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Abstract—Spiking neural networks (SNNs) are promising neu-
ral network models to achieve power-efficient and event-based
computing on neuromorphic hardware. SNNs inherently contain
noise and are robust to noisy inputs as well as noise related
to the discrete 1-bit spike. In this paper, we find that SNNs
are more robust to Gaussian noise in synaptic weights than
artificial neural networks (ANNs) under some conditions. This
finding will enhance our understanding of the neural dynamics in
SNNs and of the advantages of SNNs compared with ANNs. Our
results imply the possibility of using high-performance cutting-
edge materials with intrinsic noise as an information storage
medium in SNNs.

Index Terms—spiking neural networks, artificial neural net-
works, noisy weights, Gaussian noise

I. INTRODUCTION

Spiking neural networks (SNNs) are high-level biologically-

inspired neural models that use spiking neurons as information

processing units and 1-bit spikes as information carriers,

and they aim to achieve high computational performance by

mimicking the human brain. Spiking neurons are sparsely

activated and their firing time is usually not synchronized.

These two features can make SNNs energy-efficient on neuro-

morphic hardware [1], [2], [3], [4] which is often event-based,

asynchronous and highly-parallel.

So far, SNNs are still in the early stage, and many re-

searchers are attempting to discover the advantages of SNNs

compared with artificial neural networks (ANNs) which are

currently more successful on many benchmarks [5], [6], [7].

Two potential advantages of SNNs have been found: First,

SNNs can achieve better power efficiency when more pow-

erful encoding methods are applied [8], or when SNNs are

optimized for short latency [9]. Second, the inference results

in SNNs can be gotten faster than ANNs, though the precision

may be lower. The inference precision would then rise with

more evidence accumulated over time [10]. This feature is

1These authors contributed equally to this research.

potentially useful for dealing with the challenge of real-time

processing in self-driving vehicles. However, we have just

scratched the surface of realizing these advantages [11] and

we do not know yet how to use these characteristics properly

to make SNNs more competitive than their artificial neural

network counterparts.

Previous research suggests that neural network models of

the brain inherently contain noise and rely on the presence

of noise to carry out their functions [12], [13]. In the context

of deep spiking neural networks for pattern recognition, the

integrate-and-fire mechanism in spiking neurons introduces

subthreshold noise and over-threshold noise to the neural net-

work [10]. Moreover, when using rate coding as an encoding

method in SNNs, the input signal is typically noisy as well

[11]. Even if SNNs inherently contain these noises, they could

still complete inference with high accuracy in many bench-

marks [14]. Existing research has systematically investigated

the impacts of several kinds of noises to the performance of

spiking deep belief networks [15]. However, the inference

accuracy of these neural networks is not competitive, and

the comparisons in this paper are limited in the same SNNs

with different noise levels. By contrast, better results have

been achieved by the technique of ANN-to-SNN conversion;

meanwhile, ANN-to-SNN conversion gives an opportunity to

compare ANNs and SNNs with the same architecture and

synaptic weights.

Though several kinds of noise are investigated in [15], no

study has reported the impact of noisy synaptic weights in

SNNs up to now. In this paper, we fill this gap by exploring

the tolerance of SNNs to Gaussian noise in synaptic weights.

Moreover, we compare the robustness to noisy weights on

SNNs and ANNs with the same network architecture, and for

the first time indicate that SNNs are potentially more robust to

noisy weights than ANNs. This positive finding enhances the

understanding of inherent advantages of SNNs when compared

with ANNs and will contribute to research which aims to apply



noisy cutting-edge materials such as memristors and magnetic

skyrmions to SNNs as information storage components for

weights.

This paper is organized as follows: Section II provides the

necessary background on artificial neural networks, spiking

neural networks, and related techniques. Section III presents

the experimental methodology and results on noisy weights.

Section IV is the discussion and section V is the conclusion.

II. BACKGROUND

A. Artificial Neural Networks

We produced our results on two kinds of feed-forward

neural network: fully connected networks (FCNs) which are

the simplest neural network structure, and convolutional neural

networks (CNNs) which are more powerful models for pattern

recognition tasks. In fully connected networks, every two

adjacent layers are fully connected in a feed-forward pattern.

