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ROC CURVES WITHIN THE FRAMEWORK OF NEURAL NETWORK ASSEMBLY 
MEMORY MODEL: SOME ANALYTIC RESULTS 

P.M. Gopych 
 
Abstract: On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory 
Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating 
characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori 
probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and 
modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. 
The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively 
and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that 
basic ROC properties which are one of experimental findings underpinning dual-process models of 
recognition memory can be explained within our one-factor NNAMM.  
Keywords: ROC, mROC, memory, neural network, cue index, recall, recognition, signal detection theory. 

1. Introduction 

Receiver operating characteristics (ROCs or ROC curves) are widely used in classic signal detection theory to 
provide the performance of linear Fisher or Euclidian classifiers for different values of their thresholds; ROCs 
plot the probability of correct detection of a noisy signal as a function of the probability of its false detection or 
false alarm [1]. Usually, it is assumed that distributions of initial patterns (vectors), conditioned on the 
presence or absence of the sought-after signal (prior probabilities of the both hypotheses are chosen to be ½), 
are Gaussians with the same (or similar) variances and a specific distance between them. In neurosciences, 
ROCs are used, for example, in data analysis where in single or multiple neuronal spike trains the encoding 
and processing of sensory information are studied, e.g., [2]. Lately, a method for deriving ROCs by means of 
human memory testing has been developed but up to present there exists no computer memory model which 
was able to reproduce empirical ROCs neither qualitatively or quantitatively [3]. For this reason in the field of 
computer memory modeling understanding observed ROC curves is recognized as one of the most important 
unsolved problems [4].   
In contrast to abstract computer models, neurobiology models directly address the problem of functional 
nature and neuroanatomical substrates of different kinds of memory. For example, now recognition memory is 
hotly debated within dual-process models (DPMs) which consider recognition as consisting of two 
components, recollection and familiarity, e.g., [3,5,6]. Recollection is thought of as an event where a person 
recalls both particular stimulus (a human face, for example) and episode where it was encountered earlier and 
familiarity represents the person’s experience (or feeling) that particular stimulus was encountered before but 
without specific memory about where, when, or why it happened. It is claimed [3] that DPMs are supported by 
many results of cognitive, neuropsychological, and neuroimaging memory studies but in spite of long history 
of research even basic properties of DPMs are ambiguously defined and rather often even their basic terms 
are used by different authors in different ways [3]. Additionally, DPMs are not specified on computational level 
because most computer models consider recognition as one- not as two-factor process (although see [6]). On 
the other hand, none of computer models describes the whole body of recognition memory traits (in particular, 
ROCs) and, for this reason, their separate inferences which are not consistent with predictions of DPMs 
cannot be viewed as convincing arguments against them.  
In present work analytical formulae for optimal ROC calculations are derived and, using convolutional 
(Hamming) version of Neural Network Assembly Memory Model (NNAMM) [7,8], we show that ROCs, as one 
of experimental findings underpinning DPMs, can be explained within our NNAMM without assuming that 
recognition memory is a dual process. A method of taking into account explicitly prior probabilities of 
alternative hypotheses on the structure of information initiating memory retrieval is proposed; on this basis 
modified ROC (mROC, unconditional probability of correct recall vs. false alarm probability) and overall 
probabilities of memory trace recall/recognition were introduced. It has been found that comparison of 
calculated and empirical ROCs (or mROCs) provides a method for extraction of those cues which were used 
actually in appropriate memory experiments. 
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2. Some NNAMM Backgrounds 

