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Robustness to Joint-Torque Tracking Errors in

Task-Space Inverse Dynamics
Andrea Del Prete, Member, IEEE, and Nicolas Mansard

Abstract—Task-Space Inverse Dynamics (TSID) is a well-
known optimization-based technique for the control of highly-
redundant mechanical systems, such as humanoid robots. One
of its main flaws is that it does not take into account any of
the uncertainties affecting these systems: poor torque tracking,
sensor noises, delays and model uncertainties. As a consequence,
the resulting control-state trajectories may be feasible for the
ideal system, but not for the real one. We propose to improve
the robustness of TSID by modeling uncertainties in the joint
torques, either as Gaussian random variables or as bounded
deterministic variables. Then we try to immunize the constraints
of the system to any—or at least most—of the realizations of these
uncertainties. When the resulting optimization problem is too
computationally expensive for online control, we propose ways
to approximate it that lead to computation times below 1 ms.
Extensive simulations in a realistic environment show that the
proposed robust controllers greatly outperform the classic one,
even when other unmodeled uncertainties affect the system (e.g.
errors in the inertial parameters, delays in the velocity estimates).

Index Terms—Legged Robots, Dynamics, Robust Control,
Robust Optimization.

I. INTRODUCTION

TASK-SPACE inverse dynamics (TSID) has become an

increasingly popular way to control humanoid and

quadruped robots [1]–[5]. This success is motivated by two

attractive features. First of all, it is theoretically sound [6]

because it is based on an exact inversion of the dynamics

of the system, resulting (in theory) in a perfect tracking of

the desired trajectories—as long as they are feasible. Second,

TSID is able to explicitly take into account bounds on the

state and the actuation of the system, namely joint torques,

accelerations and contact forces [7]. Thanks to these features

TSID works extremely well in simulation [8], [9], which is

why it has been used also in the graphics community to

synthesize motion online [10], [11]. Another key factor is its

computational efficiency [12], which allows its application for

online control of real robots.

However, as usual, the gap between simulation and real

world is large and can be explained through countless un-

modeled uncertainties affecting these systems, such as poor

torque control, model uncertainties, sensor noises and delays.

This results in control trajectories that are feasible for the

ideal system, but not for the real one. The recent results

of the DARPA Robotics Challenge Finals [13] have shown

promise for the range of tasks that can be accomplished in

The authors are with the CNRS, LAAS, 7 avenue du colonel Roche,
Univ de Toulouse, LAAS, F-31400 Toulouse, France. e-mail: adelpret@laas.fr,
nmansard@laas.fr.

Manuscript received December 9, 2015.

Fig. 1. Simulation of 30 HRP-2 robots walking in the presence of uncer-
tainties, the goal being to compare the classic TSID controller (left line, gray
heads) to the proposed robust TSID controllers: stochastic (central line, green
heads) and worst-case (right line, red heads). Some of the simulation results
can be seen in the accompanying video.

these frameworks [14]–[16], but have highlighted the critical

need to address robustness concerns for these methods in order

to prevent falls.

To improve the robustness of TSID-based control, we pro-

pose to account for such uncertainties, modeled as additive

noise. Modeling uncertainties as random variables provides

a generic framework that we can apply to the parameters of

the robot model (e.g. inertias can be modeled as Gaussian

distributions), the sensor measurements (e.g. additive noise

on the measured velocity) or control inputs. Additionally, the

noise distributions can be identified by statistical analysis.

In particular, we focus on the case where uncertainties only

affect the decision variables, i.e. the joint torques. The ac-

curacy of the torque tracking is known to be an important

issue [17], [18], in particular for robots that do not have

access to a direct measurement of the joint-torques—such as

most current humanoid robots: HRP-2, Hubo, Atlas, Valkyrie,

Asimo, iCub. Additionally, robustness to the noise in the

joint torques ensures also some level of robustness to sev-

eral other uncertainties, like measurement delays and model

inaccuracies, as shown by our simulations. Focusing on this

class of uncertainties is also interesting because it leads to

convex optimization problems, which are in general easier (and

faster) to solve than nonconvex problems. Other types of noise

that may be equally significant, such as measurement noise

(especially velocity) or modeling errors, may be addressed in

future work by extensions of the proposed methodology.

First, Section II introduces the issues arising from solving
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an optimization problem without accounting for uncertainties.

Then Section II-A and II-B discuss the two main methods to

account for uncertainties in optimization problems: stochastic

[19] and deterministic [20]. In particular, we focus on the

case in which uncertainties only affect the problem variables

(i.e. the joint torques). If the uncertainties are stochastic, that

is they are random variables following a known probability

distribution, this results in a stochastic optimization problem.

This problem is too computationally expensive to be used for

online control (e.g. several seconds of computation for 30

variables and 90 inequality constraints). In Sections II-C and

II-D, we discuss two ways to approximate a general stochastic

optimization problem with linear inequality constraints. These

approximations greatly reduce the computation time, while

maintaining a sufficiently-good accuracy. Section III shows

how these ideas relate to the TSID control problem. We then

discuss in more details the ideas presented in Section II to get

different formulations of robust TSID (Sections IV and V). In

Section VI we validate the proposed methods on a simulated

HRP-2 humanoid robot performing walking (see Fig. 1) and

manipulation tasks. Through extensive simulations under re-

alistic conditions (i.e. uncertainties in the joint torques, joint

velocities and inertial parameters) we empirically show that

taking robustness into account greatly increases the chances

of the robot not to fall. Moreover, we verify that we can

solve the proposed optimization problems in less than 1 ms

on a standard CPU, so that these formulations are suitable for

online control. Finally, Section VII presents the related works

and Section VIII summarizes the paper before discussing the

future work.

With respect to our previous work [21] this paper presents

several new contributions.

• In Section IV we discuss the possibility of modeling noise

as a bounded variable rather than as a random variable,

resulting in a worst-case optimization.

• In Section V-A1 we show an interesting connection

between the proposed stochastic optimization and the log-

barrier methods ( [22], ch. 17) used to solve inequality-

constrained problems.

• In Section VI-B we present data collected on a real

torque-controlled robot that validate our modeling as-

sumption for the joint-torque tracking errors.

• In Section VI-F and VI-G we present new extensive sim-

ulation results to compare the proposed robust controllers

to the classic one in a realistic simulation environment.

We selected a walking task and a drilling task, for which

we present statistics based on several batches of 100 tests

each; in each batch we simulated different uncertainties,

in terms of type (torque bandwidth, torque noise, velocity

delays, inertial parameter errors) and magnitude.

II. INTRODUCING UNCERTAINTIES

Before going into the details of our approach, this section

overviews the key ideas that we propose to use to make

TSID robust. The problem of controlling a robot with TSID

Minimum-norm

solution

Active-set

solution

Inequality constraints

Set of solutions of

Ax = a

Bx+ b ≥ 0

Fig. 2. 2D example of an inequality-constrained least-square problem, such
as (1), solved by an active-set method.

can be cast as the following abstract constrained least-square

optimization with n variables and m inequality constraints:

minimize
x

||Ax− a||2

subject to Bx+ b ≥ 0
(1)

In Section III we will present the exact formulation of TSID

that we use, in which x represents the joint torques. Problem

(1) may have infinitely many optima (in case A does not

have full column rank) so the determined solution may depend

on the technique that we use to solve it. The most common

approach to solve problem (1) in robotics is through active-

set methods [12], mainly because they are easy to warm-start1

(contrary to interior-point methods [23]). Because of their

working principle, active-set algorithms tend to find solutions

that satisfy some inequality constraints with zero margin,

which are poor in terms of robustness.