The output of spiking neurons in the same layer will be sent

to all neurons in the subsequent layer without any feedback

connection to other layers as shown in Fig. 1(a). This feed-

forward structure is efficient to deal with tasks that do not

involve memory such as handwritten digit recognition [5].

If the connections between two adjacent layers in a FCN

become localized and share the same kernels, it will turn into a

CNNs as shown in Fig. 1(b). CNNs could achieve better infer-

ence results than FCNs with relatively fewer connections, and

more local structure information of inputs could be maintained

by convolutional kernels. Usually, a pooling layer would be

added after a convolutional layer to subsample feature maps

and reduce the number of parameters. In this paper, average

pooling layers rather than max-pooling layers are adopted to

make the conversion to SNNs easier.

Impressive results were achieved by using 5 hidden layers

on FCNs [16] and 7 hidden layers on CNNs [17]. However,

to keep the network simple and make it easy to be repeated

by other researchers, we use a shallow structure and limited

optimization techniques for both FCNs and CNNs (details

in section III-A). These make our results suffer about 0.9%
accuracy drop on FCNs [16] and about 0.7% accuracy drop

on CNNs [17] compared with the state-of-the-art results on

the MNIST dataset.

The stochastic gradient descent (SGD) algorithm will be

used to train FCNs and CNNs. The performance of ANNs will

be slightly different due to different initialized weights and

the randomness in the SGD algorithm, thus the final inference

accuracy of ANNs is averaged over 5 trials.

B. Activation Function

The nonlinear and differential activation functions deter-

mine the input-output relationship of analog neurons. The

nonlinearity of activation functions is vital for representations

in deep structures, and their differentiability benefits the use

of backpropagation algorithms in ANNs. The rectified linear

unit (ReLU) is one of the most frequently-used activation

functions, and it is inspired by the response curve of spiking

neurons [18]. ReLU can be approximated easier by spiking

Fig. 1. The architecture of FCNs and CNNs, and the diagram of IF neural
model.

neurons than other activation functions. The form of ReLU

used in this paper does not contain biases, and is shown as

follows:

yj = max(0,
∑

i

wijyi) (1)

where yj is the output of an analog neuron, and yi is the

output of an analog neuron in the previous layer. wij denotes

the synaptic weight from neuron i to j.

C. Spiking Neural Networks

Spiking neural networks are neural network models that

closely mimic the information communication mechanism and

neural dynamics in the human brain. Compared with ANNs,

SNNs have an additional time dimension to process temporal

information. Information in SNNs is represented by spikes,

which are uniform electrical signals with precise spiking time.

Spiking neurons are only activated when sufficient signals are

integrated from other neurons, therefore the neural activities

at the network level are usually sparse, which can make

executing SNNs by matrix-based operation on a traditional

CPU or GPU inefficient. Neuromorphic hardware is designed

to accelerate the running of SNNs by topologically allocating

spiking neurons and synapses to neuromorphic chips in analog

[1], [2], [3] or hybrid [4] manners, and it can increase the

power efficiency of SNNs by event-based computing.

D. Neuron Model

The integrate-and-fire (IF) model is one of the neural models

used in spiking neural networks for pattern recognition tasks,

and it is shown in Fig. 1(c). Spikes generated by presynaptic

neurons are transmitted along synapses and then integrated by

a postsynaptic neuron with different synaptic strengths which

are represented by weights. The voltage in the postsynaptic

neuron will be relatively stable if this voltage is below a

threshold and no more electrical signals are integrated. When



the voltage inside the spiking neuron surpasses the threshold,

a spike will be generated, and the internal voltage will drop

down to the resting potential and wait for the next integration.

