.

7. InPTA-MDR—Use Spark plus selective constructor
inlining to provide the points-to graph and the call
graph, and use M-DataReach as a postpass filter.

We used seven Java applications as our benchmarks:

. FTPD, a Ftp Server in Java [32].

. JNFS, The Java Network File System The server
communicates with various clients via RMI [33].

. Muffin, a Web filtering proxy server [34].

. Haboob, a simple Web server based on SEDA, a
staged event-driven architecture [35].

. HttpClient, an HTTP utility package from the Apache
Jakarta Project [36]. We collected its unit tests to form
a whole program to serve as a benchmark.

. SpecJVM, a standard benchmark suite [37] that
measures performance of Java virtual machine,
especially for running client side Java programs.

. VMark, a Java server side performance benchmark.
It is based on VolanoChat [38]—a Web based chat
server. The benchmark includes the chat server and
simulated client.

Column 2 of Table 2 shows the number of user classes,

with those in parentheses comprising the JDK library

classes reachable from each application. The data in

column 3 shows the number of user methods and those in

parenthesis are the JDK library methods reachable from

each application. Column 4 gives the number of try blocks

in user code. The last column shows the size of the .class

files (in bytes) of each benchmark, excluding the Java JDK

library code. The reachable method counts are calculated by

Spark. JNFS is the only multinode application.8

We have Java source code for all the benchmarks except

SpecJVM and VMark. Only part of the source code for

SpecJVM is provided and there is no source code for

VMark. Although we can conduct our experiments using

only bytecode, the unavailability of source code hindered

the process of interpreting our experimental results.
As shown in Fig. 1, we ran the instrumented code with

various workloads to exercise different vulnerable opera-

tions in the applications. Experienced e-c links were

recorded in a log file during the testing. By processing the

e-c link information file and the log file after the testing we

obtained the coverage data. The dynamic tests were

performed on a cluster of 800MHz PIII PCs using Linux

2.2.14-5.0; we used IBM Java 2.13 Virtual Machine for Linux

for all of our benchmarks. Mendosus was running as a

daemon process on each of these machines.
We made the usual assumptions that 1) faults are

independent of each other and 2) faults occur rarely [39],

[40]. We only injected one fault per run,9 resulting in at

most one e-c link covered per test; therefore, we needed to

run each benchmark multiple times, each time targeting one

e-c link. Because we lack a model for faults that tend to

happen together, systematically testing more than one fault

at a time is difficult. A testing harness was constructed,

which iterated over the e-c links information file, repeatedly

running one benchmark program as necessary. Note that

we ran all the benchmarks in SpecJVM together as one Java

program because the I/O module in SpecJVM is shared

across all the benchmarks. As usual, it was the tester’s

responsibility to find proper inputs and program config-

urations, so that designated vulnerable statement (and

fault-sensitive operation) were executed.

302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

7. Selective constructor inlining, DataReach, and M-DataReach were only
used where stated explicitly.

8. Currently, we assume the network supporting RMI is reliable; that is,
we ignore faults that affect RMI transportation.

9. Multiple faults can be injected in one run when a vulnerable operation
is inside some catch block.

TABLE 2
Benchmarks

4.2 Empirical Data

Table 3 lists the number of e-c links reported for each

benchmark in each analysis configuration. Column 9

(Reached) lists the number of links, among those discovered

in InPTA-MDR, whose corresponding try block (but not

necessarily the catch block) was executed by a test. The

last column (Covered) shows the number of e-c links actually

covered for each benchmark by the testing. Table 4 shows

the overall exception def-catch coverage for all the bench-

marks derived from the data in Table 3. We can see from the

tables that the use of points-to analysis for call graph

construction, dramatically reduced the number of e-c links

reported in all of the benchmarks.
We offer two different calculations for the percentage

e-c links covered. In columns 2-8 of Table 4, we use the

metric described in Section 2 (i.e., the ratio of e-c links

covered to possible e-c links found by our analysis). In the

last column 9 of Table 4, we calculate the ratio of the

number of e-c links exercised to the number of links whose

corresponding try block was executed by a test execution.

Effectively, this second measure factors in how well the

tests we are using to execute the program actually cover the

set of try blocks in the code. If we cannot cause execution

to reach the try block containing a vulnerable operation,

then we cannot expect to inject a fault to test the recovery

code corresponding to that operation. The difference

between the values of these two metrics indicates the need

for additional tests for our benchmarks and also distin-

guishes possible spurious e-c links which have not been

covered from e-c links (spurious or not spurious) which had
no chance of being covered in these executions.

The context sensitivity obtained by adding selective
constructor inlining before performing points-to analysis
had effect only on the larger three benchmarks (i.e.,
compare columns PTA and InPTA in Table 3). However,
when combined with the DataReach postpass, the addi-
tional precision provided reduced the number of reported
e-c links in six of the seven benchmarks (i.e., compare
columns PTA and InPTA-DR in Table 3). For the e-c links
reported by InPTA-DR, the coverage percentage of the four
smaller benchmarks was stabilized at approximately 84 per-
cent with small variance. In Muffin and HttpClient, the
additional precision helped cut the number of reported
e-c links by more than half. Haboob is special because it is
the only benchmark that uses a self-constructed nonblock-
ing network library, which does not have as much
polymorphism as the standard JDK library. Thus, the
simple PTA analysis is sufficient to analyze Haboob, as
shown in Table 3. From this data, we see that DataReach is a
client of precise points-to analysis for which added
precision can make a difference. In all three larger bench-
marks, M-DataReach provides more precision over original
DataReach algorithm (i.e., compare columns InPTA-DR and
InPTA-MDR in Table 3).

