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ABSTRACT 

Since attention first turned to the 
problem of database recovery following 
system crash, computer architectures have 
undergone considerable evolution. One 
direction such evolution has taken is 
toward fault-tolerant, highly available, 
distributed database systems. One such 
architecture is characterized by a single 
system composed of multiple independent 
processors, each with its own memory. 
This paper examines the inadequacy of 
both the traditional definition of system 
crash and the conventional approaches to 
crash recovery for this architecture. It 
describes an approach to recovery from 
failures which takes advantage of the 
multiple independent processor memories 
and avoids ‘system restart in many cases. 

INTRODUCTION 

With the emergence of on-line update in 
transaction processing applications, log- 
based database recovery techniques have 
evolved to provide robustness to crash or 
system failure. Log-based crash recovery 
techniques have received considerable 
attention in the literature [4,5,8,9,101. 

The strategies adopted by the proponents 
of these techniques fall into two basic 
categories. Both postulate the existence 
of two types of memory [41: 

1. main memory, which is volatile, hence 
does not survive system failure; 

ii. secondary storage, which is stable or 
non-volatile, hence usually survives 
system failure. 
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In the first strategy, a transaction 
writes an intentions list rather than 
updating database pagan real-time. 
The application of a transaction’s 
intended updates to the actual database 
pages is deferred until transaction 
commit. at which time the transaction’s 
intentions list is written to a secondary 
storage log, following which the updates 
are applied to the actual database pages. 
If a failure occurs during the 
application of the intentions list, the 
recovery procedure consists of restarting 
the application of the intentions list 
from the beginning. This technique has 
been described by Lampson and Sturgis in 
181. 

In the second strategy, a transaction 
effects its database updates in 
real-time, but a so-called write-ahead 
log protocol governs the migration of the 
updated database pages from a memory 
buffer pool to secondary storage. 
According to this protocol, described by 
Gray in [41, no updated data page is 
permitted to be written to secondary 
storage before the log records describing 
the updates to that page have been 
written to the secondary storage log. At 
commit time, transaction recoverability 
is achieved by forcing to stable storage 
all log records related to the committing 
transact ion. 

Using either of the above strategies, 
database recovery following a crash is 
characterized by having recourse to the 
log stored on secondary storage in order 
to ensure that committed transactions are 
applied and uncommitted transactions are 
removed from the database. A difference 
between the two strategies lies in the 
type.of log information required for 
crash recovery. In the case of deferred 
update, only redo information need be 

In the case of real-time update 
iyTEe%ite-ahead log both undo and redo 
information must be iogged [6l. 
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A RE-EXAMINATION OF THE TERM “CRASH” -- - -- 

Central to,the strategies used in the 
conventionbl approaches to crash recovery 
is the definition of a crash or system 
failure as the loss of the contents of 
mainmory [91. The inadequacy of this 
definition of system failure becomes 
evident when applied to a non shared- 
memory multi-processor architecture. The 
concept of “main memory” as a unique and 
shared resource constituting a single 
point of failure is inappropriate for 
multi-computer systems. In a system 
architecture in which multiple 
independent processors, each with its own 
memory, are connected to form a single 
system or node via interprocessor buses 
or local area network, the use of tne 
term “crashn to denote an all-or-nothing 
state of the system loses its validity. 
The term becomes even less meaningful 
when applied to a long-haul network 
consisting of multiple shared-memory 
nodes, or even of multiple multi-computer 
nodes. Such configurations raise the 
possibility of partial crashes caused by 
individual processor failures within a 
node or caused by node failures within a 
network. A fault-tolerant system design 
may allow certain failures within a node 
to be handled without requiring system 
restart. If a partial failure does not 
require system restart, neither should it 
require full database restart. However, 
the problem of the total failure or crash 
of a multi-computer node still remains 
and must be handled. 