Let us quickly look at how an active-set method works by

using the 2D example depicted in Fig. 2. Different variants

of the active-set algorithm exist; in this example we look at

the most classical dual method [24], which starts its search

at the unconstrained minimum of the objective function (i.e.

red dot). Since this point violates an inequality constraint, it

adds this constraint to the so-called active set, which is the set

of constraints that are satisfied as equalities at the optimum.

The new solution is represented by the blue dot. Clearly this

solution has little robustness because infinitely-small changes

in x,B or b could lead to violations of the active inequality

constraint. Intuition suggests that we could instead choose a

solution that has a higher chance to satisfy the inequalities by

moving towards the internal part of the feasible solution space.

However, we do not want the reader to think that active-

set algorithms are the only cause of poor robustness in TSID.

Surely, if the optimum of the problem is not unique (as in

this example) using interior-point methods would improve

robustness. However, in general this would not be enough

because i) it does not allow to sacrifice performance to improve

robustness (which sometimes is necessary), and ii) often in

TSID the optimum is unique. The real issue is the lack of

a robustness measurement in the cost function, which would

make the solution robust regardless of the used optimization

algorithm.

1Warm-starting an optimization algorithm consists in exploiting the solution
of a similar problem (which was already computed, typically at the previous
control cycle) to speed-up the computation.
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To come up with a measurement of robustness we first need

to model the uncertainties in the TSID optimization problem.

We then could resort to robust optimization techniques to find

control inputs that are robust to these uncertainties. We can

model uncertainties as deterministic variables belonging to a

known set, and try to find a solution that is feasible for any re-

alization of the uncertainty in the given set [25]. Alternatively,

we can model uncertainties as random variables following

known probability distributions, and try to find a solution that

satisfies the constraints with a large-enough probability. People

refer to the first case as robust or worst-case optimization,

while the second case is known as stochastic optimization

or chance-constrained programming. In the following we are

going to explore both directions.

A. Deterministic Uncertainties

The tractability of a robust optimization problem is strictly

connected to the geometric shape of its uncertainty set U .

Since it is reasonable to assume that the torque tracking errors

at different joints are independent from each other, using an

hyper-rectangle as uncertainty set seems a good choice:

e ∈ U, U = {z ∈ R
n : |z| ≤ emax},

where e ∈ R
n is the torque tracking error, emax ∈ R

n is its

maximum value and |z| is a vector containing the absolute

value of the elements of z. The robust optimization problem

is then:

minimize
x

||Ax− a||2 (2a)

subject to B(x+ e) + b ≥ 0 ∀e ∈ U (2b)

We did not model the uncertainties in the cost function to

avoid having a too conservative behavior of the system, which

is a well-known issue in worst-case optimization [26]. The

problem is not tractable in this form because the constraint

(2b) actually hides an infinite number of constraints. Another

issue that we need to address is the potential infeasibility of

this robust problem: there may not exist a value of x that

satisfies the constraints for any realization of e. In this case

we need to relax the robust constraints so as to find a solution

that satisfies (at least) the standard constraints. In Section IV

we reformulate (2) as a standard QP that ensures the feasibility

of the TSID problem.

B. Stochastic Uncertainties

Alternatively, we can model uncertainties as Gaussian

noise e ∼ N (0,Σ) with a decoupled covariance matrix

Σ = diag(
[
σ2
1 . . . σ2

n

]
) affecting the decision variable x:

minimize
x

||A(x+ e)− a||2

subject to B(x+ e) + b ≥ 0
(3)

Since e is a random variable, both cost and constraints are now

random variables, so (3) does not make sense. Rather than

minimizing the cost function we can minimize its expected

value, but since e has zero mean, this actually does not change

the problem:

IE||A(x+ e)− a||2 = ||Ax− a||2 +Tr(A⊤AΣ)

The inequalities are less trivial and consequently less

frequently considered. The classic approach in chance-

constrained programming is to replace them with their proba-

bility to be satisfied [19]:

p(x) = P(B(x+ e) + b ≥ 0) (4)

In general p(.) is not convex, so it is not wise to use it directly

in our optimization problem. A better approach is to define

a convex function R(.) that is monotonically decreasing with

respect to p(.)2, and then insert it in the cost function to find a

trade-off between performance (i.e. small cost) and robustness:

minimize
x

||Ax− a||2 + wR(x)

subject to Bx+ b ≥ 0,
(5)

where w ∈ R weighs the importance of robustness with

respect to cost. Here, we kept the deterministic inequalities

to prevent the solution from violating them in favor of mini-

mizing the cost (which may happen if w is not large enough).

Alternatively, rather than looking for a trade off, we could

apply a strict prioritization approach [6], [27]–[29]. In other

words, we could either maximize robustness in the null space

of the cost, or minimize the cost subject to the constraint of

R(x) being greater than a certain value. Even if these prioriti-

zation approaches are interesting, they would require solving

two optimization problems in cascade, unless a dedicated

lexicographic solver is available [12]. This would increase the

total computation time, so we decided not to use them.

To solve (5) we need to evaluate the cumulative density

function (CDF) of the multivariate random variable eB = Be,

that is P(eB > −b−Bx). In general there is no analytical

expression to compute this CDF, and resorting to numerical

techniques [30] would make the computation too slow for

applications in control (e.g. about 0.5 s for 90 inequalities and

30 variables). Aside from introducing robustness in TSID, the

main contribution of this paper is to propose two approxima-

tions of (4) that are much faster to compute and that provide

satisfying precision and robustness in practice.

C. Approximation 1—Individual Constraints pind

The first way to simplify (4) is by considering the proba-

bilities of the single inequalities rather than the probability of

all of them:

pind(x) =

m∏

i=1

P(Bi(x+ e) + bi ≥ 0), (6)

where Bi is the i-th row of B. When e is Gaussian, this

is equivalent to neglecting the off-diagonal terms of the

covariance matrix of eB . Thanks to this approximation we

can solve (4) much faster because we only need m univariate

CDFs—rather than one multivariate CDF.

To get an intuition of why pind(x) is a good approximation

of p(x) let us look at a simple 2D example (we will see how

the proposed probability approximations perform in a high-

dimensional space in Section VI-C). Fig. 3a depicts the prob-

ability p(x) to satisfy a set of 5 linear stochastic inequalities,

2For instance, rather than maximizing a probability we minimize its
negative logarithm.
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(a) Joint inequalities probability
p(x) = P(B(x+ e) + b > 0).
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(b) Individual inequalities probabil-
ity pind(x).
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(c) Difference between Fig. 3a and
3b: p(x)− pind(x); mean error
1.8%.
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(d) Probability of a single inequality
constraint P(B0(x+ e) + b0 ≥ 0).

Fig. 3. 2D example comparing p(x), namely the probability of satisfying a
set of affine stochastic inequalities, with its approximation pind(x) (6).

with e having a standard deviation σ1 = σ2 = 1.44. Fig. 3b

shows the approximated probability pind(x) obtained with (6),

while Fig. 3d shows the probability of a single inequality. The

overall shapes of the approximated and the real probability

are quite similar and it is hard to spot the differences. To

highlight the errors Fig. 3c shows the difference between p(x)
and pind(x). The errors are concentrated at the intersections

of the inequalities: when the angle between the inequalities is

less than 90◦ the error is negative, when the angle is greater

than 90◦ the error is positive, whereas when the angle is

exactly 90◦ the error is void. The fact that the differences

are concentrated at the intersections of multiple inequalities is

actually advantageous: these regions have little robustness, so

we can expect that, most of the time, our solution should not

be there. Note that despite the tendency of underestimating

risk close to corners with acute angles, solutions are located

closer to the central part of the feasible region, where the risk

is even lower. Moreover we can expect this approximation to

work well as long as there are few constraints that are active

at the same time, which is typically the case in TSID.

