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Abstract:  The localisation and calibration of damage in a structure are often difficult, 

time consuming, subjective and error prone. The importance of a simple, fast and 

relatively inexpensive non-destructive technique (NDT) with reliable measurements is 

thus greatly felt. The usefulness and the efficiency of any such technique are often 

affected by environmental conditions. The definition of damage and the subsequent 

interpretation of the possible consequences due to the damage introduce subjectivity into 

an NDT technique and affect its performance. It is of great importance in terms of 

practical application to find out the efficiency of an NDT technique in a probabilistic way 

for various damage definitions and environmental conditions through the use of receiver 

operating characteristic (ROC) curves. Such variations of performance of an NDT tool 

can be predicted through simulation processes and the test conditions conducive to good 

detections can be isolated and ranked according to their relative efficiency. This paper 

considers a camera based image analysis technique to identify, quantify and classify 

damage in structures at various levels of scale. The general method has been applied to 

identify the affected areas on aluminium due to pitting corrosion. The method depends on 

the optical contrast of the corroded region with respect to its surroundings, performs 

intelligent edge detection through image processing techniques and computes each 

affected and closed region to predict the total area of the affected part along with its 

spatial distribution on a two dimensional plane. The effects of various environmental 

factors on the quality of such images are simulated from an original photograph. The 

objectivity and the amount of available information, quantification and localisation and 

the extent of pitting corrosion are observed along with the various constructed ROC 

curves. The method provides the engineer, the owner of the structure and the end user of 
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the NDT technique with a tool to assess the performance of the structure in an as-built 

condition and decide on the appropriateness of a certain NDT under a given 

environmental condition and a certain definition of damage.  Moreover, it allows 

introducing the findings of the NDT results in the decision chain and in risk analysis.  
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1. INTRODUCTION 

The need of structural health monitoring and assessment using non destructive 

techniques (NDT) are of great importance in the recent times. The oncoming load, the 

material properties and geometry have changed significantly in many structures around 

the world over a period of time since they were built. As these structures are a part 

(sometimes, a key part) of a larger infrastructure network, they play a major role in terms 

of facilitating economic activities and trade (SAMARIS, 2005). Thus, for both existing 

and burgeoning economic zones of importance it is of great interest of the structure 

owners, managers and end users to be informed about the state of the structure in its as 

built condition. Although many NDTs have been developed over a few decades, the 

prime and practical concerns around such techniques revolve around the parameters, the 

location and the time instants/ intervals of the measurements to obtain a correct and 

objective quantification of the structure.  
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Since there is uncertainty related to any NDT method, the efficiency of the 

method can be expressed appropriately in a probabilistic fashion in terms of the receiver 

operating characteristic (ROC) curves. Such curves, when available for various governing 

factors can also act as a sensitivity study and help ranking different NDTs, or 

environmental conditions to obtain more correct results in terms of structural assessment. 

As a result, such a study can identify and isolate the conditions of the operation of an 

NDT tool while simultaneously quantifying its performance.  

A specific example of the need of isolating the operating conditions and 

quantifying the performance of an NDT tool has been felt in recent past during the 

assessment of a metallic pile wharf located at St. Nazaire, a very important harbour on 

the Atlantic side of France in the estuary of Loire river between Nantes and Saint Nazaire 

towns.  Being in the marine environment, the metallic piles are susceptible to many 

corrosion forms among which pitting corrosion is deemed to be the worst one since the 

damage usually progresses deep into the metal and not onto the surface as for uniform 

corrosion. Such corrosion can lead to the damage of the reinforced concrete inside the 

pile or to the leakage of embankment for sheet piles.  

There exist a few indices of determining the presence of this type of corrosion. 

One of the most efficient is the presence, at the metal surface, of a rust coloured bubble 

which is visible even if there is fouling on the metal. The health assessment of such a 

structure is considered to be of great practical importance but the assessment and the 

quantification of these defects are non-trivial. 

