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ROCK BLOCKS, WREATH PRODUCTS AND KLR ALGEBRAS
ANTON EVSEEV

ABSTRACT. We consider RoCK (or Rouquier) blocks of symmetric groups and Hecke
algebras at roots of unity. We prove a conjecture of Turner asserting that a certain
idempotent truncation of a RoCK block of weight d of a symmetric group &,, defined
over a field F' of characteristic e is Morita equivalent to the principal block of the wreath
product G.16,. This generalises a theorem of Chuang and Kessar that applies to RoCK
blocks with abelian defect groups. Our proof relies crucially on an isomorphism between
F&,, and a cyclotomic Khovanov—Lauda—Rouquier algebra, and the Morita equivalence
we produce is that of graded algebras. We also prove the analogous result for an Iwahori—
Hecke algebra at a root of unity defined over an arbitrary field.

1. INTRODUCTION

1.1. The main result. Let £ be a fixed element of an arbitrary field F'. We assume that
there exists an integer e > 2 such that 1 4+ & +--- 4+ €1 = 0 and let e be the smallest
such integer (the quantum characteristic of ). We fix e, F and £ throughout the paper.

For an integral domain O, an invertible element £ € O and an integer n > 0, the
TIwahori-Hecke algebra H, (O, &) is the O-algebra defined by the generators T1,...,T,—1
subject to the relations

(1.1) (T, =T +1)=0 for 1 <r <n,
(12) TT‘TT+1T7‘ = Tr+1TrTr+1 for 1 <r<n- 1,
(1.3) T,Ts =TT, for 1 <r, s < n such that |r — s| > 1.

Throughout, we write H,, = H,(F,&). The algebra H,, is cellular, and hence F is neces-
sarily a splitting field for this algebra (see e.g. [26, Theorem 3.20]).
It is well known that the blocks of H,, are parameterised by the set

(1.4) Ble(n) = {(p,d) € Par xN | p is an e-core and |p| + ed = n},

where Par is the set of all partitions. We write b, 4 for the block idempotent of H,
corresponding to (p,d) € Ble(n), and H,q = b,qH, denotes the corresponding block
(see Section 2 for details). Representation theory of RoCK (or Rouquier) blocks of H,
(see Definition 2.1) is much more tractable than that of blocks #, 4 in general. By a
fundamental result of Chuang and Rouquier [8, Section 7], for any d > 0 and any two e-
cores p() and p(@ | the algebras H o) g and H ) 4 are derived equivalent. Consequently, in
order to understand the structure of an arbitrary block H, 4 up to derived equivalence, it
suffices to give a description of the structure of each RoCK block up to derived equivalence.
If £ = 1, then e = char F' is necessarily prime and H, = F&,,, where &,, denotes the
symmetric group on n letters. Chuang and Kessar [6] proved that, when £ = 1 and
d < char F' = e, a RoCK block H, 4 is Morita equivalent to the wreath product Hg 11 6,.
Note that here Hg 1 is the principal block of F'S, and that the result of [6] applies precisely
to RoCK blocks of symmetric groups with abelian defect. In fact, the aforementioned
theorems of Chuang-Rouquier and Chuang—Kessar are stronger, as they hold with F
replaced by an appropriate discrete valuation ring.
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2 ANTON EVSEEV

When d > char F', the Morita equivalence of Chuang—Kessar no longer holds, as a RoCK
block H, 4 has more isomorphism classes of simple modules than Hg 11 &4. Nevertheless,
Turner [33] conjectured in general (for £ = 1) that Hg 116, is Morita equivalent to a certain
idempotent truncation of a RoCK block. More precisely, for any integers 0 < m < n, view
H,, as a subalgebra of H,, via the embedding Tj — Tj for 1 < j < m. For any e-core p
and d > 0, define

(15) fp,d = bp,Obp,l T bp,d € H|p|+de‘

Clearly, the factors in this product commute pairwise, so f, 4 is an idempotent. The main
result of this paper is the following theorem, which settles affirmatively [33, Conjecture
82] (stated in loc. cit. for the case £ = 1).

Theorem 1.1. Let H, 4 be a RoCK block and f = f, 4. Then we have an algebra isomor-
phism fH,af = Hpo @F (Ho1164q). Hence, the algebra fH,qf is Morita equivalent to
Hezi1164.

The second statement follows from the first one because H, g is a split simple algebra.

Remark 1.2. The formula defining the idempotent appearing in [33, Conjecture 82] is
different to (1.5), but the resulting idempotent is equal to f, 4: see Proposition 8.1.

While Theorem 1.1 is stated purely in the language of representation theory of sym-
metric groups and Hecke algebras at roots of unity, the proof given in this paper relies
crucially on the fact that H, 4 is isomorphic to a certain cyclotomic Khovanov-Lauda—
Rouquier (KLR) algebra. A consequence of this fact is that each of the algebras H, 4,
JodHpafpa and Hg 11 G4 has a natural Z-grading. Moreover, Hy 1 1 &4 is nonnegatively
graded: this observation plays an important role in the proof. The isomorphism and the
Morita equivalence in Theorem 1.1 are those of graded algebras (see Theorem 3.4 for a
more precise statement).

In order to explain the meaning of Theorem 1.1 in more detail, we recall certain well-
known general facts on idempotent truncation (see e.g. [15, Section 6.2]). Let A be an
algebra over a field £ and € € A be an idempotent. Let A-mod be the category of left
modules over A. Then we have an exact functor F: A-mod — € Ae-mod defined as follows:
for any A-module V', set F(V) = eV, and for any morphism ¢: V' — W of A-modules, set
F(¢) = ¢|ev. Further, the image F(D) of any simple A-module D is either simple or 0,
and, if {D) | A € A} is a complete and irredundant set of representatives of isomorphism
classes of simple A-modules, then {eDy | A € A, D) # 0} is a complete and irredundant
set of representatives of isomorphism classes of simple € Ae-modules. Informally, € Ae-mod
captures the part of the structure of A-mod that corresponds to the simple modules
D € A-mod such that eD # 0. In particular, if eD # 0 for all simple A-modules D, then
A is Morita equivalent to cAe.