D. Approximation 2—Largest-Enclosed Hyper-Rectangle pbox

In the first approximation we exploited the fact that it is easy

to compute the probability of a single inequality. Another case

in which we can easily compute the probability is when all

the inequalities are simple bounds (i.e. they define a hyper-

rectangle aligned with the main axes). In this case, the joint

probability is the product of n probabilities of univariate

random variables, i.e. there is no more coupling. Our idea is

then to approximate the real polyhedra with a hyper-rectangle

U(s) (where s is a parametrization of the hyper-rectangle) that

is enclosed in it:

p(x) ≈ P((x+ e) ∈ U(s)) (7)

−5 0 5 10
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(a) Hyper-rectangle approximation.
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(b) Hyper-rectangle probability
pbox.
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(c) Hyper-rectangle probability er-
ror: p(x)− pbox(x); mean error
4.7%.

Fig. 4. 2D example comparing p(x) with its approximation pbox(x) (8).

Of course for any U(s) enclosed in the feasible set, the

probability to be in U(s) is lower than the probability to be in

the feasible set p(x). It follows that, among all the enclosed

hyper-rectangles, the one resulting in the best approximation

of p(x) is the one that maximizes P((x+ e) ∈ U(s)):

pbox(x) =maximize
s

P((x+ e) ∈ U(s))

subject to Bz + b ≥ 0 ∀z ∈ U(s),
(8)

where the (infinitely many) constraints ensure that U(s) is

enclosed in the feasible set. Fig. 4a shows the hyper-rectangle

maximizing the probability. Fig. 4b shows the value of pbox
over the solution space, whereas Fig. 4c shows the approx-

imation error (p(x) − pbox(x)). While this approximation

may seem much coarser than the first one, in Section VI

we will show empirically that it performs well in practice.

Moreover, in Section V-B we will prove that the adopted

single-variable parametrization of the hyper-rectangle results

in a linear optimization problem, which is easier to solve than

the nonlinear problem resulting from our first approximation.

III. ROBUST TASK-SPACE INVERSE DYNAMICS

Various formulations of the TSID optimization problem

exist and are often equivalent or similar [6]. We write it here

as an optimization problem of x = (v̇, f, τ) [31]:

minimize
x

||Ax− a||2

subject to Bx+ b ≥ 0

[
Jc 0 0
M −J⊤

c −S⊤

]




v̇

f

τ



 =

[

−J̇cv

−h

]

,

(9)

where v̇ ∈ R
n+6 are the base and joint accelerations,

f ∈ R
k are the contact forces, τ ∈ R

n are the joint torques,

Jc ∈ R
k×(n+6) is the constraint Jacobian, M ∈ R

(n+6)×(n+6)
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is the mass matrix, h ∈ R
n+6 contains the bias forces

and S ∈ R
n×(n+6) is the selection matrix. The inequality

constraints (defined by B and b) can represent the torque

limits, the (linearized) force friction cones, the ZMP bounds

and the joint-acceleration limits. The bounds of the joint

positions and velocities are typically converted into joint-

acceleration bounds [32]. The cost function represents the error

of the task, which is typically an affine function of v̇ (i.e. a

task-space acceleration):

[
Jtask 0 0

]

︸ ︷︷ ︸

A

x− (ẍdes
task − J̇taskv)

︸ ︷︷ ︸

a

= ẍtask − ẍdes
task

The task may be to track a predefined trajectory of a link,

of the center of mass of the robot, or to regulate the robot’s

angular momentum.

This problem is rather similar to the one that we considered

in the previous section, apart from the fact that it has equality

constraints. Without knowing the value taken by the uncer-

tainty e ∈ R
n in the joint torques we can not select a value

of x that satisfies the equality constraints. For this reason, we

reformulate (9) with respect to τ alone by expressing v̇ and f

as functions of τ 3:





v̇

f

τ



 =





M−1N⊤
c S⊤

ΛcJcM
−1S⊤

I





︸ ︷︷ ︸

C

τ +





−M−1(N⊤
c h+ J⊤

c ΛcJ̇cv)

Λc(JcM
−1h− J̇cv)
0





︸ ︷︷ ︸

c

,

where Λc = (JcM
−1Jc)

−1 and Nc = I−M−1J⊤
c ΛcJc. Then

the problem takes on the following form:

minimize
τ

||Dτ − d||2

subject to Gτ + g ≥ 0,
(10)

where D = AC, d = a−Ac, G = BC, g = Bc+b. Note that

(10) is equivalent to (9). Even if (10) has only τ as decision

variable, it can contain constraints and costs related to v̇ and

f . Now that we cast TSID in the same form as (1), we can

use the ideas presented in the previous section to introduce

robustness in this problem.

IV. DETERMINISTIC UNCERTAINTIES

Following the idea of Section II-A the robust TSID opti-

mization problem is:

minimize
τ

||Dτ − d||2

subject to G(τ + e) + g ≥ 0 ∀e ∈ U
(11)

Now we will show how to get rid of the infinite constraints of

this problem to reformulate it in standard form; then we will

explain how to deal with the cases in which the problem is

infeasible.

3In this paper we assume that Jc is full row rank, but these results can be
extended to the case of Jc being rank deficient [33].

1) Reduction of the Infinite Number of Constraints: We can

represent the infinite constraints of (11) as a finite number of

constraints:

li(τ) ≥ 0 i = 1 . . .m,

where li is the solution of an optimization problem:

li(τ) = minimize
e

Gi(τ + e) + gi

subject to |e| ≤ emax,

with Gi being the i-th row of G. In simple terms, we are

saying that if (and only if) an inequality is satisfied for the

minimum value of its left-hand side (over all of the possible

uncertainties), then it is satisfied for all of the possible uncer-

tainties. Thanks to the simple shape of U that we selected,

this is a Linear Program with solution:

li(τ) = Giτ − |Gi|e
max + gi

The rationale behind this simplification is that we do not check

that an inequality is satisfied for all the values of U : we only

verify that it is satisfied for its worst corner. The worst corner

is the one that will eventually collide with the hyper-plane

defined by the inequality if you enlarge the hyper-rectangle.

This allows us to reformulate (11) as a standard QP:

minimize
τ

||Dτ − d||2

subject to Gτ − |G|emax + g ≥ 0,

where |G| is a matrix containing the absolute values of the

elements of G.

2) Infeasibility: As we already mentioned, this problem

may be infeasible. In this case we would like to have a solution

that at least satisfies the standard inequality constraints, and if

possible guarantees some level of robustness. We can achieve

this by introducing a slack variable s ∈ R that allows the

solver to continuously pass from the robust constraints to the

classic ones:

minimize
τ,s

||Dτ − d||2 − ws

subject to Gτ − |G|emaxs+ g ≥ 0

0 ≤ s ≤ 1,

(12)

where w ∈ R is a large-enough value (e.g. 106). Whenever

possible the solver will try to set s = 1, which results in

the satisfaction of the robust constraints. When the robust

constraints are not feasible, the solver will decrease s of the

minimum amount necessary to make the constraints feasible.

Only when necessary, the solver will set s = 0, which results

in the satisfaction of the standard constraints only. In case we

are not sure whether the standard constraints are feasible we

can even allow s to take negative values.