A corollary to the generalization of the 
concept of crash is the generalization of 
the concept of crash recovery. If, as in 
the above definition, secondary storage 
is viewed as the only storage which 
survives failures, then crash recovery 
must be based on a secondary storage log 
and system restart is required. If, on 
the other hand, a processor failure does 
not imply the failure of other 
processors, then recovery techniques not 
requiring system restart or recourse to 
secondary- storage are possible. If a 
,port-i3i of the “log” were copied from the 
memory of one processor to that of 
another during normal processing, and one 
of these processors survived the failure 
of the other, then recovery from the 
partial system failure could be effected 
using the “log” information from the 
memory of a surviving processor while 
system operation continued “on-line”. 

Tandem Computers has implemented a multi- 
processor architecture using the above 
concepts. The next section presents a 
brief description of Tandem’s system 
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architecture in order to motivate a more 
general approach to identifying and 
recovering from both partial and total 
system failures. Subsequent sections 
define robustness to single and multiple 
processor failures in a Tandem system. A 
discussion of Tandem’s implementation of 
fault tolerance and the evolution of its 
design follows. 

ARCHITECTURAL OVERVIEW _-.--- -- ---- 

The hardware architecture of a 
Tandem [TM1 system is described in [7]. 
Illustrated in Figure 1, it is based on 
multiple independent processors which are 
interconnected by dual high-speed buses 
to form a single :ystem (node). The 
goals of the architecture are fault- 
tolerance, high availability, and 
modularity. Hardware redundancy is 
provided such that the failure of a 
single module does not disable any other 
module or disable any inter-module 
communication. Normally, all components 
are active in processing the workload. 
However, when a component fails, the 
remaining system components automatically 
take over the workload of the failed 
component. Each of the (up to 16) 
processors in a system has its own power 
supply, memory, and I/O channel. Memo r y 
has battery backup power capable of 
saving system state for several hours in 
the event of power failure. Each I/O 
controller is connected to the I/O 
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TANDEM HARDWARE ARCHITECTURE 
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channels of two processors, and each I/O 
device, such as a disc drive, may be 
connected to two controllers. A given 
disc volume is directly accessible from 
two processors. Disc volume 
availability, despite media failures, is 
provided by optional duplication, or 
mirroring of drives. 

System resources are managed by a 
message-based operating system, described 
in [21. The Message System, a component 
of the operating system, provides 
communication between processes executing 
in the same or different processors, 

making the distribution of hardware 
components transparent to processes. 
Through its Message and File Systems, the 
operating system makes the multi-computer 
structure appear as a unified 
multiprocessor to higher levels of 
software. 

Built on this architecture is a 
distributed data management and 
transaction management system called 
ENCOMPASS [TM]. Described in [II, 
ENCOMPASS allows data to be distributed 
across multiple processors and discs 
within a single node, or even within 
multiple nodes of a Tandem long-haul 
network. It supports the transaction _-~- _- 
concept 161 in this distributed 
environment. The transaction concept is 
implemented by means of a log and real- 
time (as opposed to deferred) update. 
Transactions can span multiple discs 
(connected to multiple processors) within 
the same node or on multiple nodes of a 
Tandem long-haul network. 

Updates to a file may or may not be 
protected by transaction auditing, 
depending on the value of the file 
attribute audited. (Henceforth, the 
terms “log/logging” and “audit 
trail/auditing” will be used 
interchangeably). 

ENCOMPASS supports three kinds of 
structured file organizations: 

(1) key-sequenced: 
(2) relative-record: 
(3) entry-sequenced. 

A key-sequenced file is organized as a B- 
tree on the primary key field. All three 
file organizations can have alternate 
keys. Alternate keys are implemented as 
separate key-sequenced files which 
“point” to primary file records via a 
field which contains the value of the 
primary key. Alternate key files and the 
primary files which they index can reside 
on separate disc volumes. Partitioning 
files -- by primary key value range -- 

across multiple disc volumes (possibly on 
multiple nodes) is also supported. 