On the three larger benchmarks the coverage varied across
the programs from 15 percent to 72 percent. Sections 4.3.2,
4.3.3, and 4.3.4 discuss these benchmarks and describe the
causes for the lack of coverage gleaned from code inspection,
where possible.

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 303

TABLE 3
Number of e-c links

TABLE 4
Overall Exception Def-Catch Coverage

Fig. 9 shows the running times of each part of the static

analysis on all benchmarks using configurations PTA-DR,

InPTA-DR, and InPTA-MDR. Running times of the instru-

mentation phase are too small to be shown, under 5 seconds

for all the benchmarks. Our analysis always finished in less

than 2 hours. In the worst case for the InPTA-MDR

configuration, the time our analysis took to find one

e-c link in a program on average was less than 3 minutes.

DataReach is time consuming compared to Exception-flow

analysis and Spark, but it is effective in reducing spurious

e-c links (i.e., comparing the columns for PTA and PTA-DR,

InPTA, and InPTA-DR in Table 3). For FTPD and Haboob,

DataReach used about 50 percent of the total running time;

for other benchmarks, it used more than 90 percent of the

total running time. M-DataReach is slower than Data-Reach

in most of the benchmarks, except SpecJVM. It takes

72 percent more time to finish in FTPD, 43 percent in

Haboob, 40 percent in Muffin, and 15 percent in HttpClient.

It takes 14 percent less time to finish in SpecJVM. We

believe that optimized implementations of DataReach and

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 9. Time cost break-down of static program analysis.

M-DataReach will improve overall analysis performance
significantly.

Note also that for JNFS, Muffin, Haboob, and VMark, the
more precise configuration, InPTA-DR, ran more quickly
than the related less precise configuration, PTA-DR. This is
a phenomenon often seen in practice in static analysis,
when a more precise analysis eliminates so much spurious
information from a solution, that it actually finishes more
quickly than a worst-case more efficient, less precise
analysis.

In the remainder of this section, we will discuss the
performance of our methodology in detail on Muffin,
HttpClient, SpecJVM, and VMark.

4.3 Detailed Inspection

Finding benchmarks for the experimental validation of our
approach has been hard. We need benchmarks which
include input data that exercises different parts of the
program code. There is no standard benchmark suite
designed for this purpose. Of all the programs that are
used as benchmarks in this paper, VMark, HttpClient, and
SpecJVM came with input data or tests; for the others, we
had to compose tests. By comparing columns 8 and 9 of
Table 4, we can see that the input data or tests included in
these benchmarks are not sufficient to drive the programs to
all try blocks that contain vulnerable operations.

For Muffin, SpecJVM, and HttpClient, we manually
inspected all the e-c links whose try blocks are reached
during the testing while the e-c links are not experienced.10

We categorize these e-c links as follows:

1. Feasible e-c links uncovered because of insufficient
tests or input data.

2. Infeasible e-c links that will be difficult for any static
analysis to prune.

3. Infeasible e-c links that may be eliminated using
more precise static analysis.

Table 5 shows the number of inspected e-c links in each of
the categories for each benchmark studied, and as a
percentage of the total number of inspected e-c links in that
benchmark. The last column lists the total number of
inspected e-c links. We will show examples extracted from
each benchmark to illustrate each category in detail.

4.3.1 Muffin

There are three e-c links discovered in Muffin in category 3,
which may be eliminated using context-sensitive points-to
analysis. As mentioned in Section 3.1, our analysis provides

the call chains that start from cj and end with pi for any
e-c link ðpi; cjÞ. Below is one of the possible call chains found
by our analysis for one of these e-c links.11 There are several
hundred call chains for this single e-c link.

org.doit.muffin.Handler.processRequest()

org.doit.muffin.Https.recvReply()

org.doit.muffin.Reply.read()

org.doit.muffin.Reply.read()

java.io.SequenceInputStream.read()

java.util.zip.GZIPInputStream.read()

java.util.zip.InflaterInputStream.read()

java.util.zip.InflaterInputStream.fill()

java.io.BufferedInputStream.read()

java.io.BufferedInputStream.read1()

java.io.BufferedInputStream.fill()

java.util.jar.JarInputStream.read()

java.util.zip.ZipInputStream.read()

java.util.zip.ZipInputStream.readEnd()

java.util.zip.ZipInputStream.readFully()

java.io.PushbackInputStream.read()

java.io.FilterInputStream.read()

java.io.FileInputStream.read()

All of the call chains for this particular e-c link share the
same prefix, but after SequenceInputStream.read()

they begin to vary by selecting read() methods from
different subclasses of InputStream and following differ-
ent permutations of calls. After reading the source code of
SequenceInputStream, we found that this class uses an
Enumeration class to keep track of subsequent Input-

Stream s. Although no object of GZIPInputStream has
ever been assigned to the subsequent input stream of
SequenceInputStream, the usage of the container con-
fuses the points-to analysis into producing the current
result: read() in SequenceInputStream may call
read() in GZIPInputStream and also almost every
subclass of InputStream.

Call chains for all three e-c links share the same
characteristics described here: They all involve the use of
containers. This phenomenon is caused by the imprecision
of the underlying context-insensitive points-to analysis in a
manner similar to the analysis imprecision for constructors
discussed previously. Although we believe that additional
context sensitivity added to the points-to analysis would
further improve the precision of our e-c links, further
experimentation is needed to confirm this hypothesis.

