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Abstract

State-of-the-art classifiers have been shown to be largely

vulnerable to adversarial perturbations. One of the most ef-

fective strategies to improve robustness is adversarial train-

ing. In this paper, we investigate the effect of adversarial

training on the geometry of the classification landscape and

decision boundaries. We show in particular that adversar-

ial training leads to a significant decrease in the curvature

of the loss surface with respect to inputs, leading to a dras-

tically more “linear” behaviour of the network. Using a

locally quadratic approximation, we provide theoretical ev-

idence on the existence of a strong relation between large

robustness and small curvature. To further show the impor-

tance of reduced curvature for improving the robustness, we

propose a new regularizer that directly minimizes curvature

of the loss surface, and leads to adversarial robustness that

is on par with adversarial training. Besides being a more

efficient and principled alternative to adversarial training,

the proposed regularizer confirms our claims on the impor-

tance of exhibiting quasi-linear behavior in the vicinity of

data points in order to achieve robustness.

1. Introduction

Adversarial training has recently been shown to be one

of the most successful methods for increasing the robust-

ness to adversarial perturbations of deep neural networks

[9, 17, 16]. This approach consists in training the classi-

fier on perturbed samples, with the aim of achieving higher

robustness than a network trained on the original training

set. Despite the importance and popularity of this training

mechanism, the effect of adversarial training on the geo-

metric properties of the classifier – its loss landscape with

respect to the input and decision boundaries – is not well un-
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derstood. In particular, how do the decision boundaries and

loss landscapes of adversarially trained models compare to

the ones trained on the original dataset?

In this paper, we analyze such properties and show that

one of the main effects of adversarial training is to induce

a significant decrease in the curvature of the loss function

and decision boundaries of the classifier. More than that, we

show that such a geometric implication of adversarial train-

ing allows us to explain the high robustness of adversarially

trained models. To support this claim, we follow a synthe-

sis approach, where a new regularization strategy, Curva-

ture Regularization (CURE), encouraging small curvature

is proposed and shown to achieve robustness levels that are

comparable to that of adversarial training. This highlights

the importance of small curvature for improved robustness.

In more detail, our contributions are summarized as follows:

• We empirically show that adversarial training induces

a significant decrease in the curvature of the decision

boundary and loss landscape in the input space.

• Using a quadratic approximation of the loss function,

we establish upper and lower bounds on the robustness

to adversarial perturbations with respect to the curva-

ture of the loss. These bounds confirm the existence of

a relation between low curvature and high robustness.

• Inspired by the implications of adversarially trained

networks on the curvature of the loss function and our

theoretical bounds, we propose an efficient regularizer

that encourages small curvatures. On standard datasets

(CIFAR-10 and SVHN), we show that the proposed

regularizer leads to a significant boost of the robust-

ness of neural networks, comparable to that of adver-

sarial training.

The latter step shows that the proposed regularizer can be

seen as a more efficient alternative to adversarial training.

More importantly, it shows that the effect of adversarial

training on the curvature reduction is not a mere by-product,

but rather a driving effect that causes the robustness to in-

crease. We stress here that the main focus of this paper is
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mainly on the latter – analyzing the geometry of adversarial

training – rather than outperforming adversarial training.

Related works. The large vulnerability of classifiers to

adversarial perturbations has first been highlighted in [3,

21]. Many algorithms aiming to improve the robustness

have since then been proposed [9, 20, 16, 4, 1]. In parallel,

there has been a large body of work on designing improved

attacks [17, 16], which have highlighted that many of the

proposed defenses obscure the model rather than make the

model truly robust against all attacks [24, 2]. One defense

however stands out – adversarial training – which has shown

to be empirically robust against all designed attacks. The

goal of this paper is to provide an analysis of this phe-

nomenon, and propose a regularization strategy (CURE),

which mimics the effect of adversarial training. On the

analysis front, many works have analyzed the existence of

adversarial examples, and proposed several hypotheses for

their existence [6, 8, 22, 5, 12]. In [9], it is hypothesized

that networks are not robust as they exhibit a “too linear”

behavior. We show here that linearity of the loss function

with respect to the inputs (that is, small curvature) is, on

the contrary, beneficial for robustness: adversarial training

does lead to much more linear loss functions in the vicinity

of data points, and we verify that this linearity is indeed the

source of increased robustness. We finally note that prior

works have attempted to improve the robustness using gra-

dient regularization [10, 15, 19]. However, such methods

have not been shown to yield significant robustness on com-

plex datasets, or have not been subject to extensive robust-

ness evaluation. Instead, our main focus here is to study the

effect of the second-order properties of the loss landscape,

and show the existence of a strong connection with robust-

ness to adversarial examples.