In order to assess the damage with respect to time, the owners and the end-users 

use many NDT techniques such as ultra-sonic (US) measurements to obtain the loss of 
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thickness, a powerful parameter for damage description. However, the US measurements 

are essentially local events.  

Divers, who are responsible for carrying out the experiments for the inspection 

and health monitoring of structures are usually provided with a pre-listed guideline 

indicating the locations for carrying out such experiments. Unfortunately, the guidelines 

are often set out by the authorities who do not have prior information about the condition 

of the structures. So the probability of detection of a damage of high extent with possible 

potential for even larger effects (especially pitting corrosion) is low. Under these 

circumstances, an image processing based damage detection technique can be a powerful 

tool for NDT testing in harbour structures before running the US measurements, with the 

aim of selecting the appropriate zones to be assessed.  

Submarine inspections and investigations of localized corrosion have been 

observed by divers in the site of St. Nazaire in addition to the ultra-sonic measurements. 

The recorded video tapes and photographs in the inspection report form the basis of 

identification of the damage conditions on the structure in an as built condition. However, 

the quality of the videotapes had been extremely poor and it was not possible to identify 

the damage quantitatively. The necessity of the isolation of operating conditions, NDT 

rating and interpretation definition directly follow from this practical inability to detect 

the damage.  

Image processing based damage detection and calibration has been very recently 

successfully used as an NDT tool in various structural health monitoring problems. 

Patsias and Staszewski (2002) have identified vibration parameters from a video camera 

based detection system in conjunction with wavelet analysis. Open crack in statically 
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loaded simply supported beam has been identified using image processing and wavelet 

analysis by Rucka and Wilde (2006). Hartman and Gilchrist (2004) have employed a 

video camera based detection of the fatigue of asphalt. Application of such video camera 

based work has also been seen to track the motion of a cable (Gehle & Masri (1998)). 

Multiple cameras have been used to identify damages by using photogrammetric software 

by Benning et.al (2004). Image analysis based identification of human lip from 

photographs has been performed by Barinova and Pospisil (2002). These works lead 

towards a possible image analysis based damage descriptor for corrosion, where the 

corroded regions are optically in contrast with their respective surroundings. Since metal 

ions, in the presence of water, oxygen and/or organic and inorganic acids in the marine 

environment tend to form coloured products, the discolouration due to corrosion is 

usually common. This fact has been observed by Tsushima et.al (1997) in conjunction 

with basic image processing methodology. Chemical treatment of the corroded samples 

in the laboratory usually brings about such contrast. 

On the other hand, the effects of an NDT method on the long term goal of 

structural maintenance and optimized management have been discussed by Rouhan and 

Schoefs (2003) in an example on offshore structures. The role of the probability of 

detection (PoD) and the probability of false alarm (PFA) in a maintenance strategy are 

discussed. Recently it has been extended for stochastic fields of uniform corrosion by 

Schoefs et al. (2007). Vibration based identification of damage in bridge structures and 

the relationship associated only with PoD have been discussed by Alvandi and Cremona 

(2006) very recently where the relative ranking of various NDT methods have been 

emphasized. Study on pitting corrosion in aircraft wings have been related to NDT 
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probabilistically by Harlow and Wei (1999). Zheng and Ellingwood (1998) have 

illustrated uncertainty characterization of NDT techniques related to condition 

assessment of structures.  

It is thus felt that there is a definite scope and necessity of connecting the 

probabilistic information based relative ranking of NDT tools under various 

environmental conditions in conjunction with damage definition based human 

interpretation of the consequences of damage in structures in a case specific manner. In 

this paper, an image processing based damage detection tool has been considered as the 

chosen NDT. Photographs of various qualities due to the change of environmental factors 

have been considered for the purpose of identification considering two alternate 

definitions of damage. The applicability of the NDT tool has been quantified and a 

sensitivity study has been performed probabilistically to identify the important external 

conditions and their relative effects on the detection process.  