V. STOCHASTIC UNCERTAINTIES

In case of stochastic uncertainties we measure the robust-

ness of a solution of (10) by some approximations of:

R(τ) = − log p(τ) = − log P(G(τ + e) + g ≥ 0)
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The robust optimization problem is then:

minimize
τ

||Dτ − d||2 + wR(τ)

subject to Gτ + g ≥ 0,
(13)

where w ∈ R weighs the importance of robustness with

respect to performance.

A. Approximation 1—Individual Constraints pind

Our first idea to approximate p(x) is to consider the

constraints individually:

p(τ) ≈ pind(τ) =

m∏

i=1

P(Gi(τ + e) + gi ≥ 0)

While most distributions have an analytical expression to

compute the CDF in the univariate case, the Gaussian dis-

tribution does not. However, expressions exist to approxi-

mate it with high accuracy and low computational cost [34]

(e.g. polynomials). To compute pind we need to evaluate

P(Gi(τ + e) + gi ≥ 0). Since e is Gaussian, we have

eGi
= Gie ∼ N (0, σGi

), where σGi
= σ2

iGiG
⊤
i . Hence:

P(Gi(τ + e) + gi ≥ 0) = P(eGi
≥ −Giτ − gi) =

= P(eGi
≤ Giτ + gi) = FGi

(Giτ + gi),

where FGi
(.) is the CDF of eGi

. We then define the robustness

function as:

Rind(τ) = − log pind(τ) = −
m∑

i=1

logFGi
(Giτ + gi)

This function is convex and twice differentiable, so we can

easily minimize it using any variant of Newton’s method [35]

(see [21] for the expressions of gradient and Hessian of Rind).

The final robust TSID problem is then a convex optimization:

minimize
τ

||Dτ − d||2 − w

m∑

i=1

logFGi
(Giτ + gi)

subject to Gτ + g ≥ 0

(14)

1) Relationship with Log-Barrier Method: Looking at (14)

one may notice a certain similarity to the log-barrier method (

[22], ch. 17). This interior-point method is a technique to solve

inequality-constrained optimization problems by removing the

inequality constraints and injecting their logarithm in the cost

function. For instance, the standard TSID problem (10) can

be solved through a sequence of unconstrained problems with

decreasing values of the parameter α:

minimize
τ

||Dτ − d||2 − α

m∑

i=1

log(Giτ + gi) (15)

As α approaches zero, the solution of (15) approaches the

solution of (10). The main difference between (14) and (15)

is that the logarithmic barrier in (15) tends to infinity as one

of the inequalities tends to zero, whereas this is not the case

for (14) (see Fig. 5). This is the reason why we need to have

inequality constraints in (14) to avoid violating them.

In the special case where FGi
(Giτ + gi) ∝ Giτ + gi then

the two optimization problems are equivalent. This happens if

Fig. 5. Comparison of the logarithmic barrier used in (15) with the barrier
used in (14). For the plot we considered a standard deviation of 2.0 for the
CDF.

the uncertainty affects g (rather than τ ) and if the probability

distribution of the uncertainty is uniform (rather than Gaus-

sian) and bounded above by zero (i.e. can only be nonpositive).

We can then interpret log-barrier methods as stochastic opti-

mization techniques that take into account additive nonpositive

uniformly-distributed random uncertainties on the inequality

constraints.

B. Approximation 2—Largest-Enclosed Hyper-Rectangle pbox

Our second idea is to approximate the polytope defined by

the inequalities with a hyper-rectangle. We can compute this

approximation by solving this optimization problem:

pbox(τ) =maximize
s

P(e ∈ U(s))

subject to G(τ + z) + g ≥ 0, ∀z ∈ U(s)
(16)

We parametrize U(s) with a single variable4 s ∈ R:

U(s) = {z ∈ R
n : |zi| ≤ kis i = 1 . . . n},

where k ∈ R
n encodes the fixed ratio between the n sides

of the hyper-rectangle. Contrary to s, k is fixed and given by

the user, so it is not a variable of the optimization. In our

tests we have always set k = (σ1, . . . , σn). A poor choice

of k (due to a poor estimation of Σ) can clearly degrade

the quality of the pbox approximation. However, estimating

Σ on a real robot should be rather straightforward, so this

should not be a problem in practice. Thanks to the fact

that P(e ∈ U(s)) is a monotonically increasing function

of s, maximizing the probability over the hyper-rectangle is

equivalent to maximizing s. Rather than solving (16) we can

then solve:

Rbox(τ) =maximize
s≥0

s

subject to G(τ + z) + g ≥ 0, ∀z ∈ U(s)
(17)

Note that in general Rbox(τ) 6= pbox(τ), but (16) and (17)

result in the same value of s. Despite this simplification, using

4In our previous work [21] we also investigated the case of U(s) being a
general hyper-rectangle (aligned with the main axes), parametrizing it with
2n variables. However, the resulting optimization problem is harder to solve
(it is nonlinear, sparse, and it has 3n variables) and the resulting controller
performed worse than the controller using the pind approximation, so we
decided to stop using it.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Rbox(τ) in place of R(τ) may seem rather complex. First, we

need to optimize a function (Rbox) that is itself the solution of

an optimization problem and second, (17) cannot be solved in

this form since it has an infinite number of constraints. Despite

appearances, this boils down to solving a simple QP.

Using the same method discussed in Section IV we can

reformulate (17) as a linear problem whose solution is our

robustness measure:

Rbox(τ) = minimize
s≥0

− s

subject to Gτ − |G|ks+ g ≥ 0
(18)

Now that we got rid of the infinite number of constraints,

we need to understand how we can minimize Rbox(τ) with

respect to τ , Rbox(τ) being the solution of an optimization

problem. The answer is surprisingly simple: we perform both

optimizations at the same time, which gives us:

minimize
τ,s≥0

1

2
||Dτ − d||2 − ws

subject to Gτ − |G|ks+ g ≥ 0
(19)

This means that we look at the same time for the solution

of the original problem τ and for the “best” enclosed hyper-

rectangle. To solve this problem we can use a standard QP

solver, as is usually the case for the classic TSID.

It is interesting to note that for k = emax (19) is almost

identical to (12), that is the problem we got starting from

a deterministic uncertainty set. The only difference is that

in (12) the variable s cannot be larger than 1, whereas in

(19) it has no upper bound. This is because the deterministic

uncertainty is bounded, so it makes no sense to immunize

the solution to uncertainties bigger than emax. The stochastic

uncertainty is instead unbounded, so the bigger s, the higher

the robustness. Despite their resemblance, the parameter w has

a different meaning in the two problems: in (12) it is just a

large number that is supposed to approximate a strict priority

of robustness with respect to performance, whereas in (19) it

specifies the trade-off between robustness and performance. It

is not advisable to set w to a too-large value in (19) because

it would result in extremely poor tracking performance.

VI. SIMULATIONS

In this section, we present a series of simulation results that

try to answer to the following questions:

• What improvement can we get in terms of probability to

satisfy the inequalities by using robust TSID?

• Which of the proposed formulations performs better?

• Can we solve these optimization problems in under 1 ms?

• What would be the practical benefits of using a robust

controller in a realistic scenario with unmodeled uncer-

tainties, such as errors in the inertial parameters and in

the estimated velocities?

We tested the proposed controllers on three typical humanoid

tasks (whole-body reaching, whole-body manipulation, and

walking) with the 30-degree-of-freedom humanoid robot HRP-

2. Table I lists all the simulation parameters. As already

discussed at the end of Section V-B, the deterministic ro-

bust controller is almost equivalent to the stochastic robust

TABLE I
SIMULATION PARAMETERS.