2. Geometric analysis of adversarial training

We start our analysis by inspecting the effect of adver-

sarial training on the geometric properties of the decision

boundaries of classifiers. To do so, we first compare quali-

tatively the decision boundaries of classifiers with and with-

out adversarial training. Specifically, we examine the effect

of adversarial fine-tuning, which consists in fine-tuning a

trained network with a few extra epochs on adversarial ex-

amples.1 We consider the CIFAR-10 [14] and SVHN [18]

datasets, and use a ResNet-18 [11] architecture. For fine-

tuning on adversarial examples, we use DeepFool [17].

Fig. 1 illustrates normal cross-sections of the decision

boundaries before and after adversarial fine-tuning for clas-

1While adversarial fine-tuning is distinct from vanilla adversarial train-

ing, which consists in training on adversarial images from scratch, we use

an adversarially fine-tuned network in this paper as it allows to single out

the effect of training on adversarial examples, as opposed to other uncon-

trolled phenomenon happening in the course of vanilla adversarial training.

(a) Original (CIFAR-10)

r
v

(b) Finetuned (CIFAR-10)

(c) Original (SVHN) (d) Fine-tuned (SVHN)

Figure 1: Random normal cross-sections of the decision

boundary for ResNet-18 classifiers trained on CIFAR-10

(first row) and SVHN (second row). The first column is

for classifiers trained on the original dataset, and the second

column shows the boundaries after adversarial fine-tuning

on 20 epochs for CIFAR-10 and 10 epochs for SVHN. The

green and red regions represent the correct class and incor-

rect classes, respectively. The point at the center shows the

datapoint, while the lines represent the different decision

boundaries (note that the red regions can include different

incorrect classes).

sifiers trained on CIFAR-10 and SVHN datasets. Specif-

ically, the classification regions are shown in the plane

spanned by (r, v), where r is the normal to the decision

boundary and v corresponds to a random direction. In ad-

dition to inducing a larger distance between the data point

and the decision boundary (hence resulting in a higher ro-

bustness), observe that the decision regions of fine-tuned

networks are flatter and more regular. In particular, note

that the curvature of the decision boundaries decreased af-

ter fine-tuning.

To further quantify this phenomenon, we now compute

the curvature profile of the loss function (with respect to

the inputs) before and after adversarial fine-tuning. For-

mally, let ℓ denote the function that represents the loss of

the network with respect to the inputs; e.g., in the case of

cross-entropy, ℓ(x) = XEnt(fθ(x), y), where y is the true

label of image x ∈ R
d, and fθ(x) denotes the logits.2 The

curvature profile corresponds to the set of eigenvalues of the

Hessian matrix

H =

(

∂2ℓ

∂xi∂xj

)

∈ R
d×d

2We omit the label y from ℓ for simplicity, as the label can be under-

stood from the context.
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Figure 2: Curvature profiles, which correspond to sorted eigenvalues of the Hessian, of the original and the adversarially

fine-tuned networks. Note that the number of eigenvalues is equal to 32× 32× 3 = 3072, which corresponds to the number

of input dimensions. The ResNet-18 architecture is used.

where xi, i = 1, . . . , d denote the input pixels. We stress on

the fact that the above Hessian is with respect to the inputs,

and not the weights of the network. To compute these eigen-

values in practice, we note that Hessian vector products are

given by the following for any z;

Hz =
∇ℓ(x+ hz)−∇ℓ(x)

h
for h → 0. (1)