One of the basic implementation 
components of ENCOMPASS is a process 
which acts as a server for files on a 
particular disc volume. This process, 
designated the Discprocess, is an example 
of an I/O process-pair 137. An I/O 
process-pair is a mechanism which 
provides fault-tolerant system-wide 
access to I/O devices. It consists of 
two cooperating processes which run in 
the two processors physically connected 
to a particular I/O device. One of these 
processes, designated the primary 7-- process, controls the I/O device, 
handling all requests to perform I/O on 
the device. The other process, 
designated the backup process, functions -- .___ 
as a stand-by, ready to take over control 
of the device in case of failure of the 
primary path to the device. The 
processor in which the primary I/O 
process resides is an integral 
constituent of the primary path to the 
device. Should the primary’s processor 
crash, the backup process must have 
information sufficient to take over 
control of the device. This critical 
information is sent from the primary 
process to the backup process during the 
course of normal processing in the form 
of so-called checkpoint messages. The 
process-pair which controls a disc volume 
is called the Discprocess-pair, or simply 
Discprocess. Its primary and backup 
members run in the “primary” and “backup” 
processors for the disc volume, 
respectively. The Discprocess has an 
active rather than a passive backup 
process. The term active backup p-recess __- -7- refers to the fact that the information 
which it receives via checkpoint messages 
drives its execution control flow. This 
is in contrast to a possible alternative 
design in which the backup process 
passively receives copies of recently- 
dirtied portions of the primary process’ 
memory. The active backup concept is 
central to the design of single fault 
tolerance, as described below. 

From the point of view of a given 
Discprocess, a “file” is a single 
partition of an ENCOMPASS “file” (if, 
indeed, the latter is partitioned). 
Partitions of key-sequenced primary data 
files and of alternate key files look 
alike to the Discprocess: each is 
structured as a single B-tree. The 
higher-level concept of a “file” with 
partitions and/or alternate keys is 
implemented by the File System. The File 
System is a set of, user-callable 
procedures which execute in the 
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environment of the user process. These 
procedures (e.g. OPEN, READ, KEYPOSITION, 
LOCKREC, WRITE, etc.) accomplish an 
operation by sending one or more request 
messages to the appropriate 
Discprocess( In a requester-server 
mode 1, the invoker of the File System is 
the requester and the Discprocesses are 
servers. 

The primary interface to the Discprocess 
is record-oriented, although a block- 
oriented interface is also provided. 
Most update requests result in the 
updating of a single record within a 
single block of a given file. In the 
case of key-sequenced files, however, the 
possibility that a single request message 
from the File System could cause a B-tree 
split or collapse means that the request 
may be executed as a series of micro 

steps. update Since ~inco~leteicro 
update step series leaves a file 
structurally inconsistent, robustness to 
crash requires a method of assuring its 
atomicity. This atomicity is provided 
for both audited and non-audited files, 
but the means differ, as explained later. 

1 

\ 
FIGURE 2 

DISC 
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FS is the File System running in the user process environment. 
DP and DP’ are the primary and backup Discprocesses for a 
mirrored disc volume. DP performs I/Cl s to move pages to and 
from its memory buffer pool, BP. Reads go to the closest 
disc; writes go to both discs. DP’ maintains the backup buffer 
pool, BP’,based on checkpoint messages received from DP. 
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FAILURE MODES -- - 

The system architecture described 
supports fault tolerance for a variety of 
failure modes other than processor crash. 
Fault tolerance extends from failures of 
single hardware components (discs, I/O 
channels, I/O controllers) to failures of 
system or application software 
(programmatic processor halt, user 
process error, transaction abort). The 
current discussion, however, will be 
limited to failures which result in the 
loss to a single multi-processor node of 
one or more of its constituent 
processors. “Loss” in this context means 
the invalidation of everything stored in 
the failed processor’s memory. This 
could actually be caused by the failure 
of any hardware or sqftware component 
associated with that processor. 

The failure model supported can be 
characterized as fail fast. --- Consistency 
checks are an integral part of the system 
hardware and software. If such a check 
fails, the bad component is halted. This 
approach makes failures “clean” and makes 
it unlikely that a failed component will 
contaminate other components [3,61. 