The IF model used in this paper does not include a refractory

period. The dynamics of IF model used in this paper are

defined by:

uj(t) = uj(t−∆t) +
∑

i

wijSi(t−∆t) (2)

where uj(t) is the internal voltage of spiking neuron j, and

it is determined by two parts: The first part is the internal

voltage of uj(t − ∆t) at the previous moment (t − ∆t). ∆t
is the time resolution during SNN simulation. The second part

is the input to the spiking neuron j in this moment. The range

of the sum is all spiking neurons in the previous layer. wij

denotes the synaptic weight of the neuron i in the previous

layer to the neuron j in this layer. Si(t − ∆t) has two states

{0, 1} and denotes whether a spike is generated in spiking

neuron i at the time (t−∆t). The time needed to transmit

these weighted spikes to neuron j is ∆t. The mechanism of

spike generation is governed by:

Sj(t) = 1 and uj(t) = urest when uj(t) > uthreshold (3)

where urest is the resting potential of spiking neurons and it

determines the stable state of these spiking neurons without

external stimulus. uthreshold is the threshold of spiking neuron

j.

E. Input Encoding

Rate coding is used in this paper to generate input signals

to SNNs. It is an encoding approach where the input firing

rates are proportional to the intensity of a stimulus. The

stimulus intensity in this paper represents the intensity of

picture pixels in the handwritten benchmark MNIST. These

pixels have an intensity between 0 to 1 as introduced in

section II-H. The maximum pixel intensity has the highest

firing rate 1/∆t where ∆t is the time resolution of the SNN,

and the minimum intensity 0 has the firing rate of 0. The

corresponding relationship of firing rate and pixel intensity is

linear.

F. Accuracy and Convergence Time

In the output layer, the inference result is the label of the

neuron that has the highest firing rate. If more than one neuron

has the highest firing rate, the neuron that has the higher

voltage will be the final result.

Compared with ANNs, the output firing rate of SNNs

usually changes over time so that their inference results will

change over time. These fluctuations make it hard to record the

inference accuracy and convergence time of SNNs precisely.

To deal with these difficulties, we adopt the following

methods: First, the final accuracy of SNNs is the mean value of

an accuracy range where the inference accuracy is converged

in this range with some minor fluctuations. In our experiments,

the fluctuation range is ±0.03%. We believe that this method

could record inference accuracy more precisely than directly

recording the highest accuracy in the SNN simulation. Cor-

respondingly, the convergence time is the time point when

the inference accuracy is in this range for the first time and

becomes stable after this time point. Second, to reduce the

error in recording the convergence time, we use one more

parameter to represent the convergence time. The time point

when it is approaching the final accuracy, and within a certain

percent accuracy loss from the final inference accuracy, will

be recorded. For example, when the one percent accuracy

loss convergence time is selected as the metric, if the final

inference accuracy is 98.8%, the time point when its inference

accuracy is higher than 97.8% for the first time would be

recorded. Similarly, the 0.5% accuracy loss convergence time

is the time point when the accuracy is higher than 98.3%. This

method records the SNN convergence time more precisely than

recording full accuracy convergence time, and gives a good

indication of the convergence speed.

G. ANN-to-SNN Conversion and Threshold Tuning

ANN-to-SNN conversion is a relatively successful algorithm

to achieve both high inference accuracy and short inference

latency in SNNs [10]. Also, it provides an opportunity to

compare the performance of ANNs and SNNs in the same

network architecture and with the same trained weights. This

algorithm will train ANNs by backpropagation, and then keep

learned weights unchanged and replace analog neurons with

spiking neurons. The analog inputs will be encoded as spike

trains by rate coding.

After conversion, the threshold hyperparameter of the SNN

needs to be tuned. There are many threshold normalization

methods proposed to minimize the accuracy loss of ANN-

to-SNN conversion [10], [19], [20]. These methods either

adjust weights or tune thresholds. To keep the learned weights

identical in ANNs and SNNs, we chose to tune thresholds

by modifying data-based normalization in the previous paper

[10]. The threshold in the layer l is set to Dl/Dl−1, where

Dl is the maximum input of analog neurons in the layer l,
Dl−1 is the maximum input of analog neurons in the previous

layer l−1. In particular, the threshold in the first hidden layer

is D2/D1. Because D1 is the maximum input in the input

layer and it is equal to 1 in the MNIST dataset, the threshold

in the first hidden layer is simplified to D2.