4.3.2 SpecJVM

There is no network related program in SpecJVM;
therefore, we were surprised to see both disk and
network I/O related e-c links found by our analysis.
After code inspection, we discovered that SpecJVM has a
dedicated I/O package that is shared among all the
benchmark programs. All the I/O requests are handled in
this package; requests can be fulfilled by reading files
either on a local disk or on a remote HTTP server. Input
data is read from HTTP server when the benchmark is
running as a Java applet; otherwise, data is read from

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 305

TABLE 5
Number of Uncovered e-c Links in Categories 1, 2, and 3

10. We were not successful in doing this detailed study for VMark
because we do not have access to its source code. 11. Parameters are omitted for readability.

local disks. When the program is running as a Java
applet, it is either enclosed in some Web browser or in a
Java Applet Viewer that is provided with the Java JDK. In
either case, unfortunately, we failed to set up the current
implementation of the fault injection system to perform
fault injection targeted solely on the applet, without
affecting the enclosing program: either the Web browser
or the Java Applet Viewer. Thus, we could not cover the
network-related e-c links without changing the code in the
SpecJVM slightly. We discovered that spec.harness

package maintains an SpecBasePath variable which is
the base location of SpecJVM itself. The value of
SpecBasePath is set to a remote URL when SpecJVM
is running as a Java applet. We modified seven lines of
source code in the benchmark to keep the value of
SpecBasePath as a URL pointing to a remote file so
that I/O requests are fulfilled through network access,
even when SpecJVM is running as a stand-alone Java
program. This enabled the network-related e-c links to be
covered.

Even after this process, as can be seen from Table 4, we
still cannot cover a large portion of the e-c links whose try

blocks have been reached; 87 percent of these e-c links
belong to category 3.

The call chains corresponding to these 26 e-c links share a
pattern. We use a simplified example to illustrate this for
better readability. Consider call chain: A.read() !
B.read() ! C.read() ! D.read() ! B.read() !
E.read(). The fault-sensitive operation is E.read() and,
when executed, it will throw an IOException if an
appropriate fault is injected. There are try-catch clauses
in both A.read() and C.read() that catch IOExcep-

tion. The two outgoing edges from B.read() come from
a single polymorphic call site. The call graph and the
generated e-c links are shown in Fig. 10a. The e-c link from
E.read() to A.read() is infeasible, because the actual
points-to relationship between objects in the program
causes the call chain A.read() ! B.read() !
E.read() to be infeasible. If method B.read() is
analyzed context-sensitively for each of its callers, as shown
in Fig. 10b, it may become possible to compute more precise
e-c link information.

4.3.3 HttpClient

Control flow in HttpClient is complicated. Many control
flow decisions depend on values of string variables (e.g.,
protocol names, HTTP response code and data encoding

method names). In this benchmark, 10 e-c links fall into
category 1: feasible, but we do not have sufficient tests to
drive the program into the specific control paths for these
e-c links. For example, when some connection object is to be
recycled (i.e., closed and reused for another host), HttpCli-
ent will try to read over the network only if the previous
HTTP response on this connection is encoded as chunked,
and the previous response content is not fully consumed.
So, the e-c link from a network read to the catch block in
the network connection recycling method is feasible.
Unfortunately, none of our tests fits this scenario. More
carefully designed tests and specialized HTTP responses
are needed to drive the program into different control-flow
paths in order to cover these 10 links.

There are 24 e-c links in category 2 which account for
60 percent of all inspected e-c links in HttpClient. Recall that
this category includes infeasible e-c links that are hard for
any static analysis to prune. In many tests of the HttpClient
package, the HTTP requests and responses are faked in the
local memory instead of being sent and received through
network. This is done so that some functionality of
HttpClient which does not necessarily involve I/O opera-
tions can be tested quickly. A special HTTP connection class
is defined for this purpose. In general, yet another network
connection will be established if the connection uses a
secured protocol (i.e., https) and a proxy server is
specified in the connection properties, even if the current
connection is already opened. It is hard coded in these tests
that the special HTTP connection class never uses secure
protocol or any proxy server in order to avoid real I/O
operations. However, even the most precise flow and
context-sensitive static analyses assume that all paths in
the control flow graph are executable; thus, in general, static
analysis cannot recognize the infeasibility of such paths (i.e.,
paths due to complex control-flow) and, consequently, it
cannot eliminate the resulting e-c links.

Significant portions of the inspected e-c links fall in
category 2 in Muffin (43 percent) and SpecJVM (13 percent)
too. All of these e-c links correspond to infeasible control-
flow paths, when the infeasibility of these paths cannot be
recognized by static analysis.

There are six e-c links of HttpClient in category 3: They
may be eliminated using V-DataReach, or a context-
sensitive object naming scheme. An example extracted from
code related to these e-c links is previously showed in Fig. 8
and discussed in detail in Section 3.3.2.

4.3.4 VMark

By testing these benchmarks, we found that the tests and/
or input data that came with HttpClient, SpecJVM, and
VMark are insufficient to drive execution into most try

blocks of these programs. We believe this is the reason
why there are so many e-c links whose try blocks are not
reached during our experiments, especially in VMark.
VMark is a Web chat server built on top of Tomcat [41],
which is a Java servlet container. When used as a Java
server-side performance benchmark in VMark, many parts
of Tomcat are not exercised, which results in many of the
e-c links found by the analysis being unreached by the
tests. For instance, in Tomcat an operator can change the
configuration and force reloading of the affected servlets.

306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 10. Recursive call graph.

Also, when Tomcat receives a shutdown request, the
changed configuration must be flushed to the disk.
Because this part of Tomcat is not exercised in VMark,
e-c links corresponding to the I/O operations necessary to
perform these functionalities are left unreached and,
therefore, uncovered. By examining the call chains of the
e-c links in VMark, we found that in the e-c links whose
try blocks are not reached, only three are related to the
chat server code; the call chains of all the other e-c links
are completely within the Tomcat code. In the 18 reached
e-c links, 13 e-c links are related to the chat server. Thus, a
significant portion of Tomcat is left unexercised in VMark.