DEFINITION OF 
ROBUSTNESS s SINGLE PROmSSOR FAILURE 

The failure of a single processor in the 
ar=cribed environment results in the 
takeover of its functions by the 
remaining processors. In particular, the 
failure of a primary Discprocess’ 
processor results in the takeover of its 
function by the backup Discprocess’ 
processor. If the failed processor 
contained other primary Discprocesses 
with different backup processors, then 
the failed processor may have its work 
taken over by several other processors. 

The Discprocess is designed to provide 
robustness to single processor failure. 
This robustness is implemented by means 
of checkpoint messages sent from the 
primary process to the backup process 
during normal processing and a takeover 
algorithm described later. 

The following elements constitute 
robustness to single processor failure: 

(11 “Sessions” between the Discprocess 
and requesters calling the File 
System survive the failure of the 
Discprocess’ primary processor. 
Thus, any file open before takeover 
still appears open after the 
takeover. 
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When updates are not protected by 
transaction auditing (i.e. updates 
to non-audited files), a mechanism 
of tagging messages between the 
File System and the Discprocess 
with sequence numbers can 
optionally be used to guarantee 
that a request message is never 
lost during the takeover and that a 
non-idempotent operation is never 
duplicated [3l. 

When updates are protected by 
transaction auditing (i.e. updates 
to audited files), the file open 
session survives the takeover, but 
updates executed under that open by 
a given transaction survive the 
takeover if and only if that 
transaction committed before the 
takeover. 

The tolerance of sessions to single 
processor failure obviates the need 
to perform system restart in the 
event of such a failure. For non- 
audited files, the takeover is 
transparent to the caller of the 
File System. For audited files, 
the takeover is not transparent to 
the caller of the transaction 
management system (since 
transactions may be aborted), but 
higher-level software makes the 
abort and restart of such a 
transaction transparent to the end- 
user 111. 

(2) The structural integrity of both 
audited and non-audited files on 
the volume is guaranteed. Thus, if 
the primary’s processor fails in 
the middle of performing a series 
of micro update steps to a file, 
takeover processing restores the 
file’s structure to a consistent 
state by backing out the steps 
performed before the failure. 

(3) The transactional consistency of 
the database as a whole is 
guaranteed. Thus, if a transaction 
which was uncommitted at the time 
of takeover had updated audited 
files on the failed primary 
Discprocess’ volume, takeover 
processing aborts the transaction 
and backs out its changes 
everywhere (on other volumes on 
this or other nodes). It should be 
noted that transaction backout does 
not include undoing a completed B- 
-e index operation. In this 
sense, transaction backout is 
logical rather than physical. 

DEFINITION OF 
ROBUSTNESS TO DISCPROCESS-PAIR CRASH ~- -- 

A Discprocess-pair crash is defined as 
the simultaneous failure of both its 
primary and backup processors. The crash 
of a Discprocess-pair and the failure of 
its primary and backup processors are 
viewed as equivalent because the 
Discprocess is an integral part of the 
operating system, and as such becomes 
operational whenever the the processor is 
restarted. Conversely, whenever a 
Discprocess primary or backup process 
detects an internal consistency check 
failure, it halts its processor in 
accordance with the fail fast principle. 
While such a measure might be deemed 
Draconian in a conventional architecture, 
this aspect of the design is predicated 
on the principle that system availability 
is not compromised by the loss of a 
single processor. The underlying 
assumption is that processors fail 
independently, and that the primary and 
backup Discprocesses have independent 
failure modes. Of course this 
assumption would be invalidated by the 
presence of a “hard” (i.e. non timing- 
dependent) algorithmic bug present in 
code which would inevitably be executed 
by either member of the process-pair. 
The elimination of such bugs has not 
proven to be an impractical goal, 
however. This might not be so were the 
primary and backup processors running in 
lock-step, or were the backup process 
passively receiving copies of recently- 
dirtied portions of the primary process’ 
memory. 