When A =H, 4 is a RoCK block and ¢ = f, 4, it is the case that eD # 0 for all simple
A-modules D if and only if d < char F' or char F = 0: see Proposition 8.2. Thus, when
d < char F' or char F' = 0, Theorem 1.1 yields a Morita equivalence between the RoCK
block H, q and H11S4. This equivalence was proved by Chuang and Miyachi [7, Theorem
18] under the assumption that either char F' = 0 or £ belongs to the prime subfield of F' by
using the aforementioned result of Chuang—Kessar (for £ = 1) and similar results obtained
independently by Miyachi [27] and Turner [32] for RoCK blocks of finite general linear
groups (for £ # 1). The proof given below is different from the arguments in the above
papers. The isomorphism in Theorem 1.1 is constructed uniformly for all cases and is
quite explicit, once the statement of the theorem is translated into the language of KLR
algebras.

In the case when { = 1 and e = 2, Theorem 1.1 was proved by Turner (see [33, Theorem
84]) using a Brauer morphism. Independently of the present work, the same result was
proved for e = 2 and arbitrary £ by Konishi [23].
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In the case when char F' = 0, the decomposition matrix of a RoCK block H,, was
determined by Chuang and Tan [9, Theorem 1.1] and, independently, by Leclerc and
Miyachi [24, Corollary 10]. After a certain relabelling, this matrix may be seen to be
identical to the decomposition matrix of Hg 11 Sy, When { = 1, the decomposition
matrix of a RoCK block H,q was determined by Turner [33, Theorem 132] and was
shown to coincide with that of Hg 11&, by Paget [29, Theorem 3.4], again, after a certain
relabelling. These results are closely related to Theorem 1.1 but are not directly implied
by it, as we do not describe explicitly the Hg 1! G4-modules which are the images of
Specht and simple modules of H, 4 under the composition of the Morita equivalence of
Theorem 1.1 and the functor F.

In addition to conjecturing the statement of Theorem 1.1, Turner [33] has constructed
two remarkable algebras that he conjectured to be Morita equivalent respectively to the
whole RoCK block H, 4 and to a RoCK block of a {-Schur algebra (see [33, Conjectures
165 and 178] respectively). After the present paper was submitted, the first of these
conjectures was proved in [13] using results contained here.

1.2. Outline of the paper. Section 2 contains the definition of a RoCK block. In
Section 3, we recall the definition of KLR algebras, state some of their standard properties
and state a graded version of Theorem 1.1 as Theorem 3.4. The proof of Theorem 3.4
occupies Sections 4-7. A detailed outline of the proof is given in §3.3, after the required
notation is introduced.

In Section 8, we prove two simple results that have already been referred to above and
clarify Theorem 1.1. In Section 9, we give two alternative descriptions of the images in
Jo.dHpdfpa of elementary transpositions of &4 under the isomorphism of Theorem 1.1,
specifically,

(i) an explicit formula for those images in terms of generators of the relevant KLR
algebra (given without proof), see Equation (9.1);

(ii) a formula in terms of the generators 7). of H,,;q. and the grading on f, aH,.4fp,d;
see Proposition 9.5; in the case when £ = 1, we give a simple description of the whole
isomorphism in these terms, not just of its restriction to G4: see Theorem 9.6.

These results provide different viewpoints on the isomorphism and may be useful for
determining the images of simple and Specht modules of H, 4 under the Morita equivalence
of Theorem 1.1 composed with the functor from H, s-mod to f, sH afp4-mod described
above.

1.3. General notation. The symbol N denotes the set of nonnegative integers. For
integers n > r > 0, we denote by s, the elementary transposition (r,r + 1) € &,. If
O is a commutative ring, then O denotes the set of all invertible elements of @. The
centre of an algebra A is denoted by Z(A). Throughout, subalgebras of F-algebras are not
assumed to contain the identity element and F-algebra homomorphisms are not assumed
to preserve the identity unless they are described as “unital”.

By a graded vector space (algebra, module) we mean a Z-graded one. If V' is a graded
vector space, then Vi, denotes its n-th homogeneous component, so that V' = D,z Viny-
If v € V, we write v, for the n-th component of v, so that v(,; € Vi3 and v = Y onez Vin}-
For a subset S C Z, we set Vg = @, c5Viny <V and vs = Y, g v(n). We abbreviate
Vo for Vz_, ete.

If the graded vector space V' is finite-dimensional, then its graded dimension is defined
as qdim V' =} ., (dim Vi,,y)q" € Z]q, g ']. If Ais a graded algebra and m € Z, then the
graded algebra A(m) is defined to be the same algebra as A with the grading given by
A{m)ny = Agp—my for all n € Z.

If U,V are F-vector spaces, we write U ®V for U®p V. If X is a subset of an F-vector
space, then F'X denotes the F-span of X. If X and Y are vector subspaces of an algebra
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A, we write XY = F{ay | z € X,y € Y}. For a symbol z, we often use the notation z™
as an abbreviation for z,...,x (m entries) or (z,...,z) (as appropriate). Also, we write
M= ®--- Q.

Acknowledgement. I am grateful to Alexander Kleshchev for helpful comments that
led to improvements in the paper and, in particular, for pointing out the relevance of “R-
matrices” for KLR algebras constructed in [17]: this resulted in a considerable simplifica-
tion of the proof of Theorem 1.1, which previously relied on lengthy explicit computations
in KLR algebras.

2. ROCK BLOCKS

If A = (Ai,..., ) is a partition (so that Ay > --- > A, > 0 are integers), we write
£(A) =7 and [\| =377, Aj. Let O be an integral domain and ¢ € O*. For any partition
A of an integer n, let SMt be the Specht H, (O, t)-module defined as in [26, Section 3.2].
We write S* = SN, Note that S is the dual of the “Specht module” associated with A
constructed in [10].

For the definition of an e-core and e-weight of a partition, we refer the reader e.g. to [14,
Chapter 2]. If n > 0 and (p,d) € Ble(n) (cf. (1.4)), then we define b, 4 € H, to be the
unique block idempotent of H, such that bpdSA = S* for all partitions A of n with
e-core p and e-weight d (see [11, Theorem 4.13]). The corresponding block algebra is
Hpd = bpdtn.