 

2. IMAGE PROCESSING BASED DAMAGE DETECTION  

2.1 Image Dependant Information 

The measurement of the quantitative aspects of corrosion is extremely difficult for 

an underwater structure like steel piles. However, information based on the photographs 

of the corroded regions can be made available using techniques related to image 

processing. These photographs can come directly from the piles or can be from 

experimental plates attached to the piles or those corroded in a similar environment 

within the laboratory. The corroded plates can be untreated or chemically treated to 

accentuate the corroded region. A successful identification of the presence, location and 
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extent of damage using such photographs is required by any structural health monitoring 

scheme. In order to better assess the calibration parameters under controlled conditions, a 

case of pitting corrosion on experimentally corroded plates is chosen. Figure 1 shows an 

example of one of the treated plates. The sample is an aluminium plate immersed in an 

aluminium tank for 20 years within the mud zone of a lake very close to the sea near the 

St-Nazaire harbour in cold brackish water. Aluminium is very sensitive to pitting 

corrosion, especially in chloride containing environments and the damaged condition can 

thus be achieved. 

The corroded regions are observed to be in contrast with the background and this 

fact is considered to be the starting point behind damage detection from photographic 

information. Even when the damage samples are available, both from the laboratory and 

from the structure, the quantification of the damage is manual and hence difficult and 

time consuming task. As a result such assessments are usually limited to accurate 

identification of the presence of damage. The information of the geometric properties of 

the damage are less reliable due to the presence of human factor and the time involved 

with such analyses increase greatly even when the number of observations is moderate in 

size. All these problems necessitate the development of an image processing based 

damage detection technique that is easy to handle, more accurate and less time 

consuming.  

2.2 Theoretical Background and Detection Scheme 

The detection method in this paper considers that the damage regions present in the 

photograph are optically different from their surroundings in terms of colour, brightness 

and geometry. The objective is to convert the coloured image to a binary image and 
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identify the edges of the damaged regions successfully. A successful detection ensures 

that the coordinates of all the points lying at the edge of the closed geometry of the 

damages are available. By calibrating the pixel length of the photographs in the 

horizontal and the vertical direction against some pre-existing benchmark of distance in 

the real specimen or structure, the entire spatial geometry of the damaged regions are 

retrieved along with the possibility of post- processing to obtain the statistical measures 

of such geometry. The MATLAB image processing toolbox (MATLAB, 2006) has been 

employed for the proposed detection scheme. The efficiency of the detection lies in the 

contrast of the damage region with respect to its surroundings and the ability of the 

analyzing system to identify such contrasts within a closed geometry. An example of this 

detection is given in Figure 2, where Figure 1 has been successfully analyzed to isolate 

eight major closed damaged areas of irregular geometry. Some spurious features are also 

identified due to the environmental noise but are insignificant with respect to the 

damaged regions. The size of the spurious features is related to false alarm and can be 

connected with the predefined size classification of different damages. This classification 

must be related to the use of false alarm in the maintenance policy as shown by Schoefs 

and Clement (2004). Such detection processes can be helpful for the structural health 

monitoring and assessments of actual structures. The efficiency of the detection depends 

heavily on the quality of the available information. Figures 3a and 3b are presented in this 

regard where a frame of a basic structural inspection (visual) and reconnaissance video of 

the steel piles of the harbour of St. Nazaire has been frozen and analysed to identify the 

possible major damage locations. Distributed discoloration on the piles due to chemical 

action is observed in the image (Figure 3a). Figures 3a and 3b illustrate the fact that the 
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quality of an image analysis based structural health monitoring and assessment technique 

heavily depends on the quality of the obtained image. 