We then proceed to a finite difference approximation by

choosing a finite h in Eq. (1). Besides being more effi-

cient than generating the full Hessian matrix (which would

be prohibitive for high-dimensional datasets), the finite dif-

ference approach has the benefit of measuring larger-scale

variations of the gradient (where the scale is set using the

parameter h) in the neighborhood of the datapoint, rather

than an infinitesimal point-wise curvature. This is crucial in

the setting of adversarial classification, where we analyze

the loss function in a small neighbourhood of data points,

rather than the asymptotic regime h → 0 which might cap-

ture very local (and not relevant) variations of the function.3

Intuitively, small eigenvalues (in absolute value) of H

indicate a small curvature of the graph of ℓ around x, hence

implying that the classifier has a “locally linear” behaviour

in the vicinity of x. In contrast, large eigenvalues (in abso-

lute value) imply a high curvature of the loss function in the

neighbourhood of image x. For example, in the case where

the eigenvalues are exactly zero, the function becomes lo-

cally linear, hence leading to a flat decision surface.

We compute the curvature profile at 100 random test

samples, and show the average curvature in Fig. 2 for

CIFAR-10 and SVHN datasets. Note that adversarial fine-

tuning has led to a strong decrease in the curvature of the

3For example, using ReLU non-linearities result in a piecewise linear

neural network as a function of the inputs. This implies that the Hessian

computed at the logits is exactly 0. This result is however very local; using

the finite-difference approximation, we focus on larger-scale neighbour-

hoods.

FGSM ℓ∞-DF PGD(7) PGD(20)

Original 38.0% 11.0% 0.5% 0.2%
Fine-tuned 61.0% 57.5% 57.2% 56.9%

Table 1: Adversarial accuracies for original and fine-tuned

network on CIFAR-10, where adversarial examples are

computed with different attacks; FGSM [9], DF [17] and

PGD [16]. Perturbations are constrained to have ℓ∞ norm

smaller than ǫ = 4 (images have pixel values in [0, 255]).

loss in the neighborhood of data points. To further illus-

trate qualitatively this significant decrease in curvature due

to adversarial training, Fig. 3 shows the loss surface before

and after adversarial training along normal and random di-

rections r and v. Observe that while the original network

has large curvature in certain directions, the effect of adver-

sarial training is to “regularize” the surface, resulting in a

smoother, lower curvature (i.e., linear-like) loss.

We finally note that this effect of adversarial training on

the loss surface has the following somewhat paradoxical im-

plication: while adversarially trained models are more ro-

bust to adversarial perturbations (compared to original net-

works), they are also easier to fool, in the sense that simple

attacks are as effective as complex ones. This is in stark

contrast with original networks, where complex networks

involving many gradient steps (e.g., PGD(20)) are much

more effective than simple methods (e.g., FGSM). See Ta-

ble 1. The comparatively small gap between the adversar-

ial accuracies for different attacks on adversarially trained

models is a direct consequence of the significant decrease of

the curvature of the loss, thereby requiring a small number

of gradient steps to find adversarial perturbations.
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(a) Original (CIFAR-10) (b) Fine-tuned (CIFAR-10) (c) Original (SVHN) (d) Fine-tuned (SVHN)

Figure 3: Illustration of the negative of the loss function; i.e., −ℓ(s) for points s belonging to a plane spanned by a normal

direction r to the decision boundary, and random direction v. The original sample is illustrated with a blue dot. The light

blue part of the surface corresponds to low loss (i.e., corresponding to the classification region of the sample), and the red

part corresponds to the high loss (i.e., adversarial region).

3. Analysis of the influence of curvature on ro-

bustness

While our results show that adversarial training leads to

a decrease in the curvature of the loss, the relation between

adversarial robustness and curvature of the loss remains un-

clear. To elucidate this relation, we consider a simple bi-

nary classification setting between class 1 and −1. Recall

that ℓ(·, 1) denotes the function that represents the loss of

the network with respect to an input from class 1. For ex-

ample, in the setting where the log-loss is considered, we

have ℓ(x, 1) = − log(p(x)), where p(x) denotes the out-

put of softmax corresponding to class 1. In that setting, x

is classified as class 1 iff ℓ(x, 1) ≤ log(2). For simplicity,

we assume in our analysis that x belongs to class 1 with-

out loss of generality, and hence omit the second argument

in ℓ in the rest of this section. We assume that the func-

tion ℓ can be locally well approximated using a quadratic

function; that is, for “sufficiently small” r, we can write:

ℓ(x+ r) ≈ ℓ(x) +∇ℓ(x)T r +
1

2
rTHr,

where ∇ℓ(x) and H denote respectively the gradient and

Hessian of ℓ at x. Let x be a point classified as class 1;

i.e., ℓ(x) ≤ t, where t denotes the loss threshold (e.g., t =
log(2) for the log loss). For this datapoint x, we then define

r∗ to be the minimal perturbation in the ℓ2 sense4, which

fools the classifier assuming the quadratic approximation

holds; that is,

r∗ := argmin
r

‖r‖ s.t. ℓ(x) +∇ℓ(x)T r +
1

2
rTHr ≥ t.

In the following result, we provide upper and lower bounds

on the magnitude of r∗ with respect to properties of the loss

function at x.

4We use the ℓ2 norm for simplicity. Using the equivalence of norms in

finite dimensional spaces, our result allows us to also bound the magnitude

of ℓ∞ adversarial perturbations.
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Figure 4: Illustration of upper and lower bounds in Eq. (2)

and (3) on the robustness with respect to curvature ν. We

have set ‖∇ℓ(x)‖ = 1, c = 1,∇ℓ(x)T v = 0.5 in this ex-

ample.

Theorem 1. Let x be such that c := t − ℓ(x) ≥ 0, and let

g = ∇ℓ(x). Assume that ν := λmax(H) ≥ 0, and let u be

the eigenvector corresponding to ν. Then, we have

‖g‖

ν

(√

1 +
2νc

‖g‖2
− 1

)

≤ ‖r∗‖ (2)

≤
|gTu|

ν

(√

1 +
2νc

(gTu)2
− 1

)

(3)

The above bounds can further be simplified to:

c

‖g‖
− 2ν

c2

‖g‖3
≤ ‖r∗‖ ≤

c

|gTu|

The proof can be found in the supplemental material.

Remark 1. Increasing robustness with decreasing

curvature. Note that upper and lower bounds on the robust-
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Figure 5: Geometric illustration in 1d of the effect of curva-

ture on the adversarial robustness. Different loss functions

(with varying curvatures) are illustrated at the vicinity of

data point x0, and x
(i)
adv indicate the points at which such

losses exceed t (where t is the misclassification threshold).

All curves have the same loss and gradient at x0. Note that

increasing curvature leads to smaller adversarial examples

(i.e., smaller |x0 − x
(i)
adv|).

ness in Eq. (2), (3) decrease with increasing curvature ν. To

see this, Fig. 4 illustrates the dependence of the bounds on

the curvature ν. In other words, under the second order

approximation, this shows that small curvature (i.e., small

eigenvalues of the Hessian) is beneficial to obtain classifiers

with higher robustness (when the other parameters are kept

fixed). This is in line with our observations from Section 2,

where robust models are observed to have a smaller curva-

ture than networks trained on original data. Fig. 5 provides

intuition to the decreasing robustness with increasing cur-

vature in a one-dimensional example.

Remark 2. Dependence on the gradient. In addition to

the dependence on the curvature ν, note that the upper and

lower bounds depend on the gradient ∇ℓ(x). In particular,

these bounds decrease with the norm ‖∇ℓ(x)‖ (for a fixed

direction). Hence, under the second order approximation,

this suggests that the robustness decreases with larger gra-

dients. However, as previously noted in [24, 2], imposing

small gradients might provide a false sense of robustness.

That is, while having small gradients can make it hard for

gradient-based methods to attack the network, the network

can still be intrinsically vulnerable to small perturbations.

Remark 3. Bound tightness. Note that the upper and

lower bounds match (and hence bounds are exact) when

the gradient ∇ℓ(x) is collinear to the largest eigenvector

u. Interestingly, this condition seems to be approximately

satisfied in practice, as the average normalized inner prod-

uct
|∇ℓ(x)Tu|
‖∇ℓ(x)‖2

for CIFAR-10 is equal to 0.43 before adver-

sarial fine-tuning, and 0.90 after fine-tuning (average over

1000 test points). This inner product is significantly larger

than the inner product between two typical vectors uni-

formly sampled from the sphere, which is approximately
1√
d

≈ 0.02. Hence, the gradient aligns well with the di-

rection of largest curvature of the loss function in practice,

which leads to approximately tight bounds.