We introduce notation related to abacus representations of partitions (see [14, Section
2.7]). Let A be a partition and [ > 1, N > £(\) be integers. We set A, = 0 for every integer
7 > £(\). The abacus display Ab’ ()\) is the subset of N x {0,...,1 — 1} defined by the
property that (¢,7) € Aby () if and only if lt+i € {\{+N—1, Ao+ N—2,..., Ax}, whenever
t>0and 0 < ¢ <. Theset Nx{0,...,] — 1} is visualised as a table with infinitely
many rows and [ columns. The columns O, ...,l — 1 are drawn from left to right, and the
entries (0,1),(1,4),(2,4),... of each column are drawn from the top down. The columns
N x {i} are referred to as runners, and the elements of Abl;(\) are referred to as beads. In
particular, the number of beads of Abl;()\) on runner i is defined as | Ably(X) N (N x {i})].
We will write Abx(A) = AbS;(A), and we view Ab} () as a subset of N in the obvious way.

Definition 2.1. [33, Definition 52] Let p be an e-core. We say that p is a Rouquier core
for an integer d > 1 if there exists an integer N > £(p) such that for all i =0,...,e — 2,
the abacus display Abyn(p) has at least d — 1 more beads on runner i + 1 than on runner
i. In this case, the block H, 4 is said to be a RoCK block.

If p is a Rouquier core for some d > 1 and N > /(p) is such that there is an abacus
display as above, then kK = —N + eZ € Z/eZ will be called a residue of p. It is easy to
show that p has only one residue; in particular, this fact is a consequence of Lemma 4.3.

Example 2.2. Let e =3 and p = (8,6,4,2,2,1,1). The abacus display of p for N =7 is

(e] [ ]

O O 0O O O O
O O O O O e o
O O e e o o

where the elements of the set Abz(p) are represented by e. Thus, H, 4 is a RoCK block of
residue 2 4+ 3Z for each d = 1, 2, 3.
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3. KLR PRESENTATION OF H,

3.1. The KLR algebra and the Brundan—Kleshchev isomorphism. KLR algebras
(also called quiver Hecke algebras) were introduced by Khovanov and Lauda [18] and
independently by Rouquier [30]. We follow the presentation given in [2].

Let I =Z/eZ ={0,1,...,e—1}. If t € [" = I x --- x I for some n > 0, then %, denotes
the r-th entry of ¢ (for 1 < r < n). Usually, we will write ¢, instead of 4, and will use
a similar convention for other bold symbols. If ¢ € I™ and 37 € I"™, we denote by ¢35 the
concatenation (i1,...,%n,j1,-.-,Jm) of 2 and j.

Consider the quiver I' with vertex set I, a directed edge from i to ¢ + 1 for each i €
and no other edges. Write ¢ — j if there is an edge from 4 to j but not from j to i,
i < j if there are edges between i and j in both directions, and ¢ + j if j # 4,7 = 1. Let

C = (cij)i,jer be the corresponding generalized Cartan matrix (of type Agl):

2 ifi—j,

0 ififj
“TTN1 s jorie

2 i

For i, j € I, define polynomials L;; € Fly,y'] by

0 ifi=j
1 if i £ j,
Lij(y,y') =y —y if i — j,
y—1y if 7 < 7,
W —yy-y) ifi=j

The symmetric group &,, acts on I" as follows: w(i1,...,in) = (iy-1(1), - - - ly-1(n)) for
w € S,,. The KLR algebra R, is the F-algebra generated by the set

(3.1) {e(@)) i€ I"YU{yt, - un} U{1, o a1}
subject to the relations
(3.2) e(2)e(F) = d;je(d),
(3.3) D e(i) =1,
ieln
(3'4) yre(i) = e(i)yh
(3'5) ¢r€(’i) = G(Sri)i/)r,
(3.6) YrlYs = YsUrs
(3.7) Urths = stpy if [r — s[> 1,
(3.8) Urys = ystor if s FErr+1,

(yrwr + 1)6(7.’) if (I Z.7“-1—17
yr¢re(i) if 4y # dpq1;
(wryr + 1)€(i) if iy = dpy1,
¢ryre(i) if 1, 7‘é lpy1;
(3'11) ¢3€('l) = Lir,ir+1 (ym yr+1)6(i),

(3.9) ¢ryr+1€(i) = {

(3'10) yr—i—ﬂ/}re(i) = {
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(wr—i—lwrwr—i—l + 1)6(1) if ipro =ip = iry1,
el i .
(312)  Gptbriathpeli) = 4 Lrerrrn = De(@) iy =i i,
(wr—klwrwr—kl = 2yr11+yr + yr+2)e(z) if 4y =0 2 ipy1,
Yrp1rPrire(2) otherwise

for all 2,5 € I" and all admissible r and s.

Let (h,I1,I1V) be a realization of the Cartan matrix C (see [16, §1.1]), with simple roots
{a; | i € I}, simple coroots {a) | i € I} and fundamental dominant weights {A; | i € I}
satisfying (A;,of) = &;j for 4,5 € I. Let Py = @;c;NA; and Q1 = @y, Ny, If
a =) crnia; € Qy, write ht(a) = >,/ n;.

Let A € Py. The cyclotomic KLR algebra Rﬁ is defined as the quotient of R, by the 2-
\
sided ideal generated by the set {yiA’a”)e(i) | 2 € I"}. It follows from the above relations
that the algebras R, and R> are both graded by the following rules: deg(e(i)) = 0,
deg(vre(i)) = —ci,i,,, and deg(y;) = 2 whenever 2 € I", 1 < r <nand1 <t <n
(see [2]).

Remark 3.1. Elements of R, may be represented as linear combinations of diagrams
described by Khovanov and Lauda [18]. While diagrams are not used explicitly in our
proof, the reader may find it helpful to translate some of the assertions below into the
language of diagrams.