2.3 Statistical Information 

Once the closed geometries and their co-ordinates are identified within the photograph, 

various statistical properties of the geometries can be found. The centroids, the areas 

within each identified object and the major and minor axes of each of the objects have 

been computed in this study as an example using the MATLAB image processing 

toolbox. The summary of the information is provided in Table 1 where the spatial 

variability and the extent of the damage regions have been quantified. Any other 

photograph produces such results and can be related to the actual length scale by 

choosing a pre-existing benchmark.  

It is also important to note that the objects labelled 2 and 3 in Figure 2 are considered 

to be a single object while processing and hence the combined geometric property of the 

system has been rendered instead of their individual statistics. This is due to the fact that 

in the real specimen the damages are in fact physically connected. However, by a proper 

control on preprocessing, lighting and camera resolution these two geometric regions can 

be separated incorporating some additional effort.  

The information provided by Table 1 can also acts as a tool for the relative ranking of 

the damaged locations within the structure. For this particular case the total area of 

damage has been found to be approximately 5.7% of the total area under consideration. 

The unit of length in Table 1 is in pixels and that of area is in square pixels. The terms 

Xbar and Ybar represent the coordinates of the centroids of each labeled damaged region 

in horizontal and vertical direction respectively. With the information on the successful 
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detections and false alarms available, the receiver operating characteristics can be 

constructed. 

 

3. PROBABILISTIC STUDY ON IMAGE PROCESSING BASED DAMAGE            

DETECTION AND CALIBRATION 

3.1 Inspection Results Modeling: Basic Theoretical Concepts. 

 

Applications of image processing have gained popularity very recently in the field of 

structural health monitoring. Patsias & Staszewski (2002) have illustrated that inspection 

using video processing is not perfect when considering on site video recording. 

Luminosity, noise and contrast are quite different from one photograph to the other.  

It has thus become a common practice to model the detection reliability in terms of the 

probability of detection (PoD), the probability of false alarms (PFA) and the Receiver 

Operating Characteristic (ROC) curves. The most common concept which characterizes 

inspection tool performance is the probability of detection. Here the PoD depends on the 

maximum size of the defect and the area of the defect and the PFA depends on the noise 

and the detection threshold. For simplicity, we can consider the area of pitting to be a 

governing parameter involved in the damage process which can be related to the 

consequence or decision making directly. Let Ad (detection threshold) be the minimal 

pitting area under which it is assumed that there is no detection. Thus, the probability of 

detection is defined as 

dPoD(A) P(A A )= ≥                    (1) 
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where A is the measured area and Ad is a deterministic parameter or a random variable. 

This definition implies that PoD is a monotonic increasing function. To complete this 

concept, the probability of false alarm is devoted to deal with the detection of non 

existing defects. In view to introduce these concepts into practicable decision schemes, 

recent works have been carried out (Rouhan and Schoefs (2000) and (2003)). 

3.2 Statistical Modelling of Inspection Results 

 
Knowing the probability density functions (pdf) of the signal and noise and that of the 

noise alone, the computation of PoD and PFA can be performed easily (Rouhan & 

Schoefs (2003)). In practice, there is actually no way to obtain the pdf of a signal and the 

signal and noise together for image processing in harsh conditions where many factors 

affect the inspection results. One way of modelling such parameters is to analyse the 

probabilistic structure of the inspection results and to provide a model consequently. The 

I.C.O.N (Rudlin & Dover 1996, Barnouin et al. 1993) project has been dedicated to the 

inter-calibration of the N.D.T tools with the appropriate checks done on-the-spot in recent 

times for this purpose.  