According to NNAMM  (see ref. 8 for details), components of initial ternary vectors take their values from the 
triple set –1,0,1 but most of these values are 0s (that is so called sparse coding). After data preprocessing, 
initial ternary vectors are transformed into binary feature vectors with components –1 or 1 (that is so called 
dense coding). In fact, feature vectors are quasibinary ones because their spinlike (–1,1) components cannot 
be shifted to other (0,1) binary representation and they could manifest (although do not manifest) their third, 
zero, components. Below only quasibinary vectors are considered but, for short, the preposition “quasi” will be 
omitted.  
Neural network (NN) assembly memory is constructed from interconnected (associated) and equal in rights 
assembly memory units (AMUs) and the basic properties of assembly memory as a whole depend on the 
properties of its components, AMUs. AMU has original architecture and involves regular Hopfield two-layer 
autoassociative NN (that is the AMU’s central element), N-channel time-gate, additional reference memory, 
and two nested feedback loops [8].  
NN related to particular AMU is subserved by binary vectors mentioned. We refer to such an N-dimensional 
arbitrary vector as x. If x represents information stored or that should be stored in AMU then we term it x0. We 
define random vector or binary noise xr as x with components –1 or 1 randomly chosen with uniform 
probability, ½. Damaged reference vector, x(d), is defined as x0 with its damage degree d. The components, 
xi(d), of x(d) are defined as  
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where ui are marks whose magnitudes 0 or 1 are chosen randomly with uniform probability and fixed d: 
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If the number of marks ui = 1 is m then d = m/N; 0 ≤ d ≤ 1; x(0) = x0 and x(1) = xr. Damage degree d is a 
fraction of noise in vector x(d) while intensity of cue or cue index q = 1 – d is a fraction of correct, undamaged 
information about x0 in x(d) [7,8]. The data coded in such a way naturally arise when to solve a very important 
problem of local feature discrimination across smooth background and additive noise, line or half-tone images 
are binarized using a convolutional NN recognition algorithm [9]. Expressions 1 and 2 define an original data 
coding procedure [7]. To design appropriate data decoding rules we explore two-layer auto-associative NN 
with N cells in its entrance (or exit) layer. Entrance and exit layer cells are connected by “all-to-all” rule, they 
are McCalloch-Pitts model neurons with rectangular response and triggering threshold θ.  
Following ref. 10 for perfectly learned intact Hopfield NN, the elements wij of synapse matrix w  are defined as 
 

ji
ij xxw 00η=  (3) 

 
where i,j = 1,..,N; η > 0 is a learning parameter (below η = 1); x0i,x0j are the components of reference vector x0 
(all wij may differ from each other in sign only). It is crucially important to stress that NN with synapse matrix w 
is learned to remember only one memory trace x0 and we deliberately reject the available possibility of storing 
other traces in the same NN. Also we posit that an input vector xin is decoded (recognized as reference vector 
x0) successfully if learned NN transforms xin into output vector xout = x0 [7,8,9]. 
The transformation algorithm is the following. For the jth neuron of the NN exit layer an input signal hj is given 
by 
 

∑ += jiijj svwh  (4) 
 

where vi  is an output signal of the ith neuron of the NN entrance layer; sj  = 0.  
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The signal vj of the jth neuron of the NN exit layer (the jth component of xout) is calculated according to the 
model neuron’s rectangular response function (signum function or 1 bit quantifier) with triggering threshold θ 
as 
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where for hj = θ  the value vj = –1 was arbitrary assigned. 

3. Convolutional and Hamming Versions of NNAMM 

If hi = xini then from Expression 5 follows that vi = xini. Of this fact and Equations 3 and 4 for the jth exit layer 
neuron we have: hj = ∑wijxini = ηx0j ∑x0ixini  = ηx0jQ where Q = ∑x0ixini is a convolution of vectors x0 and xin (– N 
≤ Q ≤ N). The substitution of hj  = ηx0jQ into Expression 5 gives that xout = x0 and vector xin is successfully 
decoded (recognized as x0) if Q > θ (if  η ≠ 1 then Q > θ/η). Hence, NN algorithm given in Section 2 and the 
convolutional algorithm just now introduced are equivalent although in present form the latter is valid only for 
perfectly learned intact NNs (see details in ref. 8). Since for each xin exists such a vector x(d) that xin = x(d), 
inequality Q > θ can be written as a function of d = m/N and as a result  
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where the dimension of all vectors x, the number of noise components of x(d), the number of corresponding 
bits of x(d) and x0 which always coincide, and the number of corresponding bits of particular xr and x0 which 
currently differ are N, m, N – m, and k, respectively; θ is threshold value of Q or model neuron’s triggering 
threshold.  
It is easy to obtain directly that Q = N – 2D and D = (N – Q)/2 where D is a Hamming distance between x0 and 
x(d) (Hamming distance is a number of corresponding bits of x0 and x(d) which are different, 0 ≤ D ≤ N). 
Since between D and Q there is an univocal correspondence, along with inequality Q > θ  the inequality D < 
(N – θ)/2 is also valid (cf. Inequality 6 where k = D). Moreover, Q(d) can merely be interpreted as an 
expression for computation of Hamming distance D. That means that the above convolutional (Hamming) 
decoding algorithm or Hamming classifier directly discriminates the patterns xin = x(d) which are more close to 
x0 than a given Hamming distance between them [8]. Hence, for data coding described in Section 2, NN, 
convolutional, and Hamming distance algorithms mentioned are equivalent. As Hamming 
classifier/recognition/decoding algorithm is the best (optimal) in the sense of statistical pattern recognition 
quality (that is no other algorithm cannot outperform it) [11], above NN and convolutional algorithms are 
optimal (the best) in that sense too.  