For each i € I, define : € F by

(3.13) P = {2. ife=1,
& oife#£1.
Here, and in the sequel, if £ = 1, then i is identified with an element of F' via the embedding
I =7Z/eZ — F; and if € # 1, then & = fi/ € F, where ¢/ € 7Z is any representative of
the coset i. Let HY = HAM(&) be the cyclotomic Hecke algebra with parameter &; see [2].
That is, H2 is the F-algebra generated by the set {T1,...,Th 1, X1,...,X,} if € =1 and
by the set {T1,...,Th_1, X, ..., X;F1} if € # 1 subject to the relations (1.1)-(1.3), the
relation [[,.; (X1 — 7){%e) = 0 and the following relations:
(a) if € =1: X)Xy = Xo Xy, Xo1 =T, X, T, + T, and, if t ¢ {r,r + 1}, X;T, = T, Xy;
(b) if € # 1 XX = XX XXt =1 = X' Xy, X = €. X, T, and, if
t ¢ {T, r+ 1}, TTXt = XtTr,

for 1 <r <mn, 1<t/ <n. In particular, HT‘LXO is isomorphic to H,, via the map given by
T, — T, for 1 <r <n and X; — 0. In the sequel, we identify these two algebras.

Brundan and Kleshchev [2, Main Theorem| and independently Rouquier [30, Corollary
3.17] proved that the algebra Hfz\ is isomorphic to Rﬁ. More precisely, we have the following
result.

Theorem 3.2 (Brundan—Kleshchev). Let y and y' be indeterminates. There exist power
series Py, Q; € F([y,y']], i € I, such that Q; is invertible for each i and:

(i) For each n >0 and A € Py, there is an isomorphism BKQ: H) 25 RA given by

(3.14) BK?'/:(TT) = Z (¢rQir4r+1 (yr, yr+1) - Pir*ir-q-l (yh errl))e(i) and
1eln

3.15 BKA(X,) = Zieln(?/f +ir)e(d) if =1,

o " {Zieln §r(l—yre(@) f&#1

for1<r<nandl <t<n. R
(ii) For everyi € I™ and t € {1,...,n}, the element (BKX(X;) — it)e(4) is nilpotent.
(iii) If ¢ = 1, then P;,Q; € Flly — ']] for alli € I.
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Proof. 1t is proved in [2, Sections 3 and 4] (see, in particular, [2, (3.41)-(3.42) and (4.42)—
(4.43)]) that one has an isomorphism H2 -~ RA given by
1 = Z (QZ)TQ;‘,i(yTa Yr+1) — PT/‘,i(yTa Yrt1))e(%)
ieln
and (3.15) if power series PT’,,Z-,Q;“J € Flly,y']], 1 <r < n, i€ I" satisfy certain explicit
identities.! If € = 1, then the power series P, Q. ; given by [2, (3.22) and (3.30)] satisfy

the required identities. Moreover, one easily checks that P;yi = P ., and Q; =
Q;r—irﬂ for all r, 2 provided the power series P; and Q);, @ € I, are defined as follows:
1 ifi=0
3.16 P, = ’
(3.16) ! {(H—y—y/)_1 ifi #0,
(144 —y if i =0,
1—- P ifi¢{0,1,—1}
(3.17) Qi=c1-P)/(y —y) ife#2andi=—1,
1 ife#2andi=1,
1-P)/(y —y) ife=2andi=1.

Since P, Q; € F[[ly — ¢']] for all 4, this proves (i) when £ = 1 and (iii).
Assuming that £ # 1, let

1 fi=0

(3.18) P = i PR
1-H1-Q-y—y)") ifi#0,
(1-¢+e) —y ifi=0,
Soudi-y) g (0.1,-1),

—1/1_,)\_ o .

(3.19) Qi = é—l&zgffﬁf);z ife#2andi=—1,
1 ife#2andi=1,
m ife=2andi=1

for all i € I. (The only difference from power series given by [2, (4.27) and (4.36)] is a
slight one in the formulas for @); in the cases when i € {1, —1}.) As in [2], one checks that
the power series P;ﬂ- =P, .., and Q,; = Q;, ;. , satisfy the required properties, i.e. the
identities [2, (4.27) and (4.33)—(4.35)], so one has an isomorphism given by (3.14)—(3.15).

Finally, (ii) follows from (3.15) and the fact that y; € R is nilpotent for 1 <t < n, as
deg(y;) = 2 and RY = H2 is well known to be finite-dimensional. a

From now on, we assume that BK? is as in Theorem 3.2, with P; and Q; given by (3.16)—
(3.19). We write
BK,, = BKA0: 34, =2 RAo,
For 0 < m < n, we define a unital algebra homomorphism 7, : RA0 — RAo by
(3.20) e(d) = > e(if), et Y
jerm—m
forieI™ 1 <r<mand1l<t<m. Forevery a € Q4+, define

n
I ={(i,...,in) €I" | Y i, = a}
r=1

IWe write P/ ;, Q. ; for the power series denoted in [2] by P.(2), Q-(¢) for £ # 1 and by p.(2), ¢,(¢) for
£=1.
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and eq = > ;o0 €(3), viewed either as an element of R,, or of RA°, depending on the
context. The element e, is a central idempotent. We write R, = R,e, and Rg\o = RT[}O eq-
We identify every partition A with its Young diagram, defined to be the set

{(a,b) € Zioo X Zsg | 1 < a < £(N), 1 < b < Ag).

Whenever set-theoretic notation is used for a partition A, it is to be viewed as a Young
diagram. The residue of a box (a,b) € Z~g X Zx¢ is defined to be res((a, b)) = b—a+eZ € I,
and the residue content of X is defined as cont(\) = Z(a,b)e)\ Qres((a,p)) € @+ Note that
if 4 C A are partitions and A\ p is an e-hook (i.e. a connected skew diagram of size
e containing no 2 x 2-squares), then each element of I occurs exactly once among the
residues of the boxes of A\ p. It follows that, if p is the e-core and d is the e-weight of A,
then cont(\) = cont(p) + dd, where § := ap + a1 + -+ + @e—1 € Q4 is the fundamental
imaginary root.

Recall that, if m < n, then H,, is viewed as a subalgebra of H,, via T}, — T;., 1 <1 < m.
We state some standard properties of the isomorphism BK,,.

Proposition 3.3. Let n > 0 be an integer.

(i) For 0 <m < n, we have ¢, o BK;, = BK,,|,, -
(ii) For all (p,d) € Ble(n), we have BKy(byd) = €cont(p)+as- Hence, for every (p,d) €

Ao

Ble(n), the map BK,, restricts to an algebra isomorphism from H, 4 onto Rcont(p)+d5.