4. Improving robustness through curvature

regularization

While adversarial training leads to a regularity of the loss

in the vicinity of data points, it remains unclear whether this

regularity is the main effect of adversarial training, which

confers robustness to the network, or it is rather a byproduct

of a more sophisticated phenomenon. To answer this ques-

tion, we follow here a synthesis approach, where we derive

a regularizer which mimics the effect of adversarial training

on the loss function – encouraging small curvatures.

Curvature regularization (CURE) method. Recall that

H denotes the Hessian of the loss ℓ at datapoint x. We

denote by λ1, . . . , λd the eigenvalues of H . Our aim is to

penalize large eigenvalues of H; we therefore consider a

regularizer Lr =
∑

i p(λi), where p is a non-negative func-

tion, which we set to be p(t) = t2 to encourage all eigen-

values to be small. For this choice of p, Lr corresponds to

the Frobenius norm of the matrix H . We further note that

Lr =
∑

i

p(λi) = trace(p(H)) = E(zT p(H)z) = E‖Hz‖2,

where the expectation is taken over z ∼ N (0, Id). By using

a finite difference approximation of the Hessian, we have

Hz ≈ ∇ℓ(x+hz)−∇ℓ(x)
h

, where h denotes the discretization

step, and controls the scale on which we require the varia-

tion of the gradients to be small. Hence, Lr becomes

Lr =
1

h2
E ‖∇ℓ(x+ hz)−∇ℓ(x)‖2 .

The above regularizer involves computing an expectation

over z ∼ N (0, Id), and penalizes large curvatures along

all directions equally. Rather than approximating the above

with an empirical expectation of ‖Hz‖2 over isotropic di-

rections drawn from N (0, Id), we instead select directions

which are known to lead to high curvature (e.g., [13, 7]), and

minimize the curvature along such chosen directions. The

latter approach is more efficient, as the computation of each

matrix-vector product Hz involves one backward pass; fo-

cusing on high-curvature directions is therefore essential to

minimize the overall curvature without having to go through

each single direction in the input space. This selective ap-

proach is all the more adapted to the very sparse nature of

curvature profiles we see in practice (see Fig. 2), where only

a few eigenvalues are large. This provides further motiva-

tion for identifying large curvature directions and penaliz-

ing the curvature along such directions.

Prior works in [7, 13] have identified gradient directions

as high curvature directions. In addition, empirical evi-
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Table 2: Adversarial and clean accuracy for CIFAR-10 for original, regularized and adversarially trained models. Perfor-

mance is reported for ResNet and WideResNet models, and the perturbations are computed using PGD(20). Perturbations

are constrained to have ℓ∞ norm less than ǫ = 8 (where pixel values are in [0, 255]).

ResNet-18 WideResNet-28×10

Clean Adversarial Clean Adversarial

Normal training 94.9% 0.0% 94.6% 0.0%
CURE 81.2% 36.3% 83.1% 41.4%
Adversarial training [16] 79.4% 43.7% 87.3% 45.8%

dence reported in Section 3 (Remark 3) shows a large in-

ner product between the eigenvector corresponding to max-

imum eigenvalue and the gradient direction; this provides

further indication that the gradient is pointing in high cur-

vature directions, and is therefore a suitable candidate for

z. We set in practice z = sign(∇ℓ(x))
‖sign(∇ℓ(x))‖ , and finally consider

the regualizer 5

Lr = ‖∇ℓ(x+ hz)−∇ℓ(x)‖2,

where the 1
h2 is absorbed by the regularization parameter.

Our fine-tuning procedure then corresponds to minimizing

the regularized loss function ℓ + γLr with respect to the

weight parameters, where γ controls the weight of the reg-

ularization relative to the loss term.

We stress that the proposed regularization approach sig-

nificantly departs from adversarial training. In particular,

while adversarial training consists in minimizing the loss

on perturbed points (which involves solving an optimiza-

tion problem), our approach here consists in imposing reg-

ularity of the gradients on a sufficiently small scale (i.e.,

determined by h). Previous works [16] have shown that ad-

versarial training using a weak attack (such as FGSM [9],

which involves a single gradient step) does not improve the

robustness. We show that our approach, which rather im-

poses gradient regularity (i.e., small curvature) along such

directions, does lead to a significant improvement in the ro-

bustness of the network.