5 RELATED WORK

This paper presents exception-catch link analysis and its use
in def-use testing of Java program recovery code. There is
much previous research relevant to this work in: fault-
injection testing, dataflow testing coverage metrics, excep-
tion-handler analysis and compilation, points-to analysis
(for reference variables), and infeasible path analysis. We
will discuss the most relevant research results in these areas
each in turn.

5.1 Fault Injection

There has been considerable previous work in the operating
systems community on using runtime fault injection for
testing the robustness of programs. In the dependability
community, (program) coverage is defined as the conditional
probability that the system properly processes a fault, given
that a fault occurs [42]. A stochastic model of expected fault
occurrance is used to guide the selection of faults that are
then injected into a running program and the resulting
execution is observed [1]. This approach yields a stochastic-
based fault coverage that treats the running program as a
black box [8]; the behavior of the program after the fault is
injected is the criteria by which coverage is acheived or not.
In contrast, the experiments in this paper measure coverage
in a manner similar to the software engineering testing
community, which uses the percentage of program entities
(e.g., branches, methods, def-use relations) exercised as a
quantitative measure of coverage [10], [8].

Recently, there has been some research in the depend-
ability community that uses similar program-based cover-
age measures to those in this paper. Tsai et al. [43] placed
breakpoints at key program points along known execution
paths and injected faults at each point, (e.g., by corrupting
a value in a register). Their work differs from ours in its
goal, the kinds of faults injected, and their definition of
coverage. The primary goal of their approach was to
increase fault activations and fault coverage, not to
increase program coverage. They injected a set of
hardware-centric faults such as corrupting registers and
memory; these faults primarily affected program state,
not communication with the operating system or
I/O hardware. They used a basic-block definition of
program coverage, rather than measuring coverage of a
program-level construct such as a catch block. Bieman et
al. [44] explored an alternative approach where a fault is
injected by violating a set of pre or postconditions in the
code, which are required to be expressed explicitly in the

program by the programmer. This approach used branch
coverage, a program-coverage metric.

In the terminology of Hamlet’s summary paper reconcil-
ing traditional program-coverage metrics and probabilistic
fault analysis [45], our work can be classified as a
probabilistic input sequence generator, exploring the low-
frequency inputs to a program. Using the terminology
presented by Tang and Hecht [46], who surveyed the entire
software dependability process, our method can be classi-
fied as a stress-test because it generates unlikely inputs to
the program.

5.2 Dataflow Testing and Coverage Metrics

There is a large body of work that explores def-use or
dataflow testing in different programming language para-
digms. The seminal papers established a set of related
dataflow test coverage metrics and explained their
interrelations [10], [47]. The contribution of our work is
to define and implement a def-use analysis of appropriate
precision that fairly accurately matches exceptions (i.e.,
representative exception objects created at specific crea-
tion sites) to their handlers. This is especially important
to ensure the dependability of the Web applications that
are our focus [11].

Sinha et al. defined an interesting and novel set of
coverage metrics for testing exception constructs and gave
their subsumption relations [48]. The metrics were defined
for checked exceptions explicitly thrown in user code;
however, they seem easily extensible to both implicit and
explicit checked exceptions. Our overall exception def-catch
coverage metric seems equivalent to an extended version of
their all-e-deacts criteria defined for both implicit and
explicit exceptions. Because we are most interested in
recovery code that deals with problems due to system
interactions, we focus on implicit checked exceptions that
are thrown in JDK libraries, whereas they deal with user-
thrown exceptions, that are probably user-defined as well.
No exception analysis or implementation experience with
their metrics is presented.

The overall exception def-catch coverage metric for
e-c links, that relates resource-usage faults to specific
exception objects, differs slightly from our previous overall
fault-catch coverage metric [11]. Our original metric required
the injection of each kind of fault that could trigger a
particular exception for a fault-sensitive instruction, rather
than trying to cause a specific exception to occur. Both
metrics are analogous to the all-uses metric in traditional
def-use testing [10], with fault-sensitive operations corre-
sponding to definitions of exceptions and catch blocks
corresponding to uses. Overall fault-catch coverage requires
the application of the complete range of faults during
testing, consistent with existing operating systems fault-
injection technology. In this paper, because we are injecting
faults at the interface between JDK I/O methods and native
methods rather than at the device level [11], we cannot
differentiate between some device-level faults that result in
the same exception; thus, we inject only one fault to trigger
each exception.

As stated in Section 1, traditional fault-injection testing is
performed by treating the application as a black box.
Success is judged by how often the application does not

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 307

crash in response to an injected fault. Other white-box,
controlflow coverage metrics have been proposed by some
groups for use with fault-injection testing; these correspond
to previous metrics (e.g., branch, edge, and basic block
coverage) and have been summarized previously [11].

5.3 Analysis of Exception Handling

Two previous exception-flow analyses were aimed at
improving exception handling in programs, for example,
avoiding exception handling through subsumption [49],
[50]. These differ from our exception-catch link analysis in
significant ways. First, their call graph is constructed using
class hierarchy analysis, which yields a very imprecise call
graph [19], [20]. Second, these analyses trace exception
types through the call graph of the program to the relevant
catch clauses that might handle them. Conceptually, these
analyses use one abstract object per class. An operation that
can throw a particular exception is treated as a source of an
abstract object that is then propagated along reverse
control-flow paths to possible handlers (i.e., catch blocks).

Jo et al. [50] present an interprocedural set-based [51]
exception-flow analysis; only checked exceptions are
analyzed. Experiments show that this is more accurate than
an intraprocedural JDK-style analysis on a set of bench-
marks, five of which contain more than 1,000 methods.
Robillard et al. [49] describe a dataflow analysis that
propagates both checked and unchecked exception types
interprocedurally. Neither approach analyzes Java libraries
unless source code is available (not the case for the JDK).
They each handle a large subset of the Java language, but
make the choice to omit or approximate some constructs
(e.g., static initializers, finallys). Both of these analyses are
less precise than ours, especially in their approximation of
interprocedural control-flow.