When a Discprocess-pair crashes, the 
situation is similar to the state 
described earlier as the crash of a 
shared-memory system. Information stored 
in memory (in this case the memories of 
both primary and backup processors) is 
lost. Any method of recovery must resort 
to secondary storage. Furthermore, since 
“sessions” between the crashed 
Discprocess-pair and requesters calling 
the File System have been broken, there 
is the operational requirement of 
“restart”. The analogy between the 
elements of robustness to single 
processor failure and robustness to 
Discprocess-pair crash is as follows: 

(1) “Sessions” between the Discprocess 
and requesters calling the File 
System do not survive the 
Discprocess-pair crash. 
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(2) 

(3) 

The structural integrity of both 
audited and non-audited files on 
the volume is guaranteed. Thus, if 
the Discprocess-pair crashes in the 
middle of performing a series of 
micro update steps to a file, crash 
recovery restores the file’s 
structure to a consistent state. 

The transactional consistency of 
the database as a whole is 
guaranteed. Thus, if a transaction 
which was uncommitted at the time 
of the Discprocess-pair crash had 
updated audited files on the 
crashed Discprocess-pair’s volume, 
crash recovery backs out that 
transaction’s changes everywhere 
(on other volumes on this or other 
nodes). Conversely, if a 
transaction which was committed at 
the time of the Discprocess-pair 
crash had updated audited files on 
the crashed Discprocess-pair’s 
volume, but those updates were 
still in memory buffers (rather 
than reflected in the corresponding 
database pages on secondary 
storage) at the time of the crash, 
crash recovery retrieves those 
updates (from the log) and applies 
them to the database pages on 
secondary storage. As in the 
single processor failure case, 
transaction backout does not undo 
completed B-tree index operations. 

EVOLUTION OF THE DISCPROCESS DESIGN -- 

The above description reflects a re- 
architecture of the Discprocess. The 
goals of the new design were to provide 
quick recovery from Discprocess-pair 
crash and less costly tolerance of 
single-processor failure. The old 
Discprocess provided robustness to single 
processor failure as described above. 
However the old implementation of single 
processor failure tolerance made a 
tradeoff in favor of fast takeover 
recovery from single processor failure at 
the expense of long recovery in the event 
of Discprocess-pair crash. The only 
method of recovery from Discprocess-pair 
crash was the time-consuming technique of 
re-loading previously-archived copies of 
audited database files and “rolling 
forward” these files to a state of 
transactional consistency by the 
application of after-images from the 
audit trail. The duration of volume 
unavailability implied by this procedure 
was justified by the assumption that 
double processor failure is rare. In 
actual fact however, double failures are 
more common than would be predicted by 
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consideration of hardware mean-time- 
between-failures. Most processor 
failures are in fact caused by software 
bugs or operational errors. 
Two characteristics of the original 
design dictated the “roll forward” 
approach to crash recovery and tolerated 
single processor failure at the expense 
of extra disc I/O’s and extra checkpoint 
messages during normal processing. These 
were as follows: 

1. 

ii. 

the decision to synchronously Write 
through to disc all updated database 
pages rather than buffering them in 
memory: 
the technique of incremental 
.~~c::~n~i:~~~~Se~4,eau:~~~ 
normal processing), which provided 
the backup process with the 
information needed in the event of 
the primary processor’s failure to 
carry forward any interrupted series 
of micro update steps and to continue 
forward processing on transactions 
active on the disc volume. 

The “write-through cache” was originally 
conceived as a means of simplifying the 
implemention of single processor failure 
tolerance. However it made the write- 
ahead log protocol [41 infeasible because 
unacceptable performance would result if 
every database update resulted in two 
writes: first, the before-image log 
necessary for undo in case of failure; 
second, the modified database page. The 
absence of write-ahead log made the fast 
crash recovery technique of in-place 
rollback of crashed transactions 
impossible. Writing-through every 
database update also had negative 
implications for throughput and response 
time. Rather than allowing the “piggy- 
backing” of several in-memory 
modifications on the same I/O, it meant 
that each time a page was “dirtied” in 
memory, it would be written out 
synchronously (while the application 
process waited). 