Symbol Meaning Value

∆t Simulation/control time step 2 ms
µ Force friction coefficient 0.3

vmax
j Max joint velocity 9.8 rad s−1

ǫaccuracy Nonlinear solver accuracy 10−6

tmax Max computation time 0.8 ms

controller with pbox approximation. In particular, if we set

ki = emax
i = ασi (for any α > 0), the two controllers find

exactly the same control action any time the solution of the

pbox controller contains a value of s ≤ 1. We verified that

in our experimental conditions this happened almost always

(for α = 3), so we tested only the pbox controller in our

simulations.

The formulation of the control problem changes slightly

from test to test, depending on which tasks are implemented.

However, if not stated otherwise, the inequality constraints

are: linearized friction cones for each contact force, torque

limits (upper and lower bounds), and joint acceleration limits

(representing the joint-velocity limits). We tuned all the task

weights and the feedback gains on the classic controller and

then used the same values for the robust controllers. We set

all proportional gains kp between 1 and 100 (e.g. 30 for the

CoM, 100 for the swing foot). We set all derivative gains

to kd = 2
√
kp to get convergence as fast as possible while

avoiding oscillations.

A. Simulation Environment

To assess the proposed controllers we developed a dedicated

simulation environment based on a state-of-the-art algorithm

for frictional contacts in multibody systems [36]. We inte-

grated the equations of motion of the system with a first-

order Euler scheme with fixed time step ∆t. Our choice of not

using an off-the-shelf simulator is motivated by our desire to

completely understand and control the simulation environment.

This allowed us to introduce several uncertainties/noises and

to regulate their magnitude:

• We added Gaussian noise to the joint torques. The noise

had standard deviation σ proportional to the relative

maximum torque τmax. To make this noise more realistic

(white noise can not exist in the real world) we filtered it

using a first-order low-pass filter with a cut frequency of

20 Hz—with a compensation for the amplitude reduction

caused by the filter.

• We limited the bandwidth of the torque controller by low-

pass filtering the desired joint torques before given them

to the simulator. Torque-tracking bandwidths between 40

Hz and 60 Hz have been reported for high-performance

actuators (e.g. 40 Hz for hydraulic actuators [17], 46 Hz

for electric motors with harmonic drives [37], 60 Hz for

series elastic actuators [38]). We assumed a pessimistic

torque bandwidth of 20 Hz.

• We estimated joint and base velocities with a Savitsky-

Golay filter [39] (fitting a polynomial of order 2 to a

sliding window of 20 samples): this introduced a realistic
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Fig. 6. Distribution of the joint-torque tracking errors of three joints of the
HyQ robot [40], [41].

delay of 20 ms in the velocity signal used by the

controller.

• The inertial parameters (masses, centers of mass and

inertias) of the model used by the controller did not match

those of the model used by the simulator. The random

inertial-parameter errors were generated using uniform

distribution. For masses and inertias the maximum error

was expressed in terms of percentage of the real values.

For the centers of mass (CoM) the maximum error was

instead expressed in cm.

In each test we specify which uncertainties were simulated.

B. Joint-Torque Tracking Errors

This work is based on the assumption that torque tracking

errors are an important uncertainty to take into account in

robot controllers. The recent literature on the subject [17],

[37], [38] seems to agree with us. To back our assumption we

present here some data collected on a real torque-controlled

robot. Fig. 6 shows the distribution of the torque tracking

errors on three joints of the Hydraulic Quadruped HyQ [40],

[41] during a locomotion task. We can clearly see that these

errors have approximately zero mean and their distribution can

be reasonably approximated by a Gaussian. For this dataset,

the standard deviations of the torque tracking errors were

between 0.5% and 2% of the maximum joint torque. Given

the high performance of the torque controller of HyQ due to

the hydraulic actuators and the fast torque feedback we can

not hope to achieve the same performance on HRP-2. This is

why in our tests we assumed higher values for the standard
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Fig. 7. Test 1. Probability of the inequalities of the TSID control problem
computed by the two approximations proposed in this paper.

TABLE II
RESULTS OF TEST 2. FOR EACH FORMULATION WE REPORT THE AVERAGE

VALUES OVER 700 TESTS.

Formulation Classic
TSID
wf = 0

Classic
TSID
wf > 0

Robust
TSID
pind

Robust
TSID
pbox

Probability p(τ) 25.1 27.4 75.7 66.5
Force prob. 28.2 31.0 86.0 72.2
Joint-accelerat. prob. 85.2 85.2 85.2 85.3
Joint-torque prob. 100 100 100 100
Active inequalities 3.37 2.83 0.6 0.95
Iterations 1.06 1.05 2.06 1.11
Comput. time [ms] 0.23 0.19 0.31 0.2

deviation of the torque errors, between 5% and 10% of the

maximum joint torque.

C. Test 1 — Comparing Probability Approximations

This test aims to compare the different approximations of

the probability to satisfy a set of linear inequalities subject

to additive noise on the decision variables. We performed

this comparison on the TSID inequality constraints, since we

are actually interested in how the proposed approximations

perform on this particular problem. We generated a state

trajectory (i.e. configuration and velocity) by controlling the

motion of the CoM of the robot with classic TSID (10). For

each state, we computed the probability p(τ) of the joint

torques to satisfy the inequality constraints. We purposely

asked for a demanding motion of the CoM (20 cm in 1.6

seconds), which caused several constraints to be saturated, so

that p(τ) covered the whole range 0 − 100 (see Fig. 7). We

then compared p(τ) with the two approximations pind, and

pbox. While pind is always quite close to p, pbox is often far

below p. The average error |p−p...| is 2.6% for pind, and 68%
for pbox. Despite the poor quality of the pbox approximation,

the next tests will show that maximizing pbox can lead to great

improvements in robustness.

D. Test 2 — Comparing Robustness

The goal of this second test is to compare the different

TSID formulations in terms of robustness of the inequality

constraints. We used the same state trajectory generated for

Test 1. For each state we solved the associated control prob-

lems using several TSID controllers and we measured the

resulting p(τ) for each. In this test we did not introduce any
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TABLE III
RESULTS OF TEST 3. WE REPORT MEAN AND STANDARD DEVIATION OF

THE COMPUTATION TIME FOR EACH TESTED TSID FORMULATION.

Formulation Classic
TSID

Robust
TSID
pind

Robust
TSID
pbox

Probability p(τ) 26.04 99.23 82.96
Mean comput. time [ms] 0.18 0.33 0.24
Std. dev. comput. time [ms] 0.34 0.42 0.36
Mean comput. time (no warm start) [ms] 10.06 9.36 11.55
Std. dev. comput. time (no warm start) [ms] 0.64 0.95 0.88

(a) 0 s (b) 1 s (c) 2 s (d) 7 s

Fig. 8. Test 3. Snapshots of a reaching task.

uncertainty/noise in the simulation, but we just measured the

probability to satisfy the inequality constraints. The control

problem was composed by the following tasks:

• track the desired CoM trajectory (weight 1)

• maintain initial joint posture (weight 10−3)

• maximize robustness (weight 10−5, only for robust con-

trollers)

• minimize contact moments and tangential forces [29]

(weight wf , only for classic controller)

The four controllers used in this test are:

• Classic TSID with wf = 0, formulation (10)

• Classic TSID with wf = 10−4, formulation (10)

• Robust TSID with pind approximation, formulation (14)

• Robust TSID with pbox approximation, formulation (19)

Table II reports the results. In terms of probability to satisfy

the inequalities, the robust formulations greatly outperform the

classic formulations. The force regularization (i.e. wf > 0)

slightly improves the overall probability. The optimization of

pbox leads to a probability slightly lower than pind, which

we expected because of its simplicity. Robust and classic

formulations differ the most in the probability of the force

inequalities. All the formulations lead to small errors for the

CoM task (< 10−3).

