## Rock bed thermal storage: Concepts and costs

Cite as: AIP Conference Proceedings 1734, 050003 (2016); https://doi.org/10.1063/1.4949101 Published Online: 31 May 2016

Kenneth Allen, Theodor von Backström, Eugene Joubert, et al.

## ARTICLES YOU MAY BE INTERESTED IN

Parametric analysis of a packed bed thermal energy storage system
AIP Conference Proceedings 1850, 080021 (2017); https://doi.org/10.1063/1.4984442
Capital cost expenditure of high temperature latent and sensible thermal energy storage systems
AIP Conference Proceedings 1850, 080012 (2017); https://doi.org/10.1063/1.4984433

Experimental and numerical investigation of a packed-bed thermal energy storage device AIP Conference Proceedings 1850, 080027 (2017); https://doi.org/10.1063/1.4984448


# Rock Bed Thermal Storage: Concepts and Costs 

Kenneth Allen ${ }^{1, \text { a) }}$ Theodor von Backström ${ }^{1, \mathrm{~b})}$, Eugene Joubert ${ }^{2, \mathrm{c})}$ and Paul Gauché ${ }^{3, \text { d }}$<br>${ }^{1}$ Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag XI Matieland 7602, South Africa<br>${ }^{2}$ Centre for Renewable and Sustainable Energy Studies, University of Stellenbosch<br>${ }^{3}$ Sasol Solar Energy Researcher and Helio100 Director, University of Stellenbosch<br>${ }^{\text {a) }}$ Corresponding author: kallen@sun.ac.za<br>${ }^{\text {b) }}$ twvb@sun.ac.za<br>${ }^{\text {c) }}$ ecj@sun.ac.za<br>${ }^{\text {d) }}$ paulgauche@sun.ac.za


#### Abstract

Thermal storage enables concentrating solar power (CSP) plants to provide baseload or dispatchable power. Currently CSP plants use two-tank molten salt thermal storage, with estimated capital costs of about 22-30 $\$ / \mathrm{kWh}_{\text {th }}$. In the interests of reducing CSP costs, alternative storage concepts have been proposed. In particular, packed rock beds with air as the heat transfer fluid offer the potential of lower cost storage because of the low cost and abundance of rock. Two rock bed storage concepts which have been formulated for use at temperatures up to at least $600^{\circ} \mathrm{C}$ are presented and a brief analysis and cost estimate is given. The cost estimate shows that both concepts are capable of capital costs less than $15 \$ / \mathrm{kWh}_{\mathrm{th}}$ at scales larger than $1000 \mathrm{MWh}_{\mathrm{th}}$. Depending on the design and the costs of scaling containment, capital costs as low as $5-8 \$ / \mathrm{kWh}_{\mathrm{th}}$ may be possible. These costs are between a half and a third of current molten salt costs.


## INTRODUCTION

Thermal energy storage is a key component of concentrating solar power (CSP) plants because it enables the generation of electrical power to meet demand, an increasingly necessary capability as the installed capacity of wind turbines and photovoltaics increases. Since photovoltaics are cheaper than CSP [1], thermal storage is likely to be the main reason for constructing CSP plants. At present two-tank molten sodium/potassium nitrate salt is the commercially favoured thermal storage solution. Molten salt capital costs are about 22-30 $\$ / \mathrm{kWh}_{\mathrm{th}}$, and Kolb et al. [2] estimated that a 9 hr two-tank molten salt thermal storage system contributes $13 \%$ of the direct costs associated with the LCOE (levelised cost of electricity) for a $100 \mathrm{MW}_{\mathrm{e}}$ central receiver plant. Cost reduction of the storage system will have a measurable effect on the total plant cost. Halving the storage cost would, all other costs remaining the same, reduce the direct cost by $6 \%$ and the total LCOE (which includes interest, operational and indirect costs) by $4 \%$. Additionally, storage at higher temperatures than those permitted by the current molten salt mix $\left(565^{\circ} \mathrm{C}\right)$ would allow higher power block efficiencies, further reducing the LCOE.