4. Conditional Recall/Recognition Probabilities and ROCs 

The basic idea of NNAMM is to build a NN memory model from simple objects defined within coding/decoding 
approach (optimal binary signal detection theory) introduced. For this purpose in Sections 2 and 3 it is simple 
enough instead of coding and decoding to speak about encoding and retrieval, respectively [8]. In this way 
NNAMM was formulated and fundamental recall/recognition properties of its assembly memory unit, 
containing corresponding Hopfield NN as its central element, were found optimally by multiple computations 
[7,8]. But convolutional (Hamming) version of NNAMM gives also a chance to obtain optimal (the best) 
formulae for this aim analytically.  
Below we derive a formula for the probability P(m,N,θ) of correct recall/recognition of memory trace x0 stored 
in perfectly learned intact NN with the model neurons’ triggering threshold θ under condition that data patterns 
x(d) initiating many-step memory trace retrieval [8] are actually x0 with damage degree d = m/N (earlier the 
same probability was calculated by multiple computations, examples for θ = 0 see in ref. 7,8). Now we need to 
find the number T(m,N,θ ) of vectors x(d) for which Inequality 6 is valid and the total number of all possible 
different vectors x(d). Since x(d) contains m randomly combined noise components with randomly chosen 
magnitudes –1 or 1 (the probability of their choice is ½), the latter equals 2mCNm. To find T(m,N,θ ) we use the 
fact that for each set of k, m, and N values the number of vectors x(d) satisfying Inequality 6 is CNmCmk where 
CNm is the number of ways arranging m noise components in N components of x(d) and Cmk is the same for k 
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components which have the sign opposite to the sign of corresponding components of x0 in m noise 
components of x(d). Consequently, T(m,N,θ) = CNm∑Cmk where the summation is made over k = 0,1,..,kmax 
(k is Hamming distance between particular x(d) and x0). The probability P(m,N,θ) is computed by dividing 
T(m,N,θ ) by 2mCNm , i.e.  
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where if kmax ≤ kmax0 then kmax = m else kmax = kmax0 and  
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is defined by Inequality 6 and the signum function specified by Equation 5. Since 0 ≤ kmax  ≤ m  ≤ N, if N is 
odd then – (N + 1) ≤ θ ≤ N – 1 and if N is even then – (N + 2) ≤ θ ≤ N – 2. 
Let us consider two important special cases, P(m,N,θ) = 1 and m = N, θ = 0:  
• Since  ∑Ckmaxk = 2kmax (k = 0,1,..,kmax), from Equation 7 follows that for any N P(m,N,θ) = 1 while m ≤ 

kmax0.  
• Since ∑CNk = 2N (k = 0,1,..,N), if N is odd then P(N,N,0) = (2N /2)/2N = ½ (m = N and θ = 0). Since Cmk = 

Cmm-k, if N is even then the sum S = ∑CNk (k = 0,1,..,N/2 – 1) is defined by equation 2S + CNN/2 = 2N (CNN/2 
is the number of events Q = 0). Thus, in this case P(N,N,0) = ½ – ΔP(N), ΔP(N) = CNN/2/2N + 1 ~ 0.4/√N 
(here for large N Stirling’s formula was used). The facts that ΔP(N) < 0 and the minus sign was assigned 
to 1s in Expression 8 are caused by the choice of signum function form. If in Equation 5 for hj = θ the 
value vj = + 1 is assigned then ΔP(N) > 0 and in Expression 8 the plus sign before 1s should be chosen.  