The image analysis based damage classification procedure conforms to such 

probabilistic information structure. We assume that every correctly detected defect has a 

proper and identifiable shape and can be related to a certain PoD based on how closely 

the extent of damage has been identified once the damage region is detected. On the other 

hand, the PFA is related to identifying a spurious region larger than a predefined 

threshold above which damage is considered significant. In this study we do not rank the 

defects with a given classification to assess the PoD within a given range. Rather, the aim 
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is to assess the PoD for the whole range of observed defects. Accordingly, the PoD and 

PFA are defined as 

n n
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where iA  is the actual extent of damage in the i
th 

damaged region, Ai is the measured 

extent of damage in the i
th 

damaged region, As is the measured extent of damage in a 

region where damage does not exist and Ath is the threshold of the extent of damage 

beyond which the damage is termed significant. The actual extent of the damage iA  is 

usually an ideal condition achieved by a health monitoring and assessment technique and 

is not usually available to the engineer a-priori. However, this factor establishes the 

reference value for the actual damage, and thus in turn affects the effectiveness of the 

technique. Laboratory based, simulation based and benchmarking based studies can be 

effective for the establishment of the parameter iA , the first two methods being 

comparatively much cheaper, rapid and more accessible than a full scale benchmarking. 

The factor Ai is the direct processed output of any assessment or evaluation method is 

usually available and must be compared with the established iA  value. While a source of 

error from the measurements can be related to the error is quantifying the damage, there 

also exists another source of error for any assessment technique in terms of identifying a 

damage where no damage exists, thus giving rise to false alarms. A typical example 

related to the present paper can be regions where due to some spurious colour contrast 
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zone clustering, the image processing based identification demarcates closed geometries 

which are not damaged at all. If the sizes of the wrongly identified closed geometries are 

larger than a preselected size of the damage condition, then it is counted as a false alarm. 

The preselected threshold size of damage can be from mechanical conditions or from 

serviceability constraints or other constraints (including aesthetics) arising both from the 

engineer and the clients’ requirement.  The parameters n, ns and nt denote the total 

number of  correctly identified damage regions, the total number of spuriously identified 

damage regions and the net total number of identified damage regions (both correct and 

incorrect) respectively.  

 For all practical cases, the deviation of the extent of the measured detected 

damaged region does not go beyond 100% of the actual extent of the damaged region and 

thus equation 2 can be considered to be consistent for real life situations. On the other 

hand, any spurious but significant detection will warrant a test or a check at a place where 

no damage is present. Thus, the size of detection does not matter in the case of PFA once 

the threshold/s of significant damage is/are defined.  

 The damage is defined from two different viewpoints, one based on the total area 

of the damaged region and the other based on the major axis of the damaged region. 

Sometimes the area of the damage is not large but the major axis can be large enough to 

have significant effects on the structure. Under those circumstances, significant change of 

result can be expected. 
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4. RECEIVER OPERATING CHARACTERISTICS (ROC) AND THE 

ISOLATION OF OPERATING CONDITIONS 

 

4.1 Damage Identification for Various Operating Conditions 

The quality of the photograph (Figure 1) is assumed to be chiefly affected by luminosity, 

contrast and noise. This corresponds to the on-site parameters which affect the quality of 

submarine pictures. In this paper, three different levels (high, normal and low) of each of 

such affecting factors have been chosen and the effects of such change on the photograph 

are shown is Figure 4. The additive Gaussian noise has been characterised by its 

parameters of the normal distribution and can be introduced through MATLAB image 

processing toolbox. The luminosity is changed by changing the amount of ‘whites’ in 

each pixel while the contrast change can be characterized by tuning the differences 

between the adjacent colours in each pixel. This can be obtained easily through 

commercial photo editors, where the luminosity and contrasts are usually marked within 

a scale of zero to hundred. The nomenclature followed for each of such realisation of 

external condition is provided in Table 2. It is clearly observed that certain combinations 

of luminosity, contrast and noise pose a much greater difficulty in terms of correct 

identification and estimation of the damage extent than others. 