In section III-D, we adopt different SNN thresholds to

explore the influence of thresholds on inference accuracy and

convergence time. The thresholds in this section are set by

adding a scale factor σ to the threshold D2 in the first hidden

layer as σ∗D2 and keep thresholds in other layers unchanged.

Through this weight scaling, the threshold in the first hidden

layer will be σ times to the maximum input in this layer.

According to the theory of data-based normalization, scaling

the threshold in a layer will inversely scale the maximum

inputs in all subsequent layers (This point is questioned by

[20] because this theory is only correct when the activation in

SNNs is the same as that in ANNs. However, this theory can

still roughly estimate the maximum inputs, so we base our

research on this theory to change thresholds and to test the



impact of different thresholds on network performance in noisy

situations.). Hence thresholds in subsequent layers will be σ
times to their maximum inputs as well. If σ is smaller than

1, the neurons in every layer will need less time to integrate

information from the previous layer and generate a spike. On

the contrary, if σ is bigger than 1, the neurons in every layer

will need more time to integrate information from the previous

layer and generate a spike.

H. MNIST Dataset

MNIST is a handwritten digit database for computer vision

and pattern recognition [5]. It has a training set of 60000

examples and a testing set of 10000 examples. These examples

are 28*28 pixel pictures of handwritten numbers between 0 to

9. Every pixel has a greyscale value between 0 and 1.

I. Noisy Weights

The information in neural networks is stored in synapses

between neurons as weights. These weights can be made

noisy either in the training phase, to increase the robustness

of the neural network [21] or in the testing phase when

the synapse storage materials is noisy at room temperature

[22], [23]. The current storage techniques used in CPUs

and GPUs do not result in noisy weights, but noise could

become an issue when more advanced storage materials such

as memristors and magnetic skyrmions are used to implement

neural networks [22], [23]. These two materials have the

excellent characteristics of non-volatility and nanoscale size

so that they have the advantages of power efficiency and high

integration. These advantages make memristors and magnetic

skyrmions good candidates to deal with the challenges of high

power-dissipation in neural networks and the continuation of

Moore‘s law. Memristors and magnetic skyrmions have been

applied to SNNs by theoretical simulation and experimental

investigation [24], [25]. However, these cutting-edge materials

may contain non-ignorable random noise at room temperature,

which is typically Gaussian distributed.

Previous research has investigated how random variance

in synaptic weights affects the inference accuracy of spik-

ing neural networks [15]. This random variance originates

from the physical quantity of materials and the fabrication

of transistors therefore this variance is fixed and will not

change over time. By contrast, the noise in synaptic weights

discussed in this paper is the random noise that exists in future

high-performance materials such as memristors and magnetic

skyrmions at room temperature. This random noise has a

certain distribution and its value will change over time.

The noise type investigated in this paper is Gaussian noise.

The key parameters of Gaussian noise are its mean and

standard deviation (SD). The mean value of Gaussian noise

is zero in this paper. We considered three different ways to

choose the standard deviation: SD is fixed in different synaptic

weights; SD is proportional to the value of weights; SD is

proportional to the square root of weights. This paper uses the

second method to determine the standard deviation.

Adding noise to synaptic weights will introduce uncertainty

to ANNs and SNNs, and make their inference results different

for different trials. Hence, all results of ANNs and SNNs will

be averaged over 5 trials in our experiments. This average

operation is independent of the average operation during the

training of ANNs as mentioned in section II-A. For example,

when ANNs are averaged over 5 trials during training, the

total trial number for noisy weights on ANNs and SNNs will

both be 25.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

The FCNs are trained in MATLAB using a stochastic gra-

dient descent algorithm [10]. These networks have a structure

of 784-1200-1200-10 as shown in Fig. 1(a), their training

parameters are shown in Tab. I. All results are averaged over 5

trials, and the average inference accuracy of FCNs is 98.77%

on the test dataset.