We use two pre-trained networks, ResNet-18 [11]

and WResNet-28x10 [25], on the CIFAR-10 and SVHN

datasets, where the pixel values are in [0, 255]. For the op-

timization of the regularized objective, we use the Adam

optimizer with a decreasing learning rate between [10−4,

10−6] for a duration of 20 epochs starting from a pre-trained

network. We linearly increase the value of h from 0 to 1.5
during the first 5 epochs, and from there on, we use a fixed

value of h = 1.5. For γ, we set it to 4 and 8 for ResNet-18

and WResNet-28 respectively.

5The choice of z ∝ ∇ℓ(x) leads to almost identical results. We have

chosen to set z ∝ sign(∇ℓ(x)), as we are testing the robustness of the

classifier to ℓ∞ perturbations. Hence, setting z be the sign of the gradient

0

0.4

0.5

0.6

0.7

0.8

87654321

ResNet-18 WResNet-28x10

Adversarial accuracy

Figure 6: Adversarial accuracy versus perturbation mag-

nitude ǫ computed using PGD(20), for ResNet-18 and

WResNet-28x10 trained with CURE on CIFAR-10. See

[16] for the curve corresponding to adversarial training.

Curve generated for 2000 random test points.

Results. We evaluate the regularized networks with a

strong PGD attack of 20 iterations, as it has been shown

to outperform other adversarial attack algorithms [16]. The

adversarial accuracies of the regularized networks are re-

ported in Table 2 for CIFAR-10, and in the supp. material

for SVHN. Moreover, the adversarial accuracy as a function

of the perturbation magnitude ǫ is reported in Fig. 6.

Observe that, while networks trained on the original

dataset are not robust to perturbations as expected, perform-

ing 20 epochs of fine-tuning with the proposed regularizer

leads to a significant boost in adversarial performance. In

particular, the performance with the proposed regularizer is

comparable to that of adversarial training reported in [16].

This result hence shows the importance of the curvature de-

crease phenomenon described in this paper in explaining the

success of adversarial training.

In addition to verifying our claim that small curvature

confers robustness to the network (and that it is the underly-

ing effect in adversarial training), we note that the proposed

regularizer has practical value, as it is efficient to compute

is more relevant, as it constrains the z direction to belong to the hypercube

of interest.
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Figure 7: Analysis of gradient masking in a network trained

with CURE. Adversarial loss computed with SPSA (y-axis)

vs. adversarial loss with PGD(100) (x-axis) on a batch of

1000 datapoints. Adversarial loss corresponds to the differ-

ence of logits on true and adversarial class. Each point in

the scatter plot corresponds to a single test sample. Nega-

tive loss indicates that the data point is misclassified. Points

close to the line y = x indicate that both attacks iden-

tified similar adversarial perturbations. Points below the

line, shown in red, indicate points for which SPSA iden-

tified stronger adversarial perturbation than PGD. Note that

overall, SPSA and PGD identified similarly perturbations.

(a) ResNet-18 (b) WideResNet-28

Figure 8: Similar plot to Fig. 3, but where the loss surfaces

of the network obtained with CURE are shown.

and can therefore be used as an alternative to adversarial

training. In fact, the proposed regularizer requires 2 back-

ward passes to compute, and is used in fine-tuning for 20
epochs. In contrast, one needs to run adversarial training

against a strong adversary in order to reach good robust-

ness [16], and start the adversarial training procedure from

scratch. We note that strong adversaries generally require

around 10 backward passes, making the proposed regular-

ization scheme a more efficient alternative. We note how-

ever that the obtained results are slightly worse than adver-

sarial training; we hypothesize that this might be either due
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Eigenvalue profile
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Figure 9: Curvature profile for a network fine-tuned using

adversarial training and CURE. The ResNet-18 architecture

on CIFAR-10 is used. For comparison, we also report the

profile for the original network (same as Fig. 2), where we

clipped the values to fit in the y range.

to higher order effects in adversarial training not captured

with our second order analysis or potentially due to a sub-

optimal choice of hyper-parameters γ and h.