Proof. (i) easily follows from (3.14), and (ii) follows from [19, §2.9 and Theorem 5.6(ii)]. O

Let H,q4 be a RoCK block of H,, and consider the idempotent f,q € H,q defined
by (1.5). By Proposition 3.3, we have

d
ed .. .
(3.21) BKn(fP,d) = LIZiier(econt(p)+r6) = Z 6(37'(1) s z(d))'

r=0 jelcont(p)
NN L

In particular, BK,(f,4) € RA° is homogeneous of degree 0.
If A is a graded algebra over F', then the wreath product A&, is defined as the algebra
A% ® FG&,4 with multiplication given by

(719 Q24R0) RN X QYiRT) = T1Yg-1(1) @ *** @ TgYo—1(q) ® OT

for x1,..., 24, y1,..-,yq € A and 0,7 € &4. We identify FF&4 with a unital subalgebra of
A1 B, via the map 0 — 12?7 ® 0, 0 € G4, and we identify A®? with the unital subalgebra
A®1 %1 of AYS, in the obvious way. If A is graded, then we will view 41 &, as a graded
algebra via the rule

d
deg(z1 @ Qrg®o0) = Z deg(x;)
r=1

whenever x1,...,zq € A are homogeneous and o € &,..

Observe that the algebra Rs is nonnegatively graded (that is, (Rs)<o = 0): this follows
from the fact that e(¢)es = 0 if ¢ € I¢ is such that i, = 4,41 for some r. Hence, the wreath
product ng\o ! &4 is also nonnegatively graded.

We will prove the following result, which may be viewed as a graded version of Theo-
rem 1.1 and clearly implies that theorem (due to Proposition 3.3(ii)).

Theorem 3.4. Let n > 0 and (p,d) € Ble(n) be such that p is a Rouquier core for d. If
fl :bBKn(fp’d)’ then fRé\oOnt(p)—i—déf and Ré\fm(p) RF (R?O 1 Sy) are isomorphic as graded
algebras.
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3.2. The standard basis and some general properties of R,. Fix a € @4, and
let n = ht(a). Fow w € &, let {(w) be the smallest m such that w = s, s, for
some 71,...,"m € {1,...,n —1}. An expression w = S, - - s, is said to be reduced if
m = {(w). We write < and < for the Bruhat partial order on &,,. That is, v < w if and
only if there is a reduced expression w = s,, ---s,, such that v = Sray " Sra, for some
ap,...,a; satisfying 1 <aj < --- < a; <k (cf. e.g. [26, Section 3.1]).

Ifwe &, weset ¢, =Yy, -y, € Ry, where w = s,, -5, is an arbitrary but fixed
reduced expression for w. Note that, in general, 1,, depends on the choice of a reduced
expression. In the sequel, all results involving elements 1, are asserted to be true for any
choice of reduced expressions used to construct ,,.

Theorem 3.5. (i) [18, Theorem 2.5] [30, Theorem 3.7] The set
{Ywy™ - ypre(i) | w € Spyma, ..., m, € NG € I}

s a basis of Ry,.
(it) Let ri,...,1p € {1,...,n =1}, w = s -+ Sy, and go,..., 9% € Fly1,...,yn]. Then
90Vr 91Urs * * * G—1Ur, Gr€a belongs to the span of elements of the form

(3'22) 1/}1“(11 o '1/%1 yTl e y:@nne(i)
where 1 <ay <---<ap <k, my,...,my, €N, 12 €I and the expression s, Sy,
18 reduced.

Proof of (ii). Using relations (3.8)—(3.10) repeatedly, we see that gotr, 9191 - - G—1¥Ur, Gk€a

belongs to the span of the elements (3.22) without the condition that s, --- s, be re-
duced. Now the result follows from [5, Proposition 2.5]. O
Let p = (p1,..., 1) be a composition of n, i.e. a sequence of nonnegative integers such

that S, pur = n. Let
6# :Aut({l,...,,ul}) xAut({ul—l—l,...,ul—i—,ug}) X 26#1 X X 6#17

a standard parabolic subgroup of &,,. Denote by 2} (respectively, #Z,) the set of the
minimal length left (resp. right) coset representatives of &, in &,,. Note that an element
o € S, belongs to 2}, if and only if o(r) < o(t) for all .t € {1,...,n} such that t € §,,-r
and r < t; this fact and its analogue for #Z,, will be used repeatedly. If v is another
composition of n, set Y2 = Y9, N 2}: this is the set of the minimal length double
(6., 6,)-coset representatives in &,,.

Let = (n1,...,n;) be a composition of n. There is an obvious map ¢, : Ry, ®- - - @Ry, —
R,,, defined as the unique algebra homomorphism satisfying

L“(e(i(l)) 2 ® e(’i(l))) _ e(i(l) .. i(l)),
(17771 @ G @ 15°7) = ok
(17 @y @1977) = Yy pgn, 1

whenever i) ¢ I”l,...,i(l) el 1<r<l,1<k<nrand1<t<n,.

A composition of a is a tuple (71, ...,7;) such that v; € Q4 for each j and 22:1 v = o
Let v = (y1,...,v) be a composition of «, and set pu = p(y) := (ht(71),...,ht(y)). By
restricting the map ¢, to R, ® --- ® R,,, we obtain an algebra homomorphism ¢y: R, ®
-+ ® Ry, — R,. The image of this homomorphism will be denoted by R, and the image
of ey, ® -+ ® ey, will be denoted by ey, so that e, = ey, ., is the identity element of
the subalgebra R, of R,. If w € &,, then w = w'v for some (uniquely determined)
w € P and v € &,. We then have {(w) = ((w’) + {(v), and hence one can obtain
a reduced expression for w by concatenating reduced expressions for w’ and v. Using a
reduced expression of this form to define each 1, one deduces the following result from
Theorem 3.5 (cf. the proof of [18, Proposition 2.16]).
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Corollary 3.6. For any composition vy of o, Rne,, is freely generated as a right R -module
by the set {1y, | w € .@f{m}.

Proposition 3.7. Let v = (y,...,v) and v = (7], ...,7,) be compositions of «. Let
p=p(v) and v =p('). Then ey Roey =3 cvgr Ry R,

Proof. By Corollary 3.6, ey Roey = Zwe% eyuwRy. Let w € 2f, and let u € &, and
v € "D, be such that w = uv and £(w) = £(u) + £(v). It is easy to show that v € Y2}. We
may assume that 1, is defined in such a way that ¢, = 9,1, (for each w in question).
Thus, ey, = eythypy € Ry, and the result follows. O

Define R/, to be the subalgebra of R, generated by
{e(@) |t € I} U{treq | 1 <r <n}U{(yr —yt)ea |1 <r,t <n}.