After training, all analog neurons are replaced by spiking

neurons, and the weights are kept unchanged. The time res-

olution of SNNs is set to 1ms and the max input firing rate

is set to 1000Hz correspondingly. The thresholds are set to

Dl/Dl−1 as illustrated in section II-G. The simulation time is

1000ms.

The CNNs have the structure of 28x28-12c5-2s-64c5-2s-

10o as shown in Fig. 1(b) and they are trained in MATLAB

using a stochastic gradient descent algorithm [10]. The training

parameters are shown in Tab. 1. All results are averaged over

5 trials, and the average inference accuracy of the CNNs is

99.09% on the test dataset.

After ANN-to-SNN conversion, all parameters and hyper-

parameters in the spiking CNNs are the same as those used

in spiking FCNs.

TABLE I
TRAINING PARAMETERS FOR FCNS AND CNNS

Training parameters FCNs CNNs

Learning rate 1 1

Momentum 0.5 0

Dropout rate 0 0

Training epochs 20 30

Batch size 100 50

B. Inference Accuracy

The comparison of ANNs and SNNs for different noisy

weights on FCNs is shown in Fig. 2. The X-axis repre-

sents the ratio of the Gaussian noise’s standard deviation to

synaptic weights. The noise level of zero percent on the X-

axis represents noise-free synaptic weights. In this figure, the

recognition accuracy of the SNNs is slightly lower than that

of the ANNs when the noise level is 0%. However, with

the increase of noise level, the inference accuracy of the

ANNs drops dramatically. When the noise level is 100%, the

inference accuracy of the ANNs is only 94.74% on average,

and their standard deviation shows an increasing trend for



higher noise levels. By contrast, the inference accuracy of the

SNNs keeps stable for all noise levels at around 98.76%, and

their standard deviation is smaller than that of ANNs when

the noise level is greater than zero percent. When the noise

level is 20%, the accuracy of the SNNs has surpassed that of

the ANNs.

Fig. 2. Accuracy comparison of the ANNs and the SNNs in the architecture
of FCNs for different noise levels.

Fig. 3. Accuracy comparison of the ANNs and the SNNs in the architecture
of CNNs for different noise levels.

Fig. 3 is the comparison of the ANNs and the SNNs for

noisy weights on CNNs. The inference accuracy of the ANNs

is bigger than SNNs when the noise level is 0%. When

the noise level is 20%, the accuracy of the ANNs drops

below 99%, but the accuracy of the SNNs is still above 99%.

The accuracy of the ANNs decreases dramatically and their

standard deviation increases to about 10% when the noise level

is greater than 40%. By contrast, the accuracy of the SNNs is

still greater than 98.8% even when the noise level is 100%,

and their standard deviation remains small for all noise levels.

C. Convergence Time

The inference accuracy of SNNs represents their inference

performance and the efficiency of ANN-to-SNN conversion,

while the convergence time of SNNs reflects their energy

efficiency. If the convergence time is too long, SNNs will lose

their essential advantages of power efficiency and fast infer-

ence and will be not suitable to be applied to neuromorphic

hardware and other cutting-edge materials. The convergence

time of spiking FCNs for different noise levels with their

standard deviation is shown in Tab. II.

In this table, the convergence time increases roughly with

the noise level, as does the standard deviation of convergence

time. The convergence time of one percent accuracy loss is

relatively stable at around 16ms and shows minor increases

for higher noise levels.

TABLE II
THE CONVERGENCE TIME OF THE SPIKING FCNS FOR DIFFERENT NOISE

LEVELS

Noise level Convergence time (ms) Convergence time

of 1% loss (ms)

0% 30.8±4.6 16±0.0

20% 40.2±3.1 16±0.0

40% 41.4±9.8 16±0.0

60% 60.2±26.3 16.8±0.3

80% 69.0±16.4 17.0±0.0

100% 64.8±18.2 17.6±0.9

Tab. III illustrates the convergence time of spiking CNNs.

We can see from this table that the convergence time of the

high noise level is significantly longer than that of the low

noise level. The convergence time with one percent accuracy

loss shows a similar trend. The standard deviation increases

for higher noise levels as well.