Stronger attacks and verifying the absence of gradient

masking. To provide further evidence on the robustness

of the network fine-tuned with CURE, we attempt to find

perturbations for the network with more complex attack al-

gorithms. For the WideResNet-28x10, we obtain an ad-

dversarial accuracy of 41.1% on the test set when using

PGD(40) and PGD(100). This is only slightly worse than

the result reported in Table 2 with PGD(20). This shows

that increasing the complexity of the attack does not lead to

a significant decrease in the adversarial accuracy. Moreover,

we evaluate the model against a gradient-free optimization

method (SPSA), similar to the methodology used in [24],

and obtained an adversarial accuracy of 44.5%. We com-

pare moreover in Fig. 7 the adversarial loss (which rep-

resents the difference between the logit scores of the true

and adversarial class) computed using SPSA and PGD for a

batch of test data points. Observe that both methods lead to

comparable adversarial loss (except on a few data points),

hence further justifying that CURE truly improves the ro-

bustness, as opposed to masking or obfuscating gradients.

Hence, just like adversarial training which was shown em-

pirically to lead to networks that are robust to all tested at-

tacks in [24, 2], our experiments show that the regularized

network has similar robustness properties.

Curvature and robustness. We now analyze the network

obtained using CURE fine-tuning, and show that the ob-

tained network has similar geometric properties to the ad-

versarially trained one. Fig. 8 shows the loss surface in a
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Figure 10: Evolution throughout the course of CURE fine-tuning for a ResNet-18 on CIFAR-10. The curves are averaged

over 1000 datapoints. Left: estimate of Frobenius norm , Middle: ‖Hz‖, where z = sign(∇ℓ(x))/‖sign(∇ℓ(x))‖2 and

Right: adversarial accuracy computed using PGD(20). The Frobenius norm is estimated with ‖H‖2F = Ez∼N (0,I)‖Hz‖2,

where the expectation is approximated with an empirical expectation over 100 samples zi ∼ N (0, I).
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Figure 11: Visualizations of perturbed images and pertur-

bations on SVHN for the ResNet-18 classifier.

plane spanned by (r, v), where r and v denote respectively

a normal to the decision boundary and a random direction.

Note that the loss surface obtained with CURE is quali-

tatively very similar to the one obtained with adversarial

training (Fig. 3), whereby the loss has a more linear behav-

ior in the vicinity of the data point. Quantitatively, Fig. 9

compares the curvature profiles for the networks trained

with CURE and adversarial fine-tuning. Observe that both

profiles are very similar. We also report the evolution of

the adversarial accuracy and curvature quantities in Fig. 10

during fine-tuning with CURE. Note that throughout the

fine-tuning process, the curvature decreases while the ad-

versarial accuracy increases, which further shows the link

between robustness and curvature. Note also that, while we

explicitly regularized for ‖Hz‖ (where z is a fixed direction

for each data point) as a proxy for ‖H‖F , the network does

show that the intended target ‖H‖F decreases in the course

of training, hence further suggesting that ‖Hz‖ acts as an

efficient proxy of the global curvature.

Qualitative evaluation of adversarial perturbations.

We finally illustrate some adversarial examples in Fig. 11

for networks trained on SVHN. Observe that the network

trained with CURE exhibits visually meaningful adversar-

ial examples, as perturbed images do resemble images from

the adversary class. A similar observation for adversarially

trained models has been made in [23].

5. Conclusion

Guided by the analysis of the geometry of adversarial

training, we have provided empirical and theoretical evi-

dence showing the existence of a strong correlation between

small curvature and robustness. To validate our analysis, we

proposed a new regularizer (CURE), which directly encour-

ages small curvatures (in other words, promotes local lin-

earity). This regularizer is shown to significantly improve

the robustness of deep networks and even achieve perfor-

mance that is comparable to adversarial training. In light of

prior works attributing the vulnerability of classifiers to the

“linearity of deep networks”, this result is somewhat sur-

prising, as it shows that one needs to decrease the curvature

(and not increase it) to improve the robustness. In addition

to validating the importance of controlling the curvature for

improving the robustness, the proposed regularizer also pro-

vides an efficient alternative to adversarial training. In fu-

ture work, we plan to leverage the proposed regularizer to

train provably robust networks.
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