The following fact was observed in [4, Lemma 3.1] (in a slightly different context). For
the reader’s convenience, we give a proof.

Proposition 3.8. As a right F|y2—y1,Y3—Y2, - - - » Yn—Yn—1]-module, R, is freely generated
by the set {¢pype(i) | w € &,,1 € 14}

Proof. The fact that the given set generates a free right module U over Fly2 —y1, ..., Yn —
Yn—1] follows immediately from Theorem 3.5. It remains only to show that U = R..
Clearly, U C R),.

Let z be an indeterminate, and consider F[z]® R, which is an F'[z]-algebra by extension
of scalars, and hence an F-algebra. As is observed in [17, §1.3.2], there is an F-algebra
homomorphism w: R, — F[z] ® R,, given by

(3.23) e(t) —»1®e(d), Yp—=1Q¢%, y—2R01+1Qwy

fori e I",1<r<d, 1 <t<d Notethat w(x) =1®x for all z € R,. Also, it follows
from Theorem 3.5 that R, is freely generated as a left U-module by the set {yiea | j = 0}.
Let 0 # x € R,,, and write z = Z;'n:o u;y] where u; € U for all j and w,, # 0. Then
1@z =w(x)ezm ®um—|—zg~§)lzj ® R, which forces m = 0. Hence, x € U. O

Let v = (71,-..,7) be a composition of a. We define R\ = R, N R,. Note that R/,
need not be equal to ¢, (R, ® - ® R.).

Corollary 3.9. As a right Flys —y1,Y3 — Y2, - - -y Yn — Yn—1|-module, Rfy is freely generated
by the set {e(i) | w € &y, 3 € 1V},

Proof. This is an immediate consequence of Corollary 3.6 and Proposition 3.8. g

3.3. Outline of the proof of Theorem 3.4. We denote by Par(n) the set of all partitions
of n and by Par.(p,d) the set of all partitions with e-core p and e-weight d. A standard
tableau of size n is a map t: {1,...,n} — Zso X Zso such that t is a bijection onto the
Young diagram of a partition A and the inverse of this bijection is increasing along the rows
and columns of \. In this situation, we say that \ is the shape of t and write Shape(t) = .
We write Std(\) for the set of all standard tableaux of shape A. The residue sequence of
a standard tableau t is defined as ¢* = (res(t(1)),...,res(t(n))) € I". For any e-core p
and d > 0, define 17 to be the set of all 4 € I"™ such that there exist A € Par(p, d) and a
standard tableau t of shape \ satisfying i* = 4.

Let (p,d) be an element of Bl.(n) (for some n > 0) such that p is a Rouquier e-core
for d. Let s be the residue of the RoCK block H, 4. As in the statement of Theorem 3.4,
let f = BKy(f,q). Form > 0,4 € I™ and j € I, set i/ = (i1 + j,...,im + j). Let
I_{fj’l = {i™7 | i € I?'}. Define the set

(3.24) Eaj = {w(D ...iD) |we 2% i0, . i@ e 120,
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and set &5 = £q0. The following alternative description of & ; is verified easily: a tuple

i € I lies in Eq,; if and only if one can partition the set {1,...,de} into subsets Y7,...,Yy
of size e each such that for each » = 1,...,d, one has (igy,...,%q.) € I_rf]’-l where Y, =
{ai,.. ae} and a1 < -+ < @e.

Deﬁne Rgs to be the quotlent of Rgs by the 2-sided ideal generated by the set {e(2) |
icI®\ &) and Rgs to be the quotient of Rgs by the 2-sided ideal generated by {e(2) |
ie I \ €ar}. It is clear from the definition of a KLR algebra that Rgs has a graded
automorphism given by

(3.25) e(i) — e(i™),  treas — Yreds, Yreds F> Yreds

whenever 4 € I% 1 < r < de and 1 < t < de. This automorphism corresponds to a rota-
tional symmetry of the quiver I'. Further, the map (3.25) clearly induces an isomorphism
Rgs = Rd(g, which restricts to an isomorphism rot, : 65de5€5d s ecngd(Se(gd

There is an obvious graded homomorphism Rg5 — RMo obtained as the compo-

cont(p)+dé?

sition of the natural projection Reong(p)+ds = ., s With the map Ras — Reont(p)+dss

Ao

cont(p)+d
T Lcont(p)7d5(econt(p) ® x). Using special combinatorial properties of RoCK blocks, we
show in Section 4 that this map factors through f?d(; and hence induces a graded al-
gebra homomorphism Q: eadR(;de(;d — chont 5 f. Further, the image C, 4 of {1 has
the property that chom(p Vrds f is isomorphic to R

Propositions 4.10 and 4.11). Thus, it is enough to show that Rg\o 164 = Cpq as graded
algebras.
In Section 5, we prove some elementary results on the structure of RAO, which are needed

(o) ® Cpq as a graded algebra (see

cont

later. In Section 6, we construct a graded algebra homomorphism ©: Rg\o 'Sy — Rys.
This allows us to define a homomorphism =: R?O 1864 — €, q as the composition

(€] - by =~ Q
(3.26) R?O l Gd — €5de5€5d L) €5de5€5d — Cp,d'

In Section 7, we show that = is surjective. Proposition 4.12 states that R?O 164 and C\, 4
have the same (graded) dimension, so we are then able to deduce that = is an isomorphism,
which concludes the proof.

The definition of the map O, unlike those of rot, and €, is far from straightforward.
The crux of the proof is the construction in Section 6 of appropriate elements 7,, = ©(s,) €
esa Rysesa, where, as before, s, = (r,r +1) € &4 C Rg\o 16y for 1 < r < d. In order to
define 7. and prove that they satisfy required relations, we adapt to the present context the
ideas that Kang, Kashiwara and Kim [17] use to construct homomorphisms (“R-matrices”)
between certain modules over KLR algebras.