An image is essentially a rectangular grid of pixels and the centre of a pixel 

occupies the integer co-ordinates in the grid so produced. The interior of each pixel can 

be further subdivided into a continuous spatial coordinate system also by considering that 

the local origin for each pixel lies at the top left hand corner of the pixel. Each pixel is 

associated with a vector of number describing its hue-saturation value. The grey-level 
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threshold of the image is computed by minimizing the interclass variances of the black 

and white pixels using Otsu’s method using MATLAB 7.0 image processing toolbox 

(MATLAB, 2006). The method is also used in the field of computer vision and is aimed 

at separating the foreground from the background.  Pixels below the threshold assume a 

value zero and turn black, while the other pixels turn white. This enables to convert a 

complex matrix from the original image to a simpler binary black and white image. This 

transformation is important when the feature of interest is in contrast with its 

surroundings in the image. However, the automatically computed grey-level threshold 

does not turn out to be the best for appropriate detection of damaged region in the image 

for the present study and certain adjustments of the threshold were  carried out to obtain 

the best possible information from the post-processing of the existing image. This is 

because of the fact that the identification of damaged regions or the regions of interest is 

essentially a local and image specific phenomenon on the two-dimensional photographic 

plane and thus the maximisations of the interclass variances in the sub-regions of interest 

is not always possible. A possible solution to this problem is to incorporate a correction 

to the grey-level threshold and heuristically find the best value of the threshold 

maximising the visual information of the picture in terms of damage identification.   

Figure 5 illustrates the adjustments of the grey-level threshold required for various 

images corresponding to various environmental conditions. The non-adjusted threshold 

values refer to that obtained from Otsu’s method, while the adjusted values correspond to 

the values obtained from heuristic thresholding. It is important to note here that for 

certain conditions, the heuristically set best thresholding can be significantly different 
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from that obtained by Otsu’s method.  The corresponding improvement in each of the 

images for such re-adjustment has been qualitatively presented in Table 3.  

 

4.2 Effects of the Damage Descriptors 

The ROC for different quality of images can be constructed and interpreted based 

on the parameter incorporated to define and describe the damage. In the present study, 

two alternative definitions of damage using the damaged area and the major axis of the 

damaged area as descriptors are presented. The ROC based on the area dependent 

damage and the major axis dependent damage are respectively presented in Figures 6a 

and 6b along with the improvement after the readjustment of grey-level threshold. Figure 

6 illustrates the fact that the area based identification is more appropriate in the current 

situation rather than the major axis based identification, as is reflected by the consistent 

POD-PFA scatter, where most of the points belong to the domain of high efficiency. On 

the other hand, Figure 6 allows observing the improvement after re-adjusting the grey- 

level threshold on a quantitative term. The effect is quite pronounced in Figure 6b where 

more number of points enter a considerably higher domain of efficiency.  The area based 

damage detection is thus found to be suitable in the present case and the ROC based on 

the damage definition using major axis is observed to have a comparatively higher spread. 

The improvement of the ROC after readjustment of the grey-level threshold is found to 

be pronounced in the case of a major-axis based damage detection as well. Many of the 

images are found unsuitable for a damage definition based on major axis even though 

these are suitable for a definition based on area. The effect of damage descriptors for 

defining the damage extent on the efficiency of the NDT method is thus illustrated . 



 17 

 

 

 

4.3 Effects of Environmental Parameters and Isolation of Operating Conditions 

The sensitivity of each affecting environmental parameter for ROC has been 

investigated in details for different damage definitions and improvement of image by post 

processing. Under these conditions it is easier to isolate the dominant environmental 

effects and effects that can be improved.  Figures 7a (area based sub-classification) and 