Incremental checkpointing is necessary if 
the backup process is to be prepared -- 
in the event of the primary processor’s 
failure at any instant -- to carr 
forward an interrupted series o +icro 
update steps or an interrupted 
transaction. In the re-architected 
Discprocess, the approach to takeover is 
to provide the backup process with enough 
information to enable it to back out 
rather than to carry forward- - 
interrupted series of micro update steps, 
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and to abort rather than to continue 
processing forward any transaction active 
on the disc volume. With this approach, 
deferred checkpointing is possible. 
According to this technique, the 
information which would have been sent as 
synchronous incremental checkpoint 
messages in the old architecture is 
instead buffered on the primary process’ 
side and sent as a batch at such times as 
transaction commit. This technique 
reduces considerably the cost of single 
processor failure tolerance in terms of 
number of messages. In particular, it 
saves sending checkpoint messages which 
inform the backup process of memory-only 
changes in the primary’s processor which 
will not reach secondary storage and 
which will be backed out anyway in case 
of takeover. An example of such a change 
is a buffer dirtied in memory by a 
transaction which has not yet committed 
and for which the audit has not yet been 
f arced . The backup process need have no 
knowledge of such a change since the 
transaction which caused it will be 
aborted and backed out (globally) in case 
the primary Discprocess’ processor fails. 

In order to explain the takeover 
algorithm used by the new Discprocess to 
recover from single processor failure, it 
is useful to draw an analogy between the 
use of log records by conventional crash 
recovery algorithms (41 and the use of 
checkpoint records during takeover 
processing. Checkpointing for the new 
Discprocess is analagous to logging to 
the backup process. Audit and checkpoint 
records have a common format; for this 
reason, they are known as 
audit/checkpoint records. A typical 
audit/checkpoint record contains 
identification of the file, page number 
within file, record number within page, 
and the before and after content of the 
changed record. A version number of the 
change is stored in both the page header 
and the audit/checkpoint record to 
provide idempotence during recovery. 
Just as conventional log-based crash 
recovery algorithms use the redo 
information in the log to bring the 
database pages up to date with the 
information which had been logged by the 
time the system crashed, so the takeover 
algorithm uses the redo information from 
checkpoint records received to bring the 
backup process’ memory buffer pool up to 
date with the information which.had been 
checkpointed by the time the Primary s 
processor failed. Similarly, Just as 
conventional crash recovery proceeds to 
use logged undo information to back out 
incomplete requests and uncommitted 
transactions, SO the takeover algorithm 
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uses checkpointed undo information to 
back out any incomplete series of micro 
update steps. 

At this point, the takeover algorithm 
terminates and the former backup process 
begins operation as a primary process by 
accepting new request messages. 
Uncommitted transactions have not yet 
been recovered, however. Any partial 
micro update step series belonging to an 
uncommitted transaction has been backed 
out, and the transaction is prevented 
from continuing forward processing: but 
at the completion of takeover such a 
transaction’s updates have not yet been 
backed out. Locks needed for backout are 
still held, however. Such a transaction 
will eventually be backed out by means of 
logically compensating Discprocess 
request messages sent by the Backout 
Process, a system process which extracts 
the information needed for such requests 
from the log. The logically compensating 
operations requested by the Backout 
Process are made idempotent by tolerating 
a “record not found” condition when 
deleting a record (compensating for an 
insert) or a “duplicate key” condition 
when inserting a record (compensating for 
a delete). Compensating update 
operations are automatically idempotent. 