The results of Section 6 are stated purely in the language of KLR algebras and do
not involve a Rouquier core p. Intertwiners of the same flavour as 7. appear to play an
important role in representation theory of KLR algebras and were originally discovered
(in a different context) by Kleshchev, Mathas, and Ram [20, Section 4]. More recently,
module endomorphisms that are closely related to the elements 7, have been constructed
by Kleshchev and Muth (for KLR algebras of all untwisted affine types), also using the
approach of [17]: see [21, Theorem 4.2.1].2

Remark 3.10. The main result of Section 6 is Theorem 6.14, which gives a partial descrip-
tion of the algebra egiRgsesa. A similar (but more explicit) result has independently been
obtained by Kleshchev and Muth [22] for all KLR algebras of untwisted affine ADE types.
More precisely, Theorem 6.14 can be deduced from [22, Theorem 5.9], which describes a

2For any fixed 4 € I?"!, Kleshchev and Muth find a certain element of Ry, denoted by o, + ¢ in [21,
(4.2.3)], such that the image of this element in Rqs multiplied by our ©(e(3)®¢®1) is equal to ©(e(7)®?®s,).
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certain idempotent truncation of esa Rysega as an affine zigzag algebra and is proved using
explicit diagrammatic computations, which are generally avoided below. Also, Propo-
sition 5.4 together with Lemma 6.5 are equivalent to the type A case of [22, Corollary
4.16].

4. COMBINATORICS OF A ROCK BLOCK

4.1. The algebra C, 4. Let t be a standard tableau of size n > 0. For any m < n, we
write t<m = tl{1,. m}- The degree deg(t) of t is defined as follows (see [3, §4.11]). For
i € I, an i-node is a node a € Z~g X Z~q of residue . Let u be a partition. For a node
a € Zso X Z=p, we say that a is an addable node for p if a ¢ p and pU {a} is the Young
diagram of a partition, and we say that u is a removable node of p if a € p and p\ {a} is
the Young diagram of a partition. We say that a node (r,t) € Zso X Zsq is below a node
(r', ") if r > o', If a is an addable i-node of p, define

(4.1) d,(p) = #{addable i-nodes for u below a} — #{removable i-nodes of p below a}.

Finally, define recursively

(4.2) deg(t) = dy(n) (Shape(t)) + deg(t<p—1) if n >0,
| 0 ifn=0.

Recall the definition of the set 174 c [¢"t(P)+dd from §3.3 for any e-core p and d > 0.

Theorem 4.1. [3, Theorem 4.20] For any integer n > 0 and i,j € I", we have

qdim (e(D)RA0e(j)) = D glesE)rdes®),
A€Par(n)
s,t€Std(\)

5=, it =3

In particular, if (p,d) € Ble(n), then e(i)econt(p)+as # 0 in Ré\oont(p)+d5 if and only if
ic P,

The second assertion of the theorem follows from the first one because any two partitions
with the same residue content have the same e-core, see [14, Theorem 2.7.41].

If X is a subset of N x {0,...,e —1} and a,b € N x {0,...,e — 1} are such that a € X
and b ¢ X, then we say that the set (X \ {a})U{b} is obtained from X by the move a — b.
If (t,i) € Nx{0,...,e — 1}, then we say that the next node after (¢,7) is the unique node
(t',j) e Nx{0,...,e—1} such that et' + j =et +i+1 (ie. (t',j)=(t,i+1)ifi<e—1
and (t',j) = (t +1,0) if i = e — 1). We will use the following elementary fact.

Lemma 4.2. Let N > 0 and A be a partition such that ¢{(A) < N. Leta € Nx{0,...,e—1}
and b = (t,1) be the next node after a. If a € Abn (), b ¢ Aby(\) and Aby (u) is obtained
from Aby (\) by the move a — b, then '\ X consists of a single node of residue i — N + eZ.

In the rest of this section, we assume that #H, 4 is a RoCK block of residue x and that
Aby(p) is an abacus display witnessing this fact. If X and Y are subsets of Z~¢ x Z~¢ and
there exists ¢ € Z x Z such that Y = {x 4+ ¢ | € X}, then we say that Y is a translate
of X. The concept of two skew tableaux (viewed as maps {1,...,n} = Zsg X Zsg) being
translates of each other is defined similarly. A partition of the form (k,1°7%) for some
k€ {1,...,e} will be called an e-hook partition. The following lemma includes a key
combinatorial property of RoCK blocks, proved by Chuang and Kessar.

Lemma 4.3. Let 1 < r < d. Suppose that pn € Parc(p,7) and X € Parc(p,r + 1) are
such that pw C X. Then X\ p is the translate of a Young diagram of an e-hook partition.
Moreover, the residue of the top-left corner of A\ u is equal to k.
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Proof. The first statement is a part of [6, Lemma 4(2)]. By standard properties of the
abacus (cf. [14, Section 2.7]), there exists (¢,7) € Aby(u) such that Abx () is obtained from
Aby (1) by the move (¢,7) — (t+1,4). By [6, Lemma 4(1)], {(¢,9), (¢,i+1),...(t,e—1)} C
Aby(p) and {(t+1,0),...,(t+1,i— 1)} NAbx(r) = @. Hence, Aby(\) may be obtained
from Aby(p) by the following moves (in the given order), each of which corresponds to
adding a single box to a Young diagram:

(t,e—1) = (t+1,0),
(4.3) (t,e—2) = (t,e—1),...,(t,i) = (t,i+ 1),
(t+1,0) = (t+1,1),...,(t+1,a—1) = (t+1,4).

Hence, if v denotes the partition such that v D p and v \ p consists of a single box
which is the top-left corner of A\ p, then Aby(v) is obtained from Aby(u) by the move
(t,e—1) — (t+1,0). By Lemma 4.2, the residue of the only box of v\ is —N+eZ = k. O

Example 4.4. As in Example 2.2, let ¢ = 3 and p = (8,6,4,2,2,1,1), so that K =
2+3Z. Let v = (8,6,4,4,3,1,1) € Pars(p,1), p = (11,6,4,4,3,1,1) € Parz(p,2) and
A= (11,6,4,4,3,3,2) € Parg(p,3). Then p Cv C p C A, and each of v\ p, p\ v, A\ i
is a translate of the Young diagram of a 3-hook partition. These translates are shown as
hooks with thick boundaries in the following Young diagram of shape A, which also gives
the 3-residues of all boxes:

1]2]o]1f2]0]1]

o= (DO
—

(4.4)

O IO [N

Ol IN|OIFRIN|O
=l 0] (=1 R Rl e

Let j € I. The following lemma is an immediate consequence of the description of the
set £q; given in §3.3.