TABLE III
THE CONVERGENCE TIME OF THE SPIKING CNNS FOR DIFFERENT NOISE

LEVELS

Noise level Convergence time (ms) Convergence time
of 1% loss (ms)

0% 206.5±32.5 28±0.0

20% 196.8±60.2 29.6±1.1

40% 222.0±57.2 39.6±1.7

60% 312.0±76.0 71.7±1.7

80% 654.8±168.6 111.4±9.1

100% 701.3±134.8 173.5±11.3

D. Different Thresholds

The thresholds in SNNs will significantly affect their in-

ference accuracy and convergence time. The threshold in this

paper is set by modifying data-based normalization [10], in

the expectation that this threshold normalization could achieve

fast inference and high accuracy. The optimal method to set

thresholds may be different when the weights in the SNN are

noisy. Driven by that, we are going to investigate how the



inference accuracy and convergence time are influenced by

different thresholds with different Gaussian noise levels.

We choose the scale factor σ of 0.2, 0.5, 1 and 2 in this

section, and scale the thresholds according to the method in

II-G. The accuracy of the spiking CNNs is shown in Fig. 4.

The accuracy of the spiking FCNs is stable at around 98.77%

for all scale factors and noise levels so it will not be presented

here. We can see from Fig. 4 that the inference accuracy for

all noise levels rises with the increasing of scale factor σ in

the first hidden layer. This indicates that the networks with

high thresholds tend to have a higher inference accuracy. As

for inference time, SNNs adopting scale factors of 0.2, 0.5 and

Fig. 4. The relationship of inference accuracy for different σ.

Fig. 5. The ratio of convergence time of 100% noise and 0% noise on FCNs
and CNNs.

2 show a similar increasing trend for different noise levels as

when the scale factor is 1. This has been shown in Tab. III

and will not be summarised again here. Fig. 5 illustrates the

relationship of the convergence time ratio to the scale factor

σ. This ratio is calculated by dividing the convergence time at

100% noise level by the convergence time at 0% noise level,

and it represents how much additional time is needed to cope

with Gaussian noise on the weights before convergence. We

use the 1% accuracy loss convergence time as the metric for

CNNs and the 0.5% accuracy loss convergence time as the

metric for FCNs. The reason to choose 0.5% accuracy loss

but not 1% accuracy loss for FCNs is that the FCNs converge

so fast that the 1% accuracy loss convergence time is similar

at all noise levels and is hard to show differences. Meanwhile,

the convergence time of 0.5% accuracy loss is big enough to

show differences and is more stable than using full accuracy

convergence time as a metric. In Fig. 5, the network with a

higher scale factor has a lower convergence time ratio both in

FCNs and CNNs.

IV. DISCUSSION

A. Inference Accuracy

The inference accuracy of ANNs drops considerably with

the increase of noise level in synaptic weights. The reason why

ANNs are vulnerable to noisy weights is that the noisy weight

in ANNs is similar to the weight variance investigated in [15].

During the inference phase, the noisy weights in ANNs are

used once in the feed-forward propagation, and the Gaussian

noise will only affect the value of synaptic weights once. This

Gaussian noise is effectively a random offset which is fixed

over time. A high noise level will dramatically change the

value of synaptic weights and affect the function of ANNs,

so the final inference accuracy of these ANNs will drop

drastically. In addition, a high noise level will introduce more

uncertainty in synaptic weights, so the standard deviation of

they inference accuracy will increase too.

By contrast, SNNs have the concept of time, and weights

with Gaussian noise in SNNs will be used several times

during simulation, so the impact of Gaussian noise will be

minimized with more spikes transmitted across this synapse.

To illustrate it more clearly, we assume a weight with the

value w and the Gaussian noise G(0, σ). The number of spikes

transmitted by this synapse is n. Hence, the total effective

information transmitted by this synapse is w∗n, and the total

noise is
∑

nG(0, σ). The value of w∗n will increase with more

spikes transmitted. However, the value of
∑

nG(0, σ) equals to

G(0,
√
Nσ) according to standard statistics. It means that its

standard deviation increases slower than accumulated weights

w∗n. As a result, the signal-noise ratio w∗n/
∑

nG(0, σ) will

increase with the number of spikes transmitted.