Another analysis of programs containing exception
handling constructs [52] calculates control dependences in
the presence of implicit checked exceptions in Java. This
analysis focuses on defining a new interprocedural program
representation that exposes exceptional control-flow in user
code. In a more recent publication [53], Sinha et al. present
an interprocedural program representation which more
accurately embeds the possible intraprocedural control-
flow through exception constructs (i.e., trys, catchs, and
finallys). Class hierarchy analysis is used to construct the
call edges in this representation. An exception-flow analysis
is defined by propagation of exception types on this
representation to calculate links between explicitly thrown
checked exceptions in user code and their possible
handlers. It seems clear that this analysis could be extended
to include implicit checked exceptions as well, assuming
that the program representation could be constructed from
the bytecodes of the JDK library methods, and that the fault-
sensitive operations could be identified. The CHA version
of our analysis seems the most similar to the analysis
presented in [53]; this version is shown on our benchmarks
to be too imprecise for obtaining coverage of e-c links
corresponding to implicit checked exceptions, the focus of
our work.

Choi et al. [54] designed a new intraprocedural control-
flow representation, that accounted for operations that
might generate unchecked exceptions called PEIs, potentially

excepting instructions; they used this representation as a
basis for safe dataflow analyses for an optimizing compiler.
It is difficult to compare their representation with the others
described here because they capture different sorts of
exceptions, such as NullPointerException, that correspond
to different possibly excepting instructions.

6 EXCEPTIONS AND COMPILATION

Dynamic analyses have been developed to enable optimiza-
tion of exception handling in programs that use exceptions
to direct control-flow between methods, such as some of the
Java Spec compiler benchmarks [37]. The IBM Tokyo JIT
compiler [22] successfully uses a feedback-directed optimi-
zation to inline exception handling paths and eliminate
throws in order to optimize exception-intensive programs
whose performance can be improved up to 18 percent
without affecting performance of nonexception-intensive
ones. In LaTTe [55], exception handlers are predicted from
profiles of previous executions and exception handling code
is only translated in the JIT on demand, so as to avoid the
cost when it is not necessary. The MRL VM [56] performs
lazy exception throwing, in that it avoids creating exception
objects, where possible, unless they are live on entry to their
handler.

6.1 Points-to Analysis

There is a wide variety of reference and points-to analyses

for Java which differ in terms of cost and precision. The

information computed by these analyses can be used as

input to our exception-flow and data reachability analyses;

clearly, the precision of the underlying analysis affects the

quality of the computed coverage requirements. A detailed

discussion of points-to and reference analyses and the

dimensions of precision in their design spectrum appears in

[31]. Our partially context-sensitive points-to analysis is

most closely related to the context-sensitive analyses in our

previous work [25], [26]. These approaches avoid the cost of

nonselective context sensitivity, which seems to be im-

practical; they rely on techniques which preserve the

practicality of the underlying context-insensitive analysis

while improving precision substantially. This is achieved by

effectively selecting parts of the program for which the

analysis computes more precise information, either by

using parameterization mechanisms as in [25], [26], or

partial constructor inlining as in our current algorithm.

Other context-sensitive points-to analyses that seem to be

substantially more costly than ours are presented in [57],

[21], [58], [59]; these analysis algorithms implement

nonselective context sensitivity.

6.2 Infeasible Paths

Bodik et al. present an algorithm for static detection of
infeasible paths using branch correlation analysis, for the
purposes of refining the computation of def-use coverage
requirements in C programs [60]. Our data reachability
analysis focuses on the detection of infeasible paths in Java
which arise due to object-oriented features and idioms
such as polymorphism; this is not addressed in [60]. Souter
and Pollock present a methodology (without empirical

308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

investigation) for demand-driven analysis for the detection
of type infeasible call chains [61], [62]. Similarly to their
work, our analysis is demand-driven as we analyze the
program starting from the original call. However, our data
reachability analysis propagates information in terms of
objects instead of classes which can result in more precise
analysis results. In addition, our work proposes a
technique for summarizing the effects of callees; this
problem is not addressed in [61] and [62]. Our simple
RTA-like technique for collecting potential receiver objects
proves suitable for the problem of eliminating infeasible e-c
links; the empirical results demonstrate that it can
eliminate substantial number of infeasible links. Rountev
et al. [63] investigate the potential of various call graph
construction algorithms to weed out infeasible call chains.
They find that Andersen’s points-to analysis (the same
points-to analysis that we are using) achieves close to the
“best solution” possible for any analysis which considers
all control branches to be feasible. This finding reenforces
our observation of uncovered infeasible e-c links in our
experiments, that involved complex control conditions
which “fooled” the analysis.

7 CONCLUSIONS

We have defined an exception-flow analysis that is
(according to our studies of benchmarks) precise enough
to support the approach to white-box testing of fault-
recovery code that we presented in [11]. Our testing
methodology allows developers of fault-tolerant server
applications to quantify (and improve) the coverage of
fault-recovery code, as is done with any other code
subjected to white-box testing. We hope this methodology
will prove to be a valuable tool for developers of server
applications that must provide high reliability and, thus,
improve the experience of users who rely on such servers.

Exception-flow information derived solely from prior
analysis techniques such as Class Hierarchy Analysis,
Rapid Type Analysis, and Spark (a field-sensitive, flow-
insensitive, and context-insensitive points-to analysis) is not
suitable for our approach, as it contains too many infeasible
links from exception throws to catch clauses. The most
precise of these analyses found 179 e-c links in our set of four
moderate-size benchmarks and 475 in our set of three larger
benchmarks; these numbers dwarf the actual number of
e-c links that are exercised during tests, 72 and 85, primarily
because most of the e-c links are provably infeasible.