7b (major axis based sub-classification) illustrate this. The POD-PFA scatter has been 

plotted in terms of environmental sub-classifications in this figure. The non-adjusted and 

the adjusted grey-level thresholding conditions have been marked in the legend as ‘O’ 

and ‘N’ respectively. The interactions between pairs of environmental parameters are 

presented in each of the figures respectively while the third parameter is kept at its 

normal level. For example, the first sub-graph of Figure 7a investigates the interaction 

between normal luminosity for various levels of contrast in the presence of normal noise 

for both adjusted and non-adjusted cases. These parametric investigations help 

identifying, classifying and prioritizing the important combinations of environmental 

factors on the quality of an assessment technique.   The presence of high noise is found to 

be a major deterrent in terms of damage identification in the present case for both major 

axis based and area based representation while the combination of high luminosity in 

conjunction with high contrast is not recommended either. Low noise and normal 

luminosity are found to be preferable operating conditions for the present case. Low and 

normal contrast conditions are preferable since the discoloration of the damaged region is 
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significant. However, these conditions can pose a difficulty to the detection process if the 

discoloration merges with the surroundings with a change in contrast, thus masking the 

actual damage region. Table 4 provides the PoD-PFA values for the twenty seven cases 

investigated for various environmental conditions. The terms ‘old’ and ‘new’ refer to the 

non-adjusted and the adjusted grey-level thresholds respectively. A first measure of the 

quality of a NDT from ROC can be defined to be the distance between the ideal 

inspection with coordinates (PFA=0;PoD=1) and the point of the ROC under 

consideration for a site-specific condition assessment regime. This approach can be 

improved with the knowledge of the maintenance policy within the structural health 

monitoring framework in terms of repair, maintenance and new inspection along with the 

binary (detection or not) inspection results. The isolation of the operating conditions can 

thus be directly related to an improvement in the general damage detection process. 

 

 

5. CONCLUSIONS 

The paper illustrates the isolation of suitable events for structural health monitoring for a 

specific NDT tool from a large number of outcomes to maximize the receiver operating 

characteristic of such tool. An image processing based damage classification 

methodology to identify corrosion has been used and the subjectivity of the image based 

method has been emphasized. The possibility of improvement of the detection process of 

an NDT through post processing of acquired data is illustrated through an example. The 

effects and the relative importance of environmental parameters affecting the detection 

process have identified and the quantification of sensitivity has been achieved through the 
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ROC curves. The illustrated methodology is very general and provides with a case 

specific construction of ROC. The importance of the definition of damage and 

interpretation of the consequences of it, i.e. the limit state has been observed.  This 

general methodology can be used for any NDT tool by practicing professionals as a 

guideline for choosing conducive events for structural health monitoring and damage 

detection, prioritizing and ranking the major affecting environmental factors and 

estimating and case specific quantification of the efficiency of such NDT. In terms of 

application to the maintenance of harbors, the choice of better environmental conditions 

and video devices can help achieve a better ROC under current conditions and 

recommend a practical guideline defining the on-site protocol. On the other hand, the 

methodology provides a calibrated ROC to analyze the risk of wrong assessment using 

the result of image processing when the measurements of a set of simple environmental 

conditions are available.  
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Figure 5.  
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Figure 6a. 
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Figure 6b. 
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Figure 7a. 
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Figure 7b. 
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Damage 

No. 

Xbar Ybar Major 

Axis 

Minor 

Axis 

Area % 

Area 

1 273 56 51 36 1151 0.9 

2 &3 173 139 66 34 1597 1.25 

4 232 200 30 24 539 0.42 

5 311 186 56 24 985 0.77 

6 346 212 34.5 20.3 494 0.38 

7 178 280 44 39.4 1272 0.99 

8 298 295 54 31.2 1240 0.97 

 

Table 1.  
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  Quality  

Image 

Number 

Luminosity Contrast Noise 

1 Normal Normal Normal NNN 

2 Normal Normal Low NNL 

3 Normal Normal High NNH 

4 Normal  Low Normal NLN 

5 Normal  Low Low NLL 

6 Normal Low High NLH 

7 Normal High Normal NHN 

8 Normal High Low NHL 

9 Normal High High NHH 

10 Low Normal Normal LNN 

11 Low Normal Low LNL 

12 Low Normal High LNH 

13 Low Low Normal LLN 

14 Low Low Low LLL 

15 Low Low High LLH 

16 Low High Normal LHN 

17 Low High Low LHL 

18 Low High High LHH 

19 High Normal Normal HNN 

20 High Normal Low HNL 

21 High Normal High HNH 

22 High Low Normal HLN 

23 High Low Low HLL 

24 High Low High HLH 

25 High High Normal HHN 

26 High High Low HHL 

27 High High High HHH 

 