B. Convergence Time

The accuracy of the SNNs investigated in section III-B is

higher than 98.7% for all noise levels. While SNNs could

achieve high inference accuracy at high noise level, their

convergence time still goes up at high noise level both on the

architecture of FCNs and CNNs as shown in section III-C. This

indicates that though SNNs can minimize the impact of noise

by averaging noise over time as illustrated in section IV-A,

Gaussian noise on synaptic weights still poses difficulties for



SNNs and push SNNs to require more time to handle the noise

before convergence.

C. Influence of Thresholds

In section IV-A, we explain why SNNs are more robust than

ANNs to noisy weights from a signal-noise ratio perspective.

However, the information transmitted by weights will not

be completely obtained by postsynaptic neurons due to sub-

threshold noise and over-threshold noise. Hence, the choice of

thresholds will influence SNNs’ robustness to noisy weights.

Figures 4 and 5 illustrated the impact of the scale factor on

inference accuracy and convergence time. We can see that the

robustness to noisy weights is clearly affected by the scale

factor on the threshold, and the network with a higher scale

factor has better robustness to noisy weights. This is because

in SNNs, the information in weights can only be transmitted

to deeper layers through spikes. The information contained

by a spike is always equivalent to the integrated voltage

(uthreshold−urest) in a spiking neuron no matter how much

voltage is cut off by the threshold. If the threshold is small,

the relative error introduced by this over-threshold noise will

increase. This error will make it difficult for spiking neurons

to discriminate the original value of the weights to Gaussian

noise. In this situation, the signal-noise ratio illustrated in

section IV-A will not obviously increase with the number of

spikes transmitted through a synapse.

D. Limitations

This study is limited in three ways. Firstly, the investi-

gated neural network structures are shallow FCNs and CNNs,

and the benchmark used in this paper is a basic computer

vision benchmark. More experiments in deeper neural net-

work architectures [26] and harder benchmarks [6], [7] are

required. A difficulty in our experiments is that the ANNs

and SNNs need to be repeated many times to cope with the

noisy elements in the network and get the averaged results,

which will make it extremely time-consuming in deeper neural

network architectures and bigger benchmarks. Secondly, in this

paper, we only investigated the robustness of neural networks

to Gaussian noise with a standard deviation proportional to

the value of the synaptic weights. In practice, the random

noise found in advanced materials may have different distribu-

tions. Future work is required to establish systematic studies

of different noise types. Also, to conduct more systematic

studies, a potential research direction is expanding results

to different spiking neuron models (e.g. leaky integrate-and-

fire model) and different encoding methods (e.g. temporal

coding). Thirdly, the inference accuracy and the convergence

time are different for FCNs and CNNs for the same noise

level. According to the results in section IV-A and section

IV-B, the accuracy of CNNs drops faster than FCNs with

the increasing of noise level for both ANNs and SNNs.

Meanwhile, the convergence time of SNNs grows faster in

CNNs than in FCNs. These different performances show the

different tolerances to noisy weights in FCNs and CNNs and

stem from their different neural network architectures, which

has not been thoroughly explored in this paper.

V. CONCLUSIONS

Few practical advantages of SNNs have been found up

to now. In this paper, we provide the first comprehensive

assessment of the effect of Gaussian noise on synaptic weights

and found that SNNs are very robust to Gaussian noise on

synaptic weights. This interesting property suggests the possi-

bility of the application of noisy materials such as memristors

and magnetic skyrmions to SNNs as information storage

components.

Research in SNNs is still in the early stages and a substantial

amount of the research is driven by exploring the differences

between SNNs and currently more performant ANNs. We

show that SNNs have a greater tolerance to noisy weights

than ANNs, which could be considered an advantage over

conventional ANNs. This robustness to noise comes from

the time dimension of SNNs as illustrated in section IV-A

and the integrate-and-fire mechanism of spiking neurons as

illustrated in section IV-C, which furthers our understanding

of the characteristics of SNNs.
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