Nearly $60 \%$ of the molten salt system cost referred to by Kolb et al. is contributed by the salt material cost (11$12 \$ / \mathrm{kWh}_{\text {th }}$ ), so alternatives which make use of lower-cost materials should be considered. One alternative is packed bed thermocline storage. In particular, rock beds with air as the heat transfer fluid have the potential to provide lowcost storage at temperatures up to at least $600^{\circ} \mathrm{C}$ due to the extremely low cost of rock (about $0.02 \$ / \mathrm{kg}$ for commercially crushed rock in South Africa [3]; 12 ZAR $\approx 1$ US\$). Rock is an abundant material, so there should be few supply limitations, although long-distance transport to regions without suitable material is undesirable, as transport can cause the cost of the rock to escalate rapidly. A rock bed thermal storage concept constructed by Zanganeh et al. [4] in Switzerland for use in the temperature range from $500-600{ }^{\circ} \mathrm{C}$ has proven the feasibility of this type of storage system, and a commercial system is being commissioned in Morocco.

The use of air as a heat transfer fluid poses a number of difficulties: unlike molten salt, a high volumetric flowrate of air is required to transport thermal energy. This requires large cross-sectional areas for airflow if large pressure drops - and the consequent pumping power and cost - are to be avoided. At the same time, it is desirable to keep the containment surface area requiring thermal insulation to a minimum, due to the high cost of insulation. Additionally, ratcheting of randomly packed beds [5] may lead to containment failure.

Two concepts that were formulated to holistically address these issues are discussed in this paper. The discussion includes limited thermal modelling and cost estimates. The concept development has benefitted from research on bed flow and thermal characteristics, rock packing, duct formation, and optimum design [6-8].

## ROCK BED CONCEPTS

Both concepts make use of a pile of rock with unconstrained sides, permitted to form at the natural angle of repose. This should eliminate or reduce thermal ratcheting and related containment complications. The first concept is the patent of Kröger [9], and the second is the patent of Gauché [10]. In this work, the envisioned usage of these concepts is to supply thermal energy to a steam Rankine cycle, which will require thermal storage at temperatures in the region of $600^{\circ} \mathrm{C}$. However, provided that the available rock is suitable for use at higher temperatures, there is no reason why the concepts can't be used at temperatures above $600^{\circ} \mathrm{C}$, with additional insulation as may be needed.

## Concept 1

In this concept from Kröger [9], a rock bed is formed under an airtight containment structure (Figure 1). During charging, the hot air is introduced at the top of the bed (as opposed to the bottom) to reduce natural convection caused by buoyancy effects, since natural convection may destabilise the thermocline. The large plenum at the top ensures that the hot air with low density will have a large cross-sectional area through which to flow, thereby reducing the pressure drop and blower pumping costs. During discharging, the airflow direction is reversed and cold air is blown or drawn into the bottom of the bed from where it passes through the bed and into the top plenum.


FIGURE 1. Packed bed concept of Kröger [9] showing (a) ducts, hot \& cold regions; and (b) cross-sectional view on A-A
A cost disadvantage of this concept is that the entire surface area, which will typically contain air at temperatures around $600^{\circ} \mathrm{C}$, needs to be thermally insulated. Insulation costs are high, particularly at small scales where the surface area to volume ratio is large (as discussed later in this paper - see Table 3 - it can contribute a third of the direct capital cost (excluding labour) at a scale of the order of 100 MWh ), which is why Concept 2, although having potential difficulties with thermocline destabilisation, is attractive economically.

## Concept 2

Concept 2 from Gauché [10] is unconventional in that the hot air is introduced at the centre of the bed base and allowed to flow to the outer surfaces during charging. An illustration is shown in Figure 2. The advantage of this concept is that the containment structure - if one is used - requires no thermal insulation. The only insulation requirement is under the base of the rock bed, depending on the thermal resistance of the ground. Provided that the
blower can be placed on the hot air inlet duct side of the storage, no containment is required, and the charging air that flows through the rock bed can flow freely into the surrounding atmosphere. During discharging, air is drawn (if there is no containment) or blown through the bed from the outer surface to the centre duct. The cost reduction that is possible by eliminating the insulation and, depending on the blower position, the containment structure, makes it a very attractive alternative. Technically, this concept may be higher risk than Concept 1, because thermocline destabilisation is a possibility as a consequence of natural convection caused by buoyancy effects, unless the rock is sufficiently small. According to Elder [11] natural convection and destratification should be negligible for a porous medium of depth $L$ heated from below provided that the Rayleigh number is less than 40 , a requirement which is fulfilled [12] if

$$
\begin{equation*}
L<8.6 \times 10^{-4} / D^{2} \tag{1}
\end{equation*}
$$

It is not clear what definition of particle diameter $D$ was used by [12], but this provides a rough estimate of particle diameter for thermocline stability. For $D=0.02 \mathrm{~m}, L<2.2 \mathrm{~m}$, and for $D=0.01 \mathrm{~m}, L<8.6 \mathrm{~m}$ to ensure stability. Since rock diameters (volume-surface area ratio or volume equivalent sphere diameter) for this application of packed beds are likely to be between $0.01-0.03 \mathrm{~m}$ (for example [4,8]), it is possible that thermocline stability will be a problem unless measures are taken to limit natural convection.