Table 2.  
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 Quality Level of Identification 

Image 

Number 

Luminosity Contrast Noise Without 

Threshold 

Adjust ment 

With 

Threshold 

Adjustment 

1 Normal Normal Normal Somewhat Somewhat 

2 Normal Normal Low Somewhat Somewhat 

3 Normal Normal High Somewhat Somewhat 

4 Normal  Low Normal Good Good 

5 Normal  Low Low Somewhat Somewhat 

6 Normal Low High None None 

7 Normal High Normal Good Good 

8 Normal High Low Good Good 

9 Normal High High Somewhat Good 

10 Low Normal Normal None Good 

11 Low Normal Low None Good 

12 Low Normal High None Somewhat 

13 Low Low Normal None Good 

14 Low Low Low None Good 

15 Low Low High None Poor 

16 Low High Normal None Good 

17 Low High Low Somewhat Good 

18 Low High High None Somewhat 

19 High Normal Normal Somewhat Good 

20 High Normal Low Somewhat Good 

21 High Normal High None Somewhat 

22 High Low Normal None Somewhat 

23 High Low Low Somewhat Good 

24 High Low High None None 

25 High High Normal None None 

26 High High Low Somewhat Fairly Good 

27 High High High None None 

 

Table 3.  
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Case POD PFA 

 Area Based Major Axis 

Based 

Area Based Major Axis 

Based 

 Old New Old New Old New Old New 

1 0.8714 0.8714 0.8942 0.8942 0.0943 0.0943 0.8689 0.8689 

2 0.94 0.94 0.91 0.91 0.06 0.06 0.61 0.61 

3 0.78 0.79 0.9969 0.995 0.1079 0.1578 0.984 0.989 

4 0 0.7782 0 0.9212 0 0.104 0 0.8049 

5 0.2606 0.2606 0.46 0.46 0.018 0.018 0.877 0.877 

6 0 0 0 0 0 1 0 1 

7 0.533 0.533 0.58 0.58 0.0264 0.0264 0.9192 0.9192 

8 0.67 0.67 0.7153 0.7153 0.023 0.023 0.9 0.9 

9 0.39 0.03 0.68 0.19 0.07 0.0017 0.964 0.11 

10 0 0.6939 0 0.84 0 0.111 0 0.68 

11 0.83 0.84 0.71 0.77 0.01 0.04 0.68 0.5 

12 0 0.024 0 0.176 0 0.0025 0 0.111 

13 0 0.9 0 0.95 0 0.2 0 0.83 

14 0 0.69 0 0.7253 0 0.0231 0 0.384 

15 0 0 0 0 0 1 0 1 

16 0.124 0.8425 0 0.8228 0.04 0.135 0 0.2727 

17 0.1083 0.5004 0.334 0.6643 0.04 0.0074 0.64 0.2 

18 0 0 0 0 0 1 0 1 

19 0.213 0.183 0.4534 0.453 0.02 0.02 0.9 0 

20 0.2 0.2 0.3721 0.42 0.0042 0.017 0.65 0 

21 0.4957 0.42 0.8956 0.69 0.0642 0.0317 0.97 0.43 

22 0.1443 0 0.34 0 0.011 0 0.7838 0 

23 0.3372 0.3372 0.5173 0.5173 0.015 0.015 0.89 0 

24 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 

26 0.1635 0.18 0.3136 0.39 0.004 0.007 0.6364 0 

27 0 0 0 0 0 0 0 0 

 

Table 4. 

 