For odd and even N and for different choice of signum function, probabilities P(m,N,θ = 0) are shown in Figure 
1 (as in ref. 7,8 to underline discrete character of NNAMM results, small values of N are taken, for example).  
 

Figure 1. Conditional probability P(m,N,θ) of 
free recall (d = 1), cued recall (0 < d  < 1), 
and recognition (d = 0) calculated according 
to Equations 7 and 8  for perfectly learned 
intact NNs with θ = 0 and N = 9 (open 
circles) and N = 8 (triangles) vs. damage 
degree d = m/N of memory trace x0 or 
intensity of cue q = 1 – m/N. If N = 9 (i.e., N 
is odd) then free recall (false alarm) 
probability equals ½; if N = 8 (i.e., N is even) 
then free recall probability is P(8,8,0) = ½ – 
ΔP(8), ΔP(8) = C84/29 = 70/512. If N = 9 and 
m ≤ 4, if N = 8 and m ≤ 3 then P(m,N,0) = 1. 
If in Equation 5 for hj = θ  the value vj = 1 is 
assigned then P(8,8,0) = ½ + ΔP(8) (upper 
curve).  
Figure 2 shows two families of curves 

calculated according to Equations 7 and 8. In different form they represent the same probabilities P(m,N,θ) for 
perfectly learned intact NN memory unit with odd N and all possible values of d = m/N and θ (if N is even then 
the curves can be splitted by the choice of signum function form). 
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Figure 2. Data preparation for (a) ROC 
plot (b) and ROCs for the perfectly 
learned NN memory unit with N = 9.  
a) Probabilities P(m,N,θ) vs. d = m/N, q 
= 1 – m/N, and θ. Open circles denote 
probabilities for θ = 0, P(m,9,0) (i.e., 
here and in all other Figures open-circle 
points are the same); dashed line 
connects cued recall probabilities for 
different θ and cue index q = 2/9, 
P(7,9,θ); free recall (q = 0) or false 
alarm probabilities, F = P(9,9,θ), are 
situated along the dotted line; for all 
curves their left-most points are the 
same, P(0,9,θ) = 1 (that is recognition 
probability). The number of curves is N 
+ 1 = 10. Since 0 < F  ≤ 1, the value F = 
0 is impossible. For each θ right-most 
point of each curve represents 
appropriate value of false alarm F 
needed to plot ROCs.  
b) Probabilities P(m,N,θ) vs. F, θ, and 
m/N. The values of F used for the ROC 
plot lie in the panel a) along the dotted 
line. For each ROC curve the value of 
m/N (q or d) is the same, the number of 
ROC points is N + 1 = 10. The more the 
value of cue, q, the more the curvature 
of respective ROC and the more the 
value of probability P(m,9,θ = 8), ROC’s 

left-most point. Linear ROCs correspond to free recall (q = 0, d = 1) and recognition (q = 1, d = 0). Crosses 
denote recognition probabilities, P(0,9,θ).  