CRASH RECOVERY 
FOR THE RE-ARCHITECTED DISCPROCESS --- 

The new Discprocess uses separate 
mechanisms to provide robustness to 
Discprocess-pair crash for non-audited 
and audited files. As previously stated, 
robustness to crash for non-audited files 
implies the restoration of structural 
integrity, For audited files, on the 
other hand, it implies not only the 
restoration of structural integrity to 
individual audited files, but in addition 
the guarantee of transactional 
consistency for the database as a whole. 

In the case of non-audited files, updates 
are not protected by transaction 
auditing. However, loss of structural 
integrity due to a micro update step 
series interrupted by Discprocess-pair 
crash is prevented by use of the 
so-called Undo Area on the disc volume. -- 
This is a small pre-allocated area on the 
volume which is re-useable for every 
request. Before beginning a series of 
micro update steps on a non-audited file 
(e.g. B-tree block split), a highly- 
compacted encoding of the intended steps 
is written to the Undo Area using one 
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I/O. Then if the Discprocess-pair 
crashes before the operation completes, 
this undo information is used to back out 
the incomplete operation when the 
volume’s processors are restarted. 

The algorithm used to recover audited 
files from Discprocess-pair crash is 
summarized below. It is analagous to 
typical database crash recovery 
algorithms used for conventional 
architectures [4l. 

Following Discprocess-pair crash, the 
user first restarts the volume’s primary 
and backup processors. He then initiates 
the Crash Recovery Process. Crash 
Recovery obtains a list of those audited 
files on the crashed volume which were 
open for write access at crash time. 
These are the files which are recovered 
from the log. Log processing during 
crash recovery consists of a forward and 
a backward pass. 

The forward pass begins at the redo start 
ooint. This is a location in theoa 
prior to which all logged updates (&do 
images) are guaranteed to be reflected in 
the database. Existence of such a point 
within a short distance of the end of the 
log is guaranteed by the periodic 
execution by each volume’s Discprocess of 
control poiits. At each controi point, 
currently dirty buffers are flagged. 
During any spare time between control 
points, flagged buffers are written out. 
At the occurrence of the next control 
point, any flagged buffers not yet 
written are forced out and newly-dirtied 
buffers are flagged. (Other systems term 
this mechanism a “checkpoint”; see [5]). 
The locations in the log of the latest 
two control point records are remembered 
at a known place on the disc volume. 

When recovering a given crashed disc 
volume, Crash Recovery finds that 
volume’s redo start point by obtaining 
the pointer to its next-to-last control 
point. When recovering a set of crashed 
volumes, Crash Recovery starts its 
forward pass of the log at the earliest 
redo start point for any of the crashed 
volumes. Crash Recovery then sends to 
the Discprocess of a crashed volume all 
redo log records it finds from that 
volume’s redo start point through the end 
of the log. 

After the redo phase, the backward pass 
begins. Reading the log backwards from 
the end, Crash Recovery sends to the 
appropriate Discprocess those undo log 
records which represent incomplete micro 
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update step series. When all of the 
changes represented by these log records 
have been physically undone, all audited 
files open on the crashed volume(s) will 
have been restored to a state of 
structural integrity. During the same 
backward pass, Crash Recovery sends to 
the appropriate Discprocess those undo 
log records which represent logical 
operations on data blocks (e.g. record 
insert, modify, or delete) which were 
executed by transactions which were 
uncommitted at crash time. When all of 
the changes represented by these log 
records have been logically backed out 
(i.e. using compensating operations at 
Discprocess request level), global 
transactional integrity will have been 
achieved. 

CONCLUSIONS 

The concepts of “crash” and “crash 
recovery” have been seen to require 
generalization in order to find 
applicability to a non shared-memory 
multi-processor architecture, in which 
some processors may survive the crash of 
other processors in the system. The 
architecture of the Tandem computer 
system was described as a case in point. 
A technique of logging to another 
processor’s memory was described which 
tolerates single-processor failure and 
obviates the need to perform system 
restart. An analogy was drawn between 
the technique used in a Tandem system to 
recover from a single-processor failure 
and conventional crash recovery 
techniques which rely on a secondary- 
storage-resident log. 
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