Lemma 4.5. Let iV, ... i@ ¢ 1¢. Ifi = (i(l)...i(d)) € &q; and, for some k > 0,
i, iR e 10 then i, i) e 17

Lemma 4.6. If j € I?" and i € 1% are such that ji € IP%, then i € Ed re-

Proof. By the hypothesis, ji = #* for some X\ € Par.(p, d) and some standard tableau t of
shape A. Since p is the e-core of A, there is a sequence

p=XNcAXc...ca=\

of partitions such that \" € Par.(p,r) for each r =0, ...,d. By Lemma 4.3, each \" \ A"~}
is a translate of an e-hook partition, and the top-left corner of A"\ A"~! has residue
k. For 1 < r < d, let t7 '\ \ AY = {ay1,..., a0}, with a,1 < --+ < ape. Since
j € 1P and Par.(p,0) = {p}, we have t~1(p) = {1,...,|p|}. Hence, as t is a standard

tableau, (iq,,—|p|>--+»%a,e—|p|) € If;l. Therefore, the partition of {1,...,de} into the
subsets {a,1 — |pl,...,are — |p|}, 7 =1,...,d, witnesses the fact that i € £;. O
Lemma 4.7. For all j € I*°, we have k ¢ {Tmax{1,|pl—e+1}s - - - > Jp|—15 J|p| } -

The reader may find it helpful to check, by inspecting the residues in (4.4), that the
lemma holds for e and p as in Example 4.4, i.e. that for any ¢ € I?9, none of the last 3
entries of % is equal to 2.
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Proof. Fix an integer N > {(p) such that —N + eZ = k. Let t be a standard tableau of
shape p such that ¢* = j. Suppose for contradiction that j, = & for some a > |p| — e, and
choose such a to be largest possible. Let p" be the shape of t<q—14, forr =0,...,|p|—a+1.
Then, by Lemma 4.2, Abx (u!) is obtained from Aby (1%) by the move (t,e—1) — (t+1,0)
for some ¢t > 0. By maximality of a, the abacus Aby(p) can be obtained from Aby(u!)
by |p| — a < e “horizontal” moves, i.e. moves of the form (#',u) — (t',u + 1) for ¢’ > 0,
0 < u < e— 1. Recall that, since p is a Rouquier core, for each ' € N there exists u €
{0,...,e—1} such that Aby(p)N({t'} x{0,...,e—1}) = {(t,u), t',u+1),...,(t',e—1)},
and the size of this intersection is weakly decreasing as t’ increases. Let m be the number
of beads in row t of Aby(p). Since (t,e — 1) ¢ Aby(u!), at least m horizontal moves in
row ¢ are required to transform row ¢ of Abx(u') to row ¢t of Aby(p). Further, row ¢t + 1
of Abx(p) has at most m beads, so the leftmost bead of that row is in column numbered
at least e —m. On the other hand, the leftmost bead of row t in Aby(u!) is in column
0, so at least e —m horizontal moves are required to transform row ¢ 4 1 of Abx(x!) into
row t + 1 of Aby(p). Hence, in total, at least e horizontal moves are needed to transform
Aby (') into Abx(p), which is a contradiction. O

Combining Equation (3.21), Theorem 4.1 and Lemmas 4.5 and 4.6, we obtain the fol-
lowing formula:

(4.5) BKprea(foa) = D e(gi™...i9).
jerr0
i i Derd!

If «a € Q4 and v = (y1,...,7) is a composition of «, we define R‘WXO to be the image of
R, under the natural projection R, — RQO.

ops A A
Proposition 4.8. If f = BK|,cq(fp.a), then chc;)nt(p)+d5f C econt(p),5dRcfnt(p)vdéecont(p)’gd.

Proof. Let n = |p| +de, = (|p|,e?) = (|pl,e,...,e) and v = (|p|,de). By (3.21), we have
oy A A A
f = €cont(p),s2- Hence, by Proposition 3.7, choont(p)+d5f =D wergh Rcé)nt(p)7§d1/leC£nt(p)’5d,
so it will suffice to prove that fi,, f = 0 for all w € *@}; \ &,. Due to Equation (4.5) and
relations (3.2) and (3.5), it is enough to show that for all such w we have w(j§3(!) ... (@)
78D i@ whenever 3,5 € 170 and i™, ") ¢ 17} for 1 = 1,...,d. Let Y =
{1,...,lpl} and X, ={|p|+ (r—De+1,....|p|+re} forr=1,...,d. Let a € {1,...,n}
be maximal subject to w(a) € Y. Since w ¢ &,, we have a > |p|. Let X, 3 a and
b=|p|+ (r—1)e+ 1. Since w € %}, we have w(b) < w(a) < |p|. Since igr) = K, our
assertion is true if j/ ®) # K, so we may assume that j/ ) = By Lemma 4.7, this implies
that w(b) < |p|—e. Foreach ¢ € Z := {w(b), w(b)+1,...,|p|}, we have w=!(c) > b because
w € "Pf and w™(c) < a by maximality of a. Since |Z| > e and {b,b+1,...,a} C X,
this is clearly impossible. O

If V is a graded vector space, let END(V') be the algebra of all endomorphisms of V'
(as an ungraded vector space), endowed with the unique grading such that deg(gv) =
deg(g) + deg(v) for all homogeneous elements g € END(V) and v € V.

Proposition 4.9. Let \ be an e-core. Then there exists a graded vector space V such that
Ré\ﬁnt(A) = END(V) as graded algebras.

Proof. 1t is well known that Ré?nt(A) = H,o is a split simple algebra (e.g. because it is
a cellular algebra with only one cell, see [26, Corollary 5.38]), so H,0 = End(V) as an
ungraded algebra for some vector space V. By [28, Theorem 9.6.8], V' can be graded as

an Ré\[?nt( -module, and the result follows. ]
p)
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If B is a subset and A is a subalgebra of an algebra A’, the centraliser of B in A is
defined as C4(B) = {a € A | ab=ba