5. Unconditional Recall/Recognition Probabilities, mROCs, and Overall Probabilities 

In Section 4 conditional recall/recognition probabilities were discussed. But it is a priori unknown whether 
initial pattern x(d) is a sample of pure noise (hypothesis H0) or memory trace x0 damaged by noise (hypothesis 
H1). To obtain unconditional (a posteriori) probabilities of false and correct recall/recognition of the trace x0 
stored in NN memory unit, we used  famous Bayes’ formula and have as a result:  
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where pFR(m/N,F) and pCR(m/N,F) reflect unconditional false recall/recognition (FR) and correct 
recall/recognition (CR) probabilities; pFR + pCR = 1; κ = P(H1)/P(H0); P(H0) and P(H1) are prior probabilities of 
hypotheses H0 and H1, respectively. Since P(H0) and P(H1) are usually unknown, in most cases κ = 1 is 
postulated. Here, we pay also attention to the fact of changing designations. As there is an univocal 
correspondence between F and θ (see Figure 2a) in Equation 9 and below, instead of θ, we write F; as all 
probabilities depend on m and N as on m/N (see Figures 1 and 2), we write these two parameters in the form 
of their ratio, m/N; thus, P(m/N,F ) = P(m,N,θ ).   
Our data coding approach introduced in ref. 7 allows to find κ in explicit form directly. Indeed, by definition, a 
pattern x(d) contains a fraction d = m/N of noise components and a fraction q = 1 – m/N of undamaged 
components of x0 (see Section 2). Hence, d and q may be interpreted as the probabilities P(H0) and P(H1), 
respectively. That means that in Equation 9, within our NNAMM (or data coding/decoding) approach, κ is 
given by  
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If m = 0 then, according to Equation 10, κ does not exist and in this special case we posit that pFR = 0 (at the 
same time pCR = 1); if m = N then κ –1 does not exist and in this special case we posit that pCR = 0 (at the same 
time pFR = 1). Both propositions are in full concordance with the fact that the former is the case of undamaged 
memory trace x0 and the latter is a case of pure noise. Taking into account that 0 < F ≤ P(m/N,F) ≤ 1 (see 
Figure 2), that Equation 10 and propositions pFR = 1 (if m = 0), pCR = 0 (if N = m) are valid, we have: 0 ≤ pFR ≤ 
1, 0 ≤ pCR ≤ 1 (instead of 0 < pFR ≤ ½, ½ ≤ pCR < 1 if it is as usual supposed that κ  = 1 and 0 < F ≤ P(m/N,F) 
< 1). 
Equations 9,10 provide unconditional probability pCR(m/N,F) as a function of false alarm F and for this reason 
for the fixed m/N we refer to particular pCR(m/N,F) as modified ROC or mROC. Figure 3 illustrates this claim.  
Let us define 
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where PFR(m/N) and PCR(m/N) provide overall, not depending on F, unconditional FR and CR probabilities of 
recall/recognition of the memory trace x0 stored in perfectly learned NN; summations are made over all 0 < F 
≤ 1; pFR(m/N,F), pCR(m/N,F) are calculated according to Equations 9,10; as it was expected, PFR + PCR = 1.  
 

Figure 3. ROC curve (curve 1, left-
hand scale) and mROC curve (curve 
2, right-hand scale) for d = m/N = 
7/9, q = 2/9. ROCs along the dashed 
line are as in Figure 2. The mROC 
curve is a plot of unconditional 
correct recall probability pCR(m/N,F) 
vs. false alarm F; mROC points 
according to Equations 9,10 were 
calculated; the special case 
pCR(m/N,F) = 1 is not shown and not 
considered. Average values of 
pCR(m/N,F) and pFR(m/N,F) reflect 
overall probabilities PFR(m/N) and 

PCR(m/N), respectively, they were estimated by Equations 11. 

6. Comparison with Experiments 

In Figure 4 NNAMM numerical predictions (calculated ROC curves) are compared with ROCs observed in 
item recognition or similar tests. In different panels typical examples of empirical many-point and two-point 
ROCs are examined, estimated empirical data were taken from ref. 3. As one can see, even for illustrative 
model example N = 9 where only cue index q was as a fit parameter (the change of N does not change the 
form of ROCs), a good quantitative agreement between theory and experiment is achieved. Thus, the 
comparison of empirical and model ROCs may be viewed as a method for estimation of the value of the 
intensity of cue available in the process of the recall or recognition for specific memory system under specific 
conditions of specific experiment.  
As Figure 4 demonstrates, there is no problem of reproducing available empirical ROCs within NNAMM both 
qualitatively and quantitatively and comparison of calculated and empirical ROCs may be successfully used 
for the value of intensity of cue, q, estimation. Since for empirical many-point-confidence-scale ROCs the 
value of cue changes along the curves (see Figure 4a), both the model’s predictions and the details of 
experimental protocols demand scrutiny.  
 