E. Test 3 — Comparing Computation Times

This test focuses on the computation time of the proposed

controllers in a whole-body reaching task. In this test we

did not introduce any uncertainty/noise in the simulation. The

robot had to reach a point far in front with the right hand

(see Fig. 8). To avoid falling we constrained the capture point

of the robot to lie inside the support polygon [28]. We ran a

simulation for each solver, in which we used its solution (i.e.

τ ) to simulate the system and get its new state.

To speed-up the computation we exploited the warm-start

capabilities of qpOases [42], the active-set QP solver that we

used. To solve the nonlinear problem (14) we implemented

a Sequential Quadratic Programming (SQP) algorithm [22].

0 1 2 3 4 5 6 7 8
SQP Iterations

1e-4%

1e-3%

0.01%

0.1%

1%

10%

100%

Fig. 9. Test 3. Histogram showing how many times (in percentage) a certain
number of (complete) SQP iterations was necessary to converge. One complete
iteration consisted in: i) solving a QP to compute the Newton’s step, ii)
checking convergence, iii) updating the current solution through a line search.
The zero-iteration bar corresponds to cases in which the previous control-cycle
solution was reused without any modification.

We initialized the SQP search with the last solution, which

most of the times led to convergence in a single Newton’s

iteration (see Fig. 9). We used a line-search algorithm that

enforces strong Wolfe conditions [22]. The algorithm stopped

as soon as the squared Newton decrement [35] was less than

the desired accuracy (∆x⊤
newtonH∆xnewton < 2ǫaccuracy) or

the computation time exceeded an arbitrary limit tmax. The

computation time only included the time taken by qpOases,

which means that it neglects the line search and the com-

putation of Hessian and gradient of the cost function. This

choice was motivated by two facts. First, the time to solve the

QP typically dominates the time taken by the other operations.

Second, these operations were implemented in Python, so their

computation time is much longer than it would be with a C++

implementation (which will be mandatory for its application

on a real robot). Table III shows the results: thanks to the

warm start we got an average speed-up of ∼ 30×. Apart from

a few outliers (maybe due to the Python interface of qpOases),

the computation time was always below tmax = 0.8 ms.

F. Test 4 — Walking

To measure robustness in a more concrete way we intro-

duced different uncertainties in our simulation environment

and we tested the proposed controllers in it. The target motion

consisted in walking on flat ground (see Fig. 10), composed

by a forward-walk phase of about 27 seconds, followed by a

lateral-walk phase of about 20 seconds. The desired trajecto-

ries for the CoM and the feet of the robot were computed using

a state-of-the-art walking pattern generator [43]. The control

problem was composed by the following tasks:

• track the desired CoM and stepping foot trajectories

(weight 1)

• maintain initial joint posture (weight 10−3)

• maximize robustness (weight 10−4, only for robust con-

trollers)

• maintain previous joint torques (weight 10−5, only for

robust controllers)
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(a) 11.6 s (b) 12.0 s (c) 12.4 s (d) 12.8 s (e) 13.2 s

Fig. 10. Test 4. Snapshots of the walking task.

TABLE IV
RESULTS OF TEST 4, WALKING. EACH LINE REFERS TO A BATCH OF 100 TESTS UNDER DIFFERENT UNCERTAINTY CONDITIONS. STARTING FROM THE

LEFT COLUMN, WE REPORT I) WHETHER THE CONTROLLER USED THE REAL OR THE ESTIMATED VELOCITIES, II) THE STANDARD DEVIATION OF THE

GAUSSIAN NOISE ON THE JOINT TORQUES, III) THE TORQUE BANDWIDTH OF THE TORQUE CONTROL, IV) THE MAXIMUM ERROR ON THE MASSES,
CENTERS OF MASS AND INERTIAS OF THE LINKS OF THE ROBOT. THE “MEAN TIME BEFORE FALLING” IS THE TOTAL TEST TIME DIVIDED BY THE

NUMBER OF FALLS. NOTE THAT THE FIRST FOUR LINES REFER TO SINGLE TESTS BECAUSE THE SIMULATED UNCERTAINTIES ARE DETERMINISTIC.

Uncertainties Mean time before falling [s] Number of falls

v σ
τmax [%] Torque bandwidth

[Hz]
mass
[%]

com
[cm]

inertia
[%]

Classic Robust
pind

Robust
pbox

Classic Robust
pind

Robust
pbox

Real 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Real 0 20 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 20 0 0 0 16.8 ∞ 20.5 100 0 100
Real 6 ∞ 0 0 0 203.2 ∞ ∞ 20 0 0
Estimated 6 ∞ 0 0 0 109.4 912.1 202.5 39 4 20
Estimated 8 ∞ 0 0 0 69.0 408.3 105.3 58 10 38
Real 6 20 0 0 0 172.6 908.4 ∞ 23 5 0
Estimated 6 20 0 0 0 24.7 147.3 35.8 98 28 80
Real 0 ∞ 10 1 20 282.1 ∞ ∞ 15 0 0
Estimated 6 ∞ 0 0 20 106.1 921.2 240.4 40 4 17
Estimated 6 ∞ 0 0 100 109.1 761.4 187.2 39 5 22
Estimated 6 ∞ 10 1 20 94.0 765.7 100.3 44 5 38
Estimated 8 ∞ 10 1 20 59.0 316.1 102.1 65 14 40
Estimated 5 20 10 1 20 30.8 148.2 33.7 90 28 79

• minimize contact moments and tangential forces (weight

10−5, only for classic controller)

We used a small weight for the robustness to ensure a good

tracking of the CoM and the feet, which is critical for the sta-

bility of the robot during walking. The task of maintaining the

previous joint torques helps having smooth torque trajectories

with lower bandwidth than our simulated torque controller (i.e.

20 Hz). We did not include this term in the classic controller

because it does not impact its performance. This is due to the

minimization of contact moments and tangential forces, which

already leads to smooth torque trajectories.

We carried out several batches of tests, each batch differing

for the simulated uncertainties. In particular we experimented

with the delay in the velocity estimation, the level of noise

on the joint torques and the magnitude of the errors in the

inertial parameters. We do not report results with different cut

frequencies of the torque low-pass filters because they did not

seem critical for this test. Each batch was composed by 100

tests, which is not enough for being a statistically significant

sampling, but was dictated by the computation time of our

simulation environment (about 24 hours for 100 tests). Each

test consisted in trying to perform the whole walking motion

with three controllers (classic, robust pind, robust pbox) until

the robot either fell or reached the end of the motion. We

consider that the robot has fallen if the tracking error of its

CoM is larger than 50 cm. The random torque noises and the

inertial parameter errors changed at each test, but they were the

same for the three controllers (i.e. in each test the noise value

at every time sample is the same for the three controllers:

eclassic(t) = eind(t) = ebox(t)). We then measured the

number of times each controller drove the robot to a fall and

the average time before falling (given by the total walking time

divided by the number of falls). Table VI-E summarizes the

results. When the level of uncertainties is negligible the three

controllers perform great, but in the presence of significant

uncertainties we see a remarkable difference between the

robust controllers and the classic one. It is especially the robust

pind controller that performs much better than the others,

reporting much less falls than the others.
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(a) 0.0 s (b) 0.6 s (c) 2.6 s

Fig. 11. Test 5. Snapshots of the drilling task. The red dot on the wall represents the desired hole position.