FIGURE 2. Packed bed concept of Gauché [9]

## TEMPERATURE PROFILE AND COST ESTIMATE DETAILS

## Temperature Profile

The thermal performance of Concept 1 was modelled by means of the E-NTU method of Hughes [13,14]. This method assumes one-dimensional fluid flow and neglects thermal radiation and interparticle thermal conduction through the bed. The thermal capacity of the sloping edge of the rock bed is neglected, essentially assuming that all flow in the bed is in the core region. Natural convection effects are neglected.

Crushed rock is irregular and non-uniform, and it is necessary to define the particle diameter. In this work, the particle diameter $D_{v}$ is the average volume-equivalent sphere diameter. All E-NTU calculations in this paper made use of this definition. For $n$ samples of volume $V_{p i}$,

$$
\begin{equation*}
D_{v}=\left(\frac{6}{\pi}\left[\frac{1}{n} \sum_{i=1}^{n} V_{p i}\right]\right)^{1 / 3} \tag{2}
\end{equation*}
$$

For the crushed rock tested by [8], $D_{v}$ is approximately related to the total bed particle volume-to-surface area diameter $D$ by the relation

$$
\begin{equation*}
D=6 \Sigma V_{p} / \Sigma A_{p} \approx 0.8 D_{v} \tag{3}
\end{equation*}
$$

The simplified Nusselt number correlation used in the Hughes E-NTU method is only for air-rock beds [8]:

$$
\begin{equation*}
N u_{v}=h D_{v} / k=\operatorname{Re}_{p v}^{0.6} \tag{4}
\end{equation*}
$$

where $h$ is the surface-area heat transfer coefficient, $k$ the air thermal conductivity, and $R e_{p v}$ the Reynolds number defined in terms of the fluid viscosity $\mu$ and mass flux $G$ through the packed bed:

$$
\begin{equation*}
\operatorname{Re}_{p v}=G D_{v} / \mu \tag{5}
\end{equation*}
$$

For this work, the bed is charged and discharged at a constant mass flux of $0.2 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}\left(G_{c}\right)$ and $0.1 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}\left(G_{d}\right)$ respectively, at inlet air temperatures of $600^{\circ} \mathrm{C}\left(T_{c}\right)$ and $20^{\circ} \mathrm{C}\left(T_{d}\right)$ respectively. The bed is charged for 8 hrs during the day $\left(t_{c}\right)$ - as would be the case from a solar receiver - and discharged for $16 \mathrm{hrs}\left(t_{d}\right)$, as would be the case in a CSP plant operating in such a way as to provide power during the night.

The input parameters used for calculating the temperature profile are summarised in Table 1. The air properties were based on the tabulated values in Incropera et al. [15]. The void fraction ( $\varepsilon$ ) of 0.45 was based on the average of the measured void fractions for the rock tested previously [7]. It is possible that lower void fractions may occur, particularly if the rock compacts with packing depth [4]. For the same bed dimensions and a lower void fraction, the thermal capacity of the bed will increase, so using a void fraction of 0.45 will result in a conservative estimate of the thermal capacity.

TABLE 1. Input values for E-NTU temperature profile calculation

| Parameter | Value | Parameter | Value |
| :--- | :---: | :--- | :---: |
| $c_{p}\left(55^{\circ} \mathrm{C}\right)$ | $815 \mathrm{~J} / \mathrm{kgK}$ | $T_{d}$ | $20^{\circ} \mathrm{C}$ |
| $D$ (approx.) | 0.02 m | $t_{c}$ | 8 hrs |
| $D_{v}$ | 0.025 m | $t_{d}$ | 16 hrs |
| $G_{c}$ | $0.2 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$ | $p_{\text {amb }}$ (ambient pressure) | 100000 Pa |
| $G_{d}$ | $0.1 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$ | Greek alphabet |  |
| $L$ | 11 m | $\varepsilon$ | 0.45 |
| $T_{c}$ | $600{ }^{\circ} \mathrm{C}$ | $\rho_{p}$ (rock density) | $2700 \mathrm{~kg} / \mathrm{m}^{3}$ |

The thermocline in the bed typically takes 15-30 charge-discharge cycles to reach its steady cyclic state [4], so 40 consecutive charge-discharge cycles were simulated. Bed air outlet temperatures during charging and discharging are plotted in Figure 3 for some of the cycles. Because the air flow direction is reversed between charging and discharging, the bed inlet during charging functions as the bed outlet during discharging. Similarly, the bed outlet during charging functions as the bed inlet during discharging.