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

PFR(m/N) = 0,673
2

1

m/N = 7/9

U
nconditional C

R
, p

C
R (m

/N
,F)

 

 

θ

False alarms, F

PCR(m/N) = 0,327

R
ec

al
l, 

P
(m

/N
,F

)



International Journal "Information Theories & Applications" Vol.10 

 

195

Figure 4. Theoretical (N = 9) and 
empirical ROCs. For each calculated 
ROC respective value of q is shown. 
Here and in Figures 2 and 3 the dashed-
line curve is the same. a) Comparison of 
theoretical and empirical ROCs derived 
using 5-point-confidence-scale 
experiments. Original results are from 
ref. 12 and 13, the first 3 and the last 2 
points of empirical ROCs are consistent 
with the assumption that 3/9 < q < 4/9 
and 2/9 < q < 3/9, respectively. b) The 
same for empirical ROCs derived using 
2-point-confidence-scale experiments. 
Original results are from ref. 14 and 15, 
they are consistent with 2/9 < q < 3/9. 
 
In many experiments (e.g., associative 
recognition tests, remember/know or 
process-dissociation procedures) 
subjects are required to recall both an 
item itself and other information related 
to it  [3]. That means that in such 
experiments those memory events could 
be selected and investigated where 
subjects are able a target item to 
retrieve and “to assess” its a posteriori 
probability taking into account a priori 

probabilities of prior hypotheses on the structure of information initiating retrieval (i.e., taking into account 
P(H1), the probability of the fact that vector x(d) reflects damaged target item, and P(H0), the probability of the 
fact that x(d) is a lure item). Hence, empirical results obtained using such an experimental paradigm could 
provide unconditional (a posteriori) recall/recognition probabilities pCR(m/N,F) introduced in Section 5. This 
assumption is examined in Figure 5.  

 
Figure 5. Theoretical (N = 9) and 
empirical mROCs. Curves 1, 2, and 3 
reflect pCR(m/N,F) calculated according 
to Equations 9,10 with cue indices q = 1 
– m/N = 3/9, 2/9, and 1/9, respectively. 
Empirical mROC curve in the same 
signs as ROC curve in Figure 4 was 
taken from the same reference [3,12-15].  
 
As Figure 5 demonstrates, theoretical 
mROCs provide good quantitative 
description of observed mROCs [3,12-
15] and their comparison may also be 
viewed as a method for estimation of 
specific values of the intensity of cue for 
specific memory experiments. For 

example, empirical 2-point mROCs [14,15] and 5-point mROCs [12,13] are consistent with the assumption 
that 1/9 < q < 2/9 and 1/9 < q < 2/9 to 2/9 < q < 3/9, respectively (in the latter case q changes along the 
curves).   
Comparison between the values of q estimated using ROCs and mROCs shows that they are similar but not 
always coincide. Indeed, an analysis of ROCs and mROCs observed in experiments [14,15] gives 
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inconsistent results (2/9 < q < 3/9 and 1/9 < q < 2/9, respectively) while the analysis of experiments [12,13] 
gives consistent results if only 2 right-most ROC and mROC points are considered (2/9 < q < 3/9) and 
inconsistent results if some left-most ROC and mROC points are taken into account (3/9 < q < 4/9 and 1/9 < q 
< 2/9, respectively). To explain these features, additional analysis of the model’s predictions and experimental 
details is needed.  