By performing inline substitution of constructors prior to
exception-flow analysis based on Spark and, subsequently,
pruning infeasible e-c links with our basic DataReach
analysis, we can produce an analysis that finds only
86 e-c links in the moderate-sized benchmarks. Many of
the 14 that are not exercised during tests are in fact
infeasible. However, it is often difficult or impossible for
static analysis to determine this fact, and we believe this
number is small enough to permit manual examination by
the tester (who must already supervise the testing process
to check for appropriate behavior when a link is exercised).
In terms of our approach to testing fault-recovery code, this
corresponds to a measurement of 84 percent coverage. Most
(but not all) of the lack of measured coverage is due to

inaccuracy in analysis, but the number of false links that
must be ruled out manually is still much smaller than the
number of links that must be examined during testing.

Our basic DataReach algorithm still finds 229 e-c links in

the set of larger benchmarks. This number can be reduced
to 201 by applying the M-DataReach variant of our analysis,
at a cost of about 8 1

2
minutes of additional analysis time for

the three larger benchmarks (M-DataReach runs faster than

the original analysis on one benchmark). Manual analysis
suggests the number of e-c links could be reduced further by
applying our V-DataReach variant, though we have not

implemented and tested this algorithm. However, of the
201 e-c links found, 85 are exercised during testing (for
42 percent coverage), and at least 51 are uncovered due to
the fact that the distributed data do not sufficiently test the

software. Thus, the primary activities of the tester are once
again the observation of relevant tests and the search for
better test data, rather than manual examination of
spurious e-c links.

The total analysis time varies from under five minutes

for our smallest benchmark, up to almost two hours for full
analysis including M-DataReach on one of the larger
benchmarks. We believe this time is acceptable in the

overall context of software testing.
Our future plans include testing application uses of other

Java JDK libraries, such as java.rmi, and expanding our
analysis to handle multinode programs and middleware
that use configuration files for dynamic loading of classes.

We also plan to investigate other uses of our analysis. Our
precise exception-flow analysis may also prove valuable in
contexts other than testing, for example, in helping
programmers understand the exception handling structure

of an unfamiliar program. Furthermore, our technique of
using data reachability information to refine information
about interprocedural control paths is not specific to the

problem of exception flow, and could be applied to other
analysis problems.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation grants EIA-0103722 and CCR-9900988.

REFERENCES

[1] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
Injection and Dependability Evaluation of Fault-Tolerant Sys-
tems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913-923, Aug.
1993.

[2] M. Cukier, R. Chandra, D. Henke, J. Pistole, and W.H. Sanders,
“Fault Injection Based on a Partial View of the Global State of a
Distributed System,” Proc. Symp. Reliable Distributed Systems,
pp. 168-177, 1999.

[3] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A Fault
Injection Environment for Distributed Systems,” Proc. 26th Int’l
Symp. Fault Tolerant Computing (FTCS-26), pp. 404-414, June 1996.

[4] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: An Integrated
Software Fault Injection Environment for Distributed Real-Time
Systems,” Proc. Int’l Computer Performance and Dependability Symp.
(IPDS ’95), pp. 204-213, Apr. 1995.

[5] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, “FERRARI: A
Tool for the Validation of System Dependability Properties,” Proc.
22nd Int’l Symp. Fault Tolerant Computing (FTCS-22), pp. 336-344,
1992.

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 309

[6] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J.
Barton, D. Rancey, A. Robinson, and T. Lin, “FIAT—Fault
Injection Based Automated Testing Environment,” Proc. 18th Int’l
Symp. Fault-Tolerant Computing (FTCS-18), pp. 102-107, 1988.

[7] R.V. Binder, Testing Object-Oriented Systems. Addison Wesley,
1999.

[8] G.J. Myers, The Art of Software Testing. John Wiley and Sons, 1979.
[9] R.G. Hamlet, “Testing Programs with the Aid of a Compiler,”

IEEE Trans. Software Eng., vol. 3, no. 4, pp. 279-290, July 1977.
[10] S. Rapps and E. Weyuker, “Selecting Software Test Data Using

Data Flow Information,” IEEE Trans. Software Eng., vol. 11, no. 4,
pp. 367-375, Apr. 1985.

[11] C. Fu, R.P. Martin, K. Nagaraja, T.D. Nguyen, B.G. Ryder, and D.
Wonnacott, “Compiler-Directed Program-Fault Coverage for
Highly Available Java Internet Services,” Proc. Int’l Conf. Depend-
able Systems and Networks (DSN 2003), June 2003.

[12] C. Fu, R.P. Martin, K. Nagaraja, T.D. Nguyen, B.G. Ryder, and
D.G. Wonnacott, “Compiler-Directed Program-Fault Coverage for
Highly Available Java Internet Services,” Technical Report DCS-
TR-518, Dept. of Computer Science, Rutgers Univ., Jan. 2003.

[13] C. Fu, B.G. Ryder, A. Milanova, and D. Wonnacott, “Testing of
Java Web Services For Robustness,” Proc. Int’l Symp. Software
Testing and Analysis (ISSTA), pp. 23-33, July 2004.

[14] F. Tip and J. Palsberg, “Scalable Propagation-Based Call Graph
Construction Algorithms,” Proc. Conf. Object-Oriented Program-
ming, Languages, Systems and Applications, pp. 281-293, Oct. 2000.

[15] K. Arnold and J. Gosling, The Java Programming Language, second
ed. Addison-Wesley, 1997.

[16] X. Li, R.P. Martin, K. Nagaraja, T.D. Nguyen, and B. Zhang,
“Mendosus: A SAN-Based Fault-Injection Test-Bed for the
Construction of Highly Available Network Services,” Proc. First
Workshop Novel Uses of System Area Networks (SAN-1), Jan. 2002.