TABLE V
RESULTS OF TEST 5, DRILLING. EACH LINE REFERS TO A BATCH OF 100 TESTS UNDER DIFFERENT UNCERTAINTY CONDITIONS. STARTING FROM THE

LEFT COLUMN, WE REPORT I) WHETHER THE CONTROLLER USED THE REAL OR THE ESTIMATED VELOCITIES, II) THE STANDARD DEVIATION OF THE

GAUSSIAN NOISE ON THE JOINT TORQUES, III) THE TORQUE BANDWIDTH OF THE TORQUE CONTROL. THE “MEAN TIME BEFORE FALLING” IS THE TOTAL

TEST TIME DIVIDED BY THE NUMBER OF FALLS. NOTE THAT THE FIRST TWO LINES REFER TO SINGLE TESTS BECAUSE THE SIMULATED UNCERTAINTIES

ARE DETERMINISTIC.

Uncertainties Mean time before falling [s] Number of falls

v σ
τmax [%] Torque bandwidth

[Hz]
mass
[%]

com
[cm]

inertia
[%]

Classic Robust
pind

Robust
pbox

Classic Robust
pind

Robust
pbox

Real 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Real 5 ∞ 0 0 0 235.5 1198.9 599.3 5 1 2
Estimated 5 ∞ 0 0 0 235.4 ∞ ∞ 5 0 0
Estimated 5 20 0 0 0 143.0 590.9 393.8 8 2 3
Estimated 5 20 10 1 20 129.3 297.7 297.8 9 4 4
Real 10 ∞ 0 0 0 15.7 56.3 36.2 63 20 30
Estimated 10 ∞ 0 0 0 14.8 56.7 36.6 64 20 30

G. Test 5 — Drilling

This last test is a variation of the previous test, dedicated

to a whole-body manipulation task, namely drilling a hole of

5 cm in a wall. Fig. 11 shows some snapshots of the task.

While being similar to the whole-body reaching task used in

Test 3, this task adds the challenge of physically interacting

with the wall. The reaction force exerted by the wall on

the drill’s tip was simulated with a viscous model, i.e. the

force is proportional to the velocity. The control problem was

composed of the following tasks:

• maintain the capture point within the support polygon

(constraint)

• track the desired 6d trajectory with the drill’s tip (weight

1, only when not in contact with the wall)

• track the desired 6d force with the drill’s tip (weight 1,

only when in contact with the wall)

• maintain initial joint posture (weight 10−2)

• maximize robustness (weight 10−4, only for robust con-

trollers)

• maintain previous joint torques (weight 10−5, only for

robust controllers)

• minimize contact moments and tangential forces (weight

10−6, only for classic controller)

Once the drill touched the wall we controlled the force in

the normal direction (applying a constant force of 50 N

that smoothly increases/decreases at the beginning/end), while

controlling the drill in impedance in the other 5 directions

(i.e. the 3 angular and the 2 tangential linear directions) to

avoid drifting. Note that even if in general the capture point is

not valid in multi-contact scenarios, given the relatively low

values of the contact force exerted on the wall (below 50 N),

the capture point remains a reasonable criterion of dynamic

equilibrium in this test.

Similarly to the previous test, we carried out several batches

of 100 tests each, each batch simulating different uncertainties.

Our main objective was to see how often the robot fell during

the execution of the task, depending on the controller. Fig. 11

shows that we positioned the robot at a large distance from

the wall, so that it had to move its CoM close to the borders

of its support polygon to reach the wall with the drill. As

expected, the three controllers behaved perfectly as long as

the level of the uncertainties was negligible (see first two

lines of Table VI-F). However, as soon as we introduced

significant noise levels in the simulation the robust controllers

outperformed the classic one. Once again, the robust pind
controller performed the best.

H. Discussion

Analyzing the presented results we can claim that:

• optimizing the proposed probability approximations re-

sults in a large increase in the real probability to satisfy

the inequality constraints;

• the proposed controllers are suitable for online control

because the associated optimization problem could be

solved in less than 1 ms by exploiting standard warm-

start techniques;
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• in the presence of Gaussian noise on the joint torques,

the robust controllers greatly outperformed the classic

controller in walking and whole-body manipulation tasks;

• even in the presence of unmodeled noises and uncer-

tainties (inertial parameters, velocity estimation, limited

torque bandwidth), the robust controllers greatly outper-

formed the classic controller;

• under all uncertainty conditions (except one) the robust

pind controller outperformed the robust pbox controller.

It is worth noting that the robust controllers did not outperform

the classic controller in every single test, but they always did

it (on average) in every batch of 100 tests. This result is rea-

sonable because TSID is a class of instantaneous controllers,

meaning that they do not foresee the future behavior of the

system. The robust controllers are not able to foresee whether

the choice of being robust now will lead the system to a state

in which it is no longer possible to be robust. Our tests showed

that, on average, choosing to be robust in the present pays off

in the future, but we can not guarantee that this is always the

case. For instance, during walking, we saw that using a large

weight w for the robustness maximization would lead to poor

tracking of the center of mass of the robot, which eventually

would lead to a fall.

Another interesting result is the superiority of the stochastic

robust controller (pind) with respect to the worst-case robust

controller (pbox). The stochastic controller knows the probabil-

ity distribution of the torque noise, which gives this approach

a great advantage with respect to the worst-case controller—

which knows only its bounds. For instance, in case the robot

reaches a state in which one inequality has to be satisfied

with zero margin, the worst-case controller must set s = 0
and so all solutions would have the same robustness (i.e.

zero) for it. This is not the case for the stochastic controller:

even if one inequality has zero margin (i.e. it has probability

50%) the stochastic controller would still try to increase

the margin of the other inequalities to increase the overall

inequality probability. Apparently, this capability to maximize

the margin of all the inequalities, rather than to maximize only

the smallest margin, results in better performance even in the

presence of unmodeled uncertainties. However, the price paid

by the stochastic controller is solving a nonlinear optimization

problem, which is more complex than the quadratic problem

solved by the worst-case solver.

The one case in which the robust pbox controller outper-

forms the pind controller is probably because of the small

number of tests performed. In other words, we believe that

by running much more tests under the same noise conditions

pind should outperform pbox on average.

1) Common failure modes leading to fall: Looking at the

accompanying video one can notice that the falls of the robots

look completely different from real-world falls. Of course, this

is due to the simulation inaccuracies. We believe that friction

(static friction in particular) plays a big role in this regard,

but unfortunately accurate friction simulation is extremely

challenging and it certainly falls out of the scope of this work.

Nonetheless, even if our simulations are not 100% realistic

(especially when the robot goes unstable), we can gather some

useful information from them. Most of the times, what led to a

fall was a contact force violating the friction cone constraints,

which in turns led to a foot slipping on the ground. Indeed

Table II shows that the probability of the force inequalities

is lower than the probability of the acceleration and torque

inequalities—and this holds true in all our tests.

Another interesting information is that a perfect velocity

feedback seems to significantly help the controllers to recover

from foot slippage. For instance, we can see this comparing

lines 5 and 6 of Table IV: when subject to the same torque

noise, the three controllers (classic, stochastic, worst-case)

made the robot fall only 20, 0, 0 times (respectively) if using

a perfect velocity feedback, compared to 39, 4, 20 times if

using a delayed velocity estimation. Thanks to the velocity

feedback the controllers can detect foot slippage fast enough

to compensate for it and avoid the fall. The same can be said

regarding the torque bandwidth (e.g. comparing lines 6 and

9 in Table IV, which differ only for the torque bandwidth).

Thanks to the infinite torque bandwidth the controllers are

capable of faster reactions when trying to compensate for foot

slippage. In conclusion, our simulations suggest that avoid-

ing/compensating for foot slippage is critical to avoid falls. A

smart choice could then be to equip the robot’s feet with as

much sensing capabilities as possible (i.e. force/torque sensors,

accelerometers, gyroscopes, tactile sensors) to maximize the

quality of the contact force tracking and minimize the reaction

time in case of slippage.