7. Discussion 

The properties of empirical ROC curves have been used as one of four basic arguments in favour of DPMs of 
recognition memory. For example, as Figures 4 and 5 demonstrate empirical ROCs derived in item and 
associative recognition tests are essentially different [3]. ROCs related to item recognition tests are curvilinear 
with changing shape across measurement conditions; they can be approximated by a two-factor formula 
related to traditional signal detection theory and containing recollection and familiarity as stochastically 
independent fit parameters. For this reason, it is claimed that “at least two separate memory components are 
needed to account for recognition performance” [3, p.442]. This idea was realized as a two-factor 
parameterization of empirical ROCs: Pi = R + (1 – R)Φ(d΄/2 – ci) + Fi – Φ(d΄/2 – ci) where Pi, Fi, R, d΄, ci, and 
Φ reflect correct recall probability (a counterpart to probability P(m/N,F) defined by Equation 7), false alarm, 
recollection, familiarity, response criterion, and item distribution (Gaussian), respectively. The fitting of this 
equation to observed ROC curves provides estimations of recollection (R) and familiarity (d΄). Since ROCs 
observed in item recognition tests (Figure 4) are well fitted by this formula and ROCs observed in associative 
recognition tests (Figure 5) are not, it is suggested that the former can be described by a signal detection 
theory while the latter can not [3].   
Our NNAMM is based on our optimal binary signal detection theory (Sections 2-5, ref. 7-9] and for intact 
perfectly learned memory unit it is actually a one-factor computer model; this factor (intensity of cue or cue 
index, q) is the amount of undamaged information about the memory trace x0 containing in vectors x(d) which 
initiate many-step memory retrieval [8]. It is essential that such an one-factor approach on a common ground 
successfully describes different types of memory including free recall (q = 0), cued recall (0 < q < 1) , and 
recognition (q = 1) [7,8] and for this reason there is no need to introduce any new type of memory, like 
recollection or familiarity, for example (“recollection” and “familiarity” of DPMs are loosely equivalent to recall 
and recognition of NNAMM, respectively). By definition, all acts of the particular item’s recall and recognition 
are different in time processes and, consequently, they are stochastically independent and do not run in 
parallel. According to NNAMM, recognition (“familiarity” of DPMs) is an one-step process of testing selected 
assembly memory unit (AMU) without using the cues stored in other related AMUs [8]. In general, such a 
process may correspond to an item recognition test of so called semantic memory. Recall (“recollection” of 
DPMs) is a many-step process of testing selected AMU with using the cues stored in other (one or more) 
AMUs [8]. In general, such a process may correspond to an associative recognition test of so called episodic 
memory (for relations between semantic and episodic memories see ref. 16, for example). As one can see 
from Section 6, ROCs observed in item recognition tests and mROCs observed in associative recognition 
tests are successfully described within our NNAMM based on our optimal binary signal detection theory.  
Since all basic properties of empirical ROCs (and mROCs) have been qualitatively and even quantitatively 
reproduced within one-factor NNAMM, ROCs might be excluded from the list of findings underpinning DPMs 
of recognition memory. On the ground of our previous [7,8,17,18] and present results it is natural to anticipate 
other items of this list (different speeds of response for recollection and familiarity, their different 
electrophysiological correlates, and different extents of their disruption by certain brain injuries [3]) are also 
consistent with NNAMM.  

8. Conclusion 
For the first time a method for theoretical description of empirical ROC curves has been proposed within a 
computer memory model. For this purpose a convolutional (Hamming) version of our NNAMM based on our 
optimal binary signal detection theory was used. Analytical formulae for optimal (the best) calculation of 
conditional and unconditional probabilities of false/correct recall/recognition of memory trace stored in intact 
perfectly learned NN memory unit have been found. In particular, a method of taking into account explicitly a 
priori probabilities of alternative hypotheses on the structure of information containing in vectors x(d) and 
initiating memory retrieval and a method for estimation of overall recall/recognition probabilities are proposed. 
Using the derived optimal analytical formulae, empirical ROCs obtained in item recognition tests and empirical 
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mROCs obtained in associative recognition tests were described and the values of intensity of cue, q, for 
some specific experiments were quantitatively estimated; thus, the comparison of theoretical and empirical 
ROCs is a method proposed here to estimate cue indices for specific experiments. It has been shown that 
ROCs might be excluded from the list of empirical findings underpinning popular DPMs of recognition 
memory.  
I am grateful to HINARI (Health Internetwork Access to Research Initiative) for free on-line access to recent 
full-text journals, participants of the KDS-2003 Conference, Varna, Bulgaria, June 16-26, 2003 for helpful 
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