[17] A. Rountev, A. Milanova, and B.G. Ryder, “Points-To Analysis for
Java Using Annotated Constraints,” Proc. Conf. Object-Oriented
Programming, Languages, Systems and Applications, pp. 43-55, 2001.

[18] Sable, McGill, “Soot: A Java Optimization Framework,” http://
www.sablemcgill.ca/soot, 2003.

[19] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-
Oriented Programs Using Static Class Hierarchy,” Proc. Ninth
European Conf. Object-Oriented Programming (ECOOP ’95), pp. 77-
101, 1995.

[20] D. Bacon and P. Sweeney, “Fast Static Analysis of C++ Virtual
Functions Calls,” Proc. ACM SIGPLAN Conf. Object-Oriented
Programing Systems, Languages and Applications (OOPSLA ’96),
pp. 324-341, Oct. 1996.

[21] D. Grove and C. Chambers, “A Framework for Call Graph
Construction Algorithms,” ACM Trans. Programming Languages
and Systems (TOPLAS), vol. 23, no. 6, 2001.

[22] T. Ogasawara, H. Komatsu, and T. Nakatani, “A Study of
Exception Handling and Its Dynamic Optimization in Java,” Proc.
ACM SIGPLAN Conf. Object-oriented Programing Systems, Languages
and Applications (OOPSLA ’01), pp. 83-95, 2001.

[23] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers—Principles,
Techniques and Tools. Addison Wesley, 1988.

[24] T.J. Marlowe and B.G. Ryder, “Properties of Data Flow Frame-
works: A Unified Model,” Acta Informatica, vol. 28, pp. 121-163,
1990.

[25] A. Milanova, A. Rountev, and B.G. Ryder, “Parameterized Object
Sensitivity for Points-To Analysis for Java,” ACM Trans. Software
Eng. and Methodology, vol. 14, no. 1, Jan. 2005.

[26] A. Milanova, “Precise and Practical Flow Analsis of Object-
Oriented Software,” PhD dissertation, Rutgers Univ., 2003.

[27] M.L. Scott, Programming Language Pragmatics. Morgan Kaufmann,
2000.

[28] M. Sharir and A. Pnueli, “Two Approaches to Interprocedural
Data Flow Analysis,” Program Flow Analysis: Theory and Applica-
tions, S. Muchnick and N. Jones, eds., Prentice Hall, pp. 189-234,
1981.

[29] O. Shivers, “Control-Flow Analysis of Higher-Order Languages,”
PhD dissertation, Carnegie Mellon Univ., 1991.

[30] O. Lhoták and L. Hendren, “Scaling Java Points-To Analysis
Using Spark,” Proc. Int’l Conf. Compiler Construction, pp. 153-169,
2003.

[31] B.G. Ryder, “Dimensions of Precision in Reference Analysis of
Object-Oriented Programming Languages,” Proc. 12th Int’l Conf.
Compiler Construction, pp. 126-137, Apr. 2003.

[32] P. Sortokin, “Ftp Server in Java,” http://peter.sorotokin.com/
ftpd/ftpd.html, 2003.

[33] M.J. Radwin, “The Java Network File System,” http://www.
radwin.org/michael/projects/jnfs/, 2003.

[34] “The Muffin World Wide Web Filtering System,” http://
muffin.doit.org/, 2003.

[35] M. Welsh, D.E. Culler, and E.A. Brewer, “SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services,” Proc. Symp.
Operating Systems Principles, pp. 230-243, http://www.cs.harvard.
edu/~mdw/proj/seda/, 2001.

[36] Apache Software Foundation, “Apache Jarkarta Project,” http://
jakarta.apache.org/, 2004.

[37] Specbench.org, “Spec jvm98 Benchmarks,” http://www.spec.
org/jvm98/, 1998.

[38] Volano LLC, “Volanomark,” http://www.volano.com/
benchmarks.html, 2004.

[39] D. Tang and R.K. Iyer, “Analysis and Modeling of Correlated
Failures in Multicomputer Systems,” ACM Trans. Computer
Systems, pp. 567-577, May 1992.

[40] K. Nagaraja, X. Li, B. Zhang, R. Bianchini, R.P. Martin, and T.D.
Nguyen, “Using Fault Injection to Evaluate the Performability of
Cluster-Based Services,” Proc. Fourth USENIX Symp. Internet
Technologies and Systems (USITS 2003), Mar. 2003.

[41] Apache Software Foundation, “Apache Jakarta Tomcat,” http://
jakarta.apache.org/tomcat/, 2004.

[42] W.G. Bouricius, W.C. Carter, and P. Schneider, “Reliability
Modeling Techniques for Self Repairing Computer Systems,”
Proc. 24th Nat’l Conf. the ACM, pp. 295-309, Mar. 1969.

[43] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. Iyer, “Stress-
Based and Path-Based Fault Injection,” IEEE Trans. Computers,
vol. 48, no. 11, pp. 1183-1201, Nov. 1999.

[44] J. Bieman, D. Dreilinger, and L. Lin, “Using Fault Injection to
Increase Software Test Coverage,” Proc. Seventh Int’l Symp.
Software Reliability Eng. (ISSRE ’96), pp. 166-174, 1996.

[45] D. Hamlet, “Foundations of Software Testing: Dependability
Theory,” Proc. Second ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 128-139, 1994.

[46] D. Tang and H. Hecht, “An Approach to Measuring and
Assessing Dependability for Critical Software Systems,” Proc.
Eighth Int’l Symp. Software Reliability Eng., pp. 192-202, Nov. 1997.