The charging air outlet temperature rises by nearly $20^{\circ} \mathrm{C}$ at the end of charging, which means that about $1 \%$ of the charging energy is lost. This is a consequence of the non-ideal thermocline in the packed bed; the rock mass has a maximum theoretical energy capacity (assuming that the rock all undergoes a temperature change from $20^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ ) nearly 2.5 times larger than the energy transported to the bed by the charging air. Lengthening of the bed would reduce the loss, but increase the pressure drop. The bed parameters used here are based on preliminary costoptimum work [8], and there is scope for further calculations to determine the optimum bed size for the lowest LCOE.


FIGURE 3. Packed bed air outlet temperature profiles during (a) charging and (b) discharging

## Input Costs

The input costs used for this work are summarised in Table 2 and are generally based on South African costs. It is assumed that the rock is sourced from the area where the bed is constructed (within a distance of about 1 km ) and that no long-distance transportation costs are incurred. The unit cost of the rock and insulation is based on quotations [8, 16]. The stainless steel ducting cost was based on $5 \$ / \mathrm{kg}$ [17], the blower cost is scaled from a quotation [18] and the control, instrumentation and spares cost is directly from Kolb et al. [2]. The containment cost of $2500 \mathrm{R} / \mathrm{m}^{2}$ floor area was based on the cost of steelwork. The labour cost (based on [19-21]) is assumed to be $30 \%$ of the total cost for Concept 2, and $35 \%$ for Concept 1 , since this requires installation of the insulation. Given that relatively unskilled labour is required, a cost at the lower end of the spectrum of $30-60 \%$ of total cost is reasonable.

TABLE 2. Input values for cost estimate

| Parameter | Value | Parameter | Value |
| :--- | :---: | :--- | :---: |
| $C_{r}$ (rock) | $0.25 \mathrm{R} / \mathrm{kg}$ | $C_{s}$ (instrument., spares) | $15 \mathrm{R} / \mathrm{kWh}_{\mathrm{th}}$ |
| $C_{i}$ (insulation) | $3000 \mathrm{R} / \mathrm{m}^{2}$ | $C_{w}$ (containment) | $2500 \mathrm{R} / \mathrm{m}^{2}$ |
| $C_{d}$ (duct) | $60 \mathrm{R} / \mathrm{kg}$ | $C_{l}$ (labour \% of total cost) | $30-35 \%$ |

The duct diameter is chosen to keep the air flow speed below $10 \mathrm{~m} / \mathrm{s}$. The internal diameter is limited to 3.5 m based on the sizes commercially available (typically $<2.5 \mathrm{~m}$ ). It is assumed that multiple ducts are used when larger crosssectional areas are required, which is why the relative duct cost increases from the $10 \mathrm{MW}_{\text {th }}$ estimate to the $100 \mathrm{MW}_{\mathrm{th}}$ estimate given in Table 3.
For these initial cost estimates, it is assumed that Concept 2 requires the same mass of rock as Concept 1 . Louw's [6] work on Concept 2 shows that less than half of the bed's total theoretical thermal capacity can be used. His computational work was only for one charge-discharge cycle and neglected the thermocline spreading which occurs with repeated charging and discharging; this would further reduce the usable percentage of the bed capacity, which means that the assumption of similar rock mass is reasonable, since Concept 1 typically has a usable capacity of at most 30-40 \% of the maximum theoretical capacity.