VII. RELATED WORKS

Considering the robustness of the control scheme is a long-

standing and well-identified problem, but it remains largely

unanswered. In the literature we can mainly identify three

types of approaches:

1) ensuring stability despite the presence of undefined

uncertainties (typically leveraging control-theory tools);

2) improving robustness to undefined uncertainties through

intuitive hand-tunable heuristics;

3) guaranteeing either stability or feasibility despite the

presence of well-identified and modeled uncertainties

(typically leveraging robust optimization techniques).

The first approach focuses exclusively on the stability of

the system rather than on the feasibility of the state tra-

jectories. For instance, adaptive control [44] and time-delay

estimation [45] try to estimate and compensate online for

the major errors between nominal and real dynamic model.

Other approaches, such as virtual model control [46], do not

rely at all on the dynamic model of the robot, which ensures

robustness to misestimations of the inertial parameters [47].

Alternatively, robustness can be expressed by considering the

stability of the computed trajectories inside a locomotion

cycle [48], [49]. The main issue of these schemes is that they

do not consider inequality constraints, that is they neglect the

problem of feasibility. This makes them hard to implement on

real legged robots, given the large number of bounds to which

these systems are subject. The sole approach in this category

that can handle inequality constraints is the recent work based

on sum-of-squares optimization and Lyapunov functions [50].

However, nowadays this approach seems to be applicable only
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to systems with a few degrees of freedom, much smaller than

humanoid robots.

The second class of works propose hand-tunable heuristics

that often are not even emphasized in the papers, but turn

out to be fundamental in real implementations. For instance,

a common heuristic in TSID—which we adopt as well—is

to impose a secondary objective to keep the robot posture

close to a reference one [6]. This tends to keep the move-

ment away from the joint limits and therefore it increases

robustness. Similarly, to increase the robustness of the contact

forces/moments to avoid slipping/tipping, it was proposed

to minimize the contact moments and the tangential contact

forces in the null space of the main motion task [51]. Yet

another common trick in the generation of walking motion is

to try to maintain the center of pressure as close as possible

to the center of the foot [52]. The robotics literature is filled

with these kinds of heuristics, which often are the main reason

behind the successful implementations of control algorithms

on real platforms. However, these heuristics can not ensure

feasibility in the presence of any significant uncertainty and

needs ad-hoc tuning depending on the situation.

Finally, the third class of works—which includes this

paper—makes use of robust optimization techniques to for-

mulate control and planning problems. Mordatch et al. [53]

considered several perturbed models of a humanoid robot to

plan offline a trajectory that is robust to uncertainties, reporting

success rate between 80% and 95% on a real platform.

Another recent work [54] has combined robust and time-

scaling optimization to plan trajectories that are robust to

bounded errors in friction coefficients and joint accelerations,

whose magnitude can be estimated online through iterative

learning. Finally, Nguyen and Sreenath [55] have recently

exploited control Lyapunov functions and QPs to ensure

stability despite bounded uncertainties in the linearized system

dynamics. This work [55] is the closest to ours because it

deals with online control under bounded uncertainties, and

it accounts for inequality constraints (only torque bounds).

However, several differences can be noted. First, we focus on

the robustness of the inequality constraints, while they focused

on stability, which they formulate as a relaxed inequality

constraint. Second, we proposed to model the uncertainties

either as bounded variables or as random variables, while they

considered only the former approach. Third, we considered ad-

ditive errors in the joint-torque tracking, for which identifying

a model (either in terms of bounds or probability distribution)

seems straightforward. Instead they considered additive errors

in the linearized system dynamics, but they gave no details [55]

regarding how to find reasonable bounds for this error on a

physical system, which does not seem trivial.

VIII. CONCLUSIONS

This paper presented an extension of the Task-Space Inverse

Dynamics control framework that takes the robustness of the

inequality constraints into account. This work is motivated

by the low level of robustness that this control framework

exhibits in the presence of uncertainties. The proposed solution

consists in accounting for additive uncertainties on the joint

torques of the robot. Our choice to focus on the joint-torque

errors is motivated by the challenge of having good joint-

torque tracking [18] on real robots and by the tractability

of the resulting mathematical problem. We showed that these

uncertainties can be either modeled as random variables with

known probability distribution—giving rise to a stochastic op-

timization problem— or as deterministic bounded variables—

resulting in a worst-case optimization problem. Since the re-

sulting stochastic optimization problem is too complex to solve

in few milliseconds we proposed two ways to approximate

this problem, one of which turned out to be almost identical

to the case of deterministic uncertainties. Through extensive

simulations in a realistic environment we tested the proposed

robust controllers against the classic (nonrobust) controller.

Regardless of the nature and the magnitude of the simulated

uncertainties the robust controllers greatly outperformed the

classic controller in terms of number of falls of the robot.

Of course real robots are affected by many more uncer-

tainties than those that we introduced in our environment,

such as errors and delays in the estimation of the floating-

base position-orientation, static friction at the joints, com-

munication delays, errors in the geometric parameters, link

flexibility. While we did not account for all these uncertainties,

the uncertainties that we introduced in our simulations were

sufficient to show the potential benefits of our approach.

Moreover, it is reasonable to assume that the robust controllers

would always outperform (on average) the classic controller,

regardless of the source of the uncertainties.

A. Future work

It would be easy to generalize the presented results to the

case of nonzero-mean and nondiagonal covariance matrix; we

did not deal with these cases because we found these two

assumptions very reasonable in practice. We could also use a

different probability distribution as long as we can compute the

probability density function and cumulative density function

of a weighted sum of random variables following such a

distribution. Unfortunately, this operation is trivial only for

the Gaussian and a few other simple distributions [19], [56],

[57].

Another straightforward extension of this work would be

to immunize to uncertainties the stability of the system—

besides the feasibility of the state-control trajectories. Using

control Lyapunov function [55] we could represent tasks

as inequalities—rather than equalities—and apply the same

methodology discussed in this paper.

A more challenging extension would be to consider other

types of uncertainties. The proposed controllers immunize

the inequality constraints only to joint-torque tracking errors.

Even if they also exhibited an increased level of robustness

to other unmodeled uncertainties, taking into account all of

the uncertainties affecting the system would result in better

performance. Some other uncertainties that appear linearly

in the constraints exist, for instance additive uncertainties

in the joint velocities appear linearly in the capture-point

constraints. However, many uncertainties appear nonlinearly

in the dynamics of the system (e.g. in the forward dynamics
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joint velocities appear quadratically, and inertial parameters

multiply joint accelerations), which prevents us from dealing

with them using the same optimization techniques discussed

in this paper. However, we can hope to do that leveraging

nonlinear robust optimization techniques [58], [59].

We believe that accounting for uncertainties could lead to

major improvements in robotics if applied at all levels (i.e.

planning, control, estimation and identification). For instance,

the same approaches presented here could be applied to Model

Predictive Control (MPC), a control technique that has become

ubiquitous in robotics for the generation of walking motion

[43], [52]. While robust MPC is already an active research

field [60]–[62], applications of robust optimization in robotics

are seldom [54], [55], [63], [64].

While this work focused on the theoretical results and

their validation, its motivations lie in the desire to control

real robots. We plan to test the presented control algorithms

on HRP-2 (on which we recently implemented torque con-

trol [18]) and empirically measure the robustness improve-

ments. We are also interested in testing robust TSID with

strict priorities, which will require the implementation of a

hierarchical nonlinear convex solver [27].
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