[47] P. Frankl and E. Weyuker, “An Applicable Family of Data Flow
Testing Criteria,” IEEE Trans. Software Eng., vol. 14, no. 10,
pp. 1483-1498, Oct. 1988.

[48] S. Sinha and M.J. Harrold, “Criteria for Testing Exception-
Handling Constructs in Java Programs,” Proc. Int’l Conf. Software
Maintenance, 1999.

[49] M.P. Robillard and G.C. Murphy, “Static Analysis to Support the
Evolution of Exception Structure in Object-Oriented Systems,”
ACM Trans. Software Eng. and Methodology (TOSEM), vol. 12, no. 2,
pp. 191-221, 2003.

[50] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Cho, “An Uncaught
Exception Analysis for Java,” J. Systems and Software, 2004.

[51] N. Heintze, “Set-Based Analysis of Ml Programs,” Proc. ACM
Conf. Lisp and Functional Programmig, pp. 306-317, 1994.

[52] S. Sinha and M.J. Harrold, “Analysis and Testing of Programs
With Exception-Handling Constructs,” IEEE Trans. Software Eng.,
vol. 26, no. 9, pp. 849-871, Sept. 2000.

[53] S. Sinha, A. Orso, and M.J. Harrold, “Automated Support for
Development, Maintenance, and Testing in the Presence of
Implicit Control Flow,” Proc. 26th Int’l Conf. Software Eng.
(ICSE ’04), 2004.

[54] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and
Precise Modeling of Exceptions for Analysis of Java Programs,”
Proc. ACM SIGPLAN-SIGSOFT Workshop Program Analysis for
Software Tools and Eng., pp. 21-31, Sept. 1999.

[55] S. Lee, B.-S. Yang, S. Kim, S. Park, S.-M. Moon, K. Ebcioglu, and E.
Altman, “Efficient Java Exception Handling in Just-in-Time
Compilation,” Proc. ACM SIGPLAN Java Grande Conf., 2000.

[56] M. Cierniak, G.-Y. Lueh, and J.M. Stichnoth, “Practicing Judo: Java
under Dynamic Optimzations,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 13-26, 2000.

[57] J.D.D. Grove, G. DeFouw, and C. Chambers, “Call Graph
Construction in Object-Oriented Languages,” Proc. ACM SIG-
PLAN Conf. Object-Oriented Programing Systems, Languages and
Applications (OOPSLA ’97), pp. 108-124, Oct. 1997.

[58] R. O’Callahan, “The Generalized Aliasing as a Basis for Software
Tools,” PhD dissertation, Carnegie Mellon Univ., 2000.

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

[59] R. Chatterjee, B.G. Ryder, and W.A. Landi, “Relevant Context
Inference,” Proc. ACM SIGACT/SIGPLAN Symp. Principles of
Programming Languages, Jan. 1999.

[60] R. Bodik, R. Gupta, and M.L. Soffa, “Refining Data Flow
Information Using Infeasible Paths,” Proc. Sixth European Software
Eng. Conf. (ESEC/FSE 97), M. Jazayeri and H. Schauer, eds.,
pp. 361-377, 1997.

[61] A.L. Souter and L.L. Pollock, “Type Infeasible Call Chains,” Proc.
IEEE Int’l Workshop Source Code Analysis and Manipulation, 2001.

[62] A.L. Souter and L.L. Pollock, “Characterization and Automatic
Identification of Type Infeasible Call Chains,” Information and
Software Technology, vol. 44, no. 13, pp. 721-732, Oct. 2002.

[63] A. Rountev, S. Kagan, and M. Gibas, “Static and Dynamic
Analysis of Call Chains in Java,” Proc. Int’l Symp. Software Testing
and Analysis, pp. 1-11, July 2004.

Chen Fu received MS degree in computer
science from the Institute of Computing Tech-
nology, Chinese Academy of Science, China. He
is currently a PhD candidate in Computer
Science in Rutgers University. His research
interests are in program analysis and its
application in testing and program understand-
ing tools.

Ana Milanova received the PhD degree in
computer science from Rutgers University in
2003. She is currently an assistant professor in
the Department of Computer Science at Re-
nsselaer Polytechnic Institute. Her research
interests focus on static and dynamic program
analysis and its applications in software produc-
tivity tools and optimizing compilers. She is a
member of the IEEE Computer Society, ACM,
SIGSOFT, and SIGPLAN.

Barbara Gershon Ryder is a professor of
computer science at Rutgers University, New
Brunswick, New Jersey. She became a fellow of
the ACM in 1998 and was selected as a CRA-W
Distinguished Professor in 2004. She was
selected as Professor of the Year for Excellence
in Teaching by the Computer Science Graduate
Students Society of Rutgers University in 2003
and received the ACM SIGPLAN Distinguished
Service Award in 2001. She was the general

chair of the 2003 Federated Conference on Research in Computing and
served on the board of directors of the Computer Research Association
(CRA) from 1998-2001. She was elected a member of ACM Council in
2000 and 2004, and served on the ACM SIGPLAN Executive Committee
from 1989-1999 (as SIGPLAN Chair, 1995-1997). She was a recipient of
a US National Science Foundation Faculty Award for Women Scientists
and Engineers (1991-1996). Dr. Ryder’s research focuses on static and
dynamic program analyses for object-oriented languages and practical
software tools. Applications include: change impact analysis, program
understanding, software testing, and testing availability of Web services.

David G. Wonnacott recieved the PhD degree
in computer science from The University of
Maryland in 1995, for his work on the Omega
Test and Omega Library. His current research
interests include the creation and use of static
analysis algorithms and computer science edu-
cation. He is now an associate professor at
Haverford College, and a member of the ACM
and SIGPLAN.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FU ET AL.: ROBUSTNESS TESTING OF JAVA SERVER APPLICATIONS 311