## FINDINGS

Estimated capital costs are summarised in Table 3 for a $10 \mathrm{MW}_{\text {th }}\left(160 \mathrm{MWh}_{\text {th }}\right)$ and $100 \mathrm{MW}_{\text {th }}\left(1600 \mathrm{MWh}_{\text {th }}\right)$ rock bed. The total cost at the bottom of the table includes labour. The Concept 1 component costs are illustrated as a percentage of the total (excluding labour) in Figure 4. This shows the potential cost advantage in eliminating the need for thermal insulation with Concept 2.

a) $\mathbf{1 0} \mathrm{MW}_{\text {th }}$

b) $\mathbf{1 0 0} \mathrm{MW}_{\text {th }}$

FIGURE 4. Capital cost estimate comparison showing influence of scaling on component costs for Concept 1

TABLE 3. Component cost estimates for Concept $1 \& 2$ (Nominal capacity of 16 hrs. 12 ZAR $=1$ US\$)

| Component | Cost, Concept 1, $\$ / \mathbf{k W h} \mathbf{t h}$ |  | Concept 2 w containment, $\$ / \mathbf{k W h}_{\text {th }}$ |  | Concept 2 w/o containment,$\$ / \mathbf{k W h}_{\text {th }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $10 \mathrm{MW}_{\text {th }}$ | $100 \mathrm{MW}_{\text {th }}$ | $10 \mathrm{MW}_{\text {th }}$ | $100 \mathrm{MW}_{\text {th }}$ | $10 \mathrm{MW}_{\text {th }}$ | $100 \mathrm{MW}_{\text {th }}$ |
| Containment | 1.8 | 0.6 | 1.8 | 0.6 | 0 | 0 |
| Insulation | 5.2 | 1.6 | 0 | 0 | 0 | 0 |
| Rock | 1.9 | 0.8 | 1.9 | 0.8 | 1.9 | 0.8 |
| Ducting | 0.6 | 0.7 | 0.6 | 0.7 | 0.6 | 0.7 |
| Blower \& instrumentation | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
| Total cost | 16.7 | 7.7 | 8.1 | 4.8 | 5.5 | 4.0 |

The cost per unit energy is shown as a function of storage capacity in Figure 5.


FIGURE 5. Cost summary for Concept $1 \& 2$

When scaled up to $100 \mathrm{MW}_{\mathrm{th}}, 1600 \mathrm{MWh}_{\mathrm{th}}$, the cost of Concept 1 falls to $5-10 \$ / \mathrm{kWh}_{\mathrm{th}}$ because of a lower surface area to volume ratio. This compares favourably to two tank molten salt ( $22-30 \$ / \mathrm{kWh}_{\mathrm{th}}$ [2]). The potential cost saving for Concept 2 at scales less than $1000 \mathrm{MWh}_{\text {th }}$ is $50 \%$ (or more) of the cost of Concept 1 .

It is of interest to compare costs with two previous publications on low-cost packed bed storage. Hardy et al. [22] give capital cost estimates between $0.03-0.12 \$ / \mathrm{kWh}_{\text {th }}$ for a $300 \mathrm{MW}_{\text {th }}, 180$ day ( $1300000 \mathrm{MWh}_{\text {th }}, 150 \mathrm{MW}$ year) air-rock bed storage facility for temperatures in the region of $500^{\circ} \mathrm{C}$. Adjusted for inflation to 2015 , this is $0.1-$ $0.5 \$ / \mathrm{kWh}_{\text {th }}$ [23]. Apart from the air-distribution ducts, their design concepts make use of rock, clay and sand only for insulation and containment, so this represents the minimum achievable cost for extremely large-scale storage. The $63 \mathrm{MW}_{\mathrm{th}}$, $5000 \mathrm{MWh}_{\text {th }}$ conical slag mound concept of Curto and Stern [24], which also made use of only slag/rock, sand and clay for the bed insulation and containment, has an estimated capital cost of $0.5-0.7 \$ / \mathrm{kWh}_{\text {th }}$, which amounts in 2015 terms to $1.4-2 \$ / \mathrm{kWh}_{\mathrm{th}}$, about a half to a third of the Concept 2 cost without containment at the same scale.

## CONCLUSION

Two rock bed thermal storage concepts intended for high temperature ( $>500^{\circ} \mathrm{C}$ ) storage have been presented with preliminary capital cost estimates. The predicted costs for both concepts are less than $20 \$ / \mathrm{kWh}_{\mathrm{th}}$ at capacities above $100 \mathrm{MWh}_{\mathrm{th}}$. These costs are competitive with two-tank molten salt storage, and the costs may be as low as 5$8 \$ / \mathrm{kWh}_{\mathrm{th}}$ for capacities above $1000 \mathrm{MWh}_{\mathrm{th}}$.

Of the two concepts, Concept 1 is perceived to be a lower risk design, since the chance of natural convection is smaller. However, it is more expensive, particularly at small scales $\left(<100 \mathrm{MWh}_{\mathrm{th}}\right)$ where the containment and insulation surface area is unfavourably large relative to the enclosed volume.

Future work on these concepts entails a detailed civil engineering study on the containment and rock bed construction, which will permit a refined cost estimate. A thermal model for Concept 2 is to be developed and tested with experimental results. It is hoped that funding will be obtained to construct a proof-of-concept facility.

## ACKNOWLEDGMENTS

Thanks to the CRSES and STERG for funding, and to the Department of Mechanical and Mechatronic Engineering for providing support for the experimental work which was used as a basis for this study.

## REFERENCES

1. Kost, K., Mayer, J.N., Thomsen, J., Hartmann, N., Senkpiel, C., Philipps, S., Nold, S., Lude, S., Saad, N., Schlegl, T.. Levelized Cost of Electricity: Renewable Energy Technologies: November 2013 (Fraunhofer ISE, 2013)
2. Kolb, G.J., Ho, C.K., Mancini, T.R., Gary, J.A.. Power tower technology roadmap and cost reduction plan, SAND2011-2419 (Sandia National Laboratories, Albuquerque, 2011)
3. De Aar stonecrushers, 2012. Invoice
4. Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M., Steinfeld, A.. Solar Energy 86: 3084-3098 (2012)
5. Flueckiger, S., Yang, Z., Garimella, S.V.. Applied Energy 88: 2098-2105 (2011)
6. Louw, A.D.R.. Discrete and porous computational fluid dynamics modelling of an air rock bed thermal energy storage system, M thesis (University of Stellenbosch, 2014)
7. Coetzee, C.J., Nel, R.G.. Powder Technology 264: 332-342 (2014)
8. Allen, K.G.. Rock bed thermal storage for concentrating solar power plants, PhD dissertation, University of Stellenbosch, 2014
9. Kröger, D.G.. Packed Rock Bed Thermal Storage, South African provisional patent 2013/03068 (2013)
10. Gauché, P.. Thermal Energy Storage Facility, South African provisional patent 2014/03555 (2014)
11. Elder, J.W.. Journal of Fluid Mechanics 27.1: 29-48 (1967)
12. Riaz, M., Blackshear, P.L., Pfannkuch, H.O.. High temperature energy storage in native rocks, ISES Joint Conference: Sharing the Sun, 8: 123-137 (1976)
13. Hughes, P.J.. The design and predicted performance of Arlington House, M thesis, University of Wisconsin Madison, 1975
14. Duffie, J.A., Beckmann, W.A.. Solar engineering of thermal processes, $2^{\text {nd }}$ edition (Wiley, New York, 1991)
15. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.. Introduction to Heat Transfer, 5th edition (John Wiley and Sons, Hoboken, 2007)
16. Isover St-Gobain, 2015-3-13, Quotation.
17. Alibaba,
http://www.alibaba.com/trade/search?fsb=y\&IndexArea=product en\&CatId=\&SearchText=large+diameter+st ainless+steel+pipe and http://www.alibaba.com/product-detail/Professional-large-diameter-600mm-stainlesssteel 60163859603.html?spm=a2700.7724838.35.1.GYdbAZ Accessed $2^{\text {nd }} \& 21^{\text {st }}$ July 2015
18. CFW Fans, 2015-4-9, Quotation
19. Bingham, B.J.. Labor and material requirements for commercial office building construction (United States. Bureau of Labor Statistics, 1982)
20. a4architect, 2013. http://www.a4architect.com/2013/04/percentage-of-cost-breakdown-between-labour-materials-and-contractor-profit-in-construction/ Accessed ${ }^{\text {rd }}$ July 2015
21. Beltagi, E., 2015. http://osp.mans.edu.eg/elbeltagi/Cost\ Ch4.pdf Accessed $3^{\text {rd }}$ July 2015
22. Hardy, M.P., Albertson, V.D., Bligh, T.P., Riaz, M., Blackshear, P.L.. Large-scale thermal storage in rock: construction, utilization, and economics, 12th Intersociety Energy Conversion Engineering Conference (IECEC), Vol 1 no. A $77-48701$ pp 23-44 (1977)
23. InflationData. http://inflationdata.com/Inflation/Inflation_Calculators/Inflation_Rate_Calculator.asp Accessed $1^{\text {st }}$ July 2015.
24. Curto, P.A, Stern, G.. Thermal storage using slag, Alternative Energy Sources 3, 1:195-208 (Miami International Conference on Alternative Energy Sources, Miami Beach, Florida, 15th Dec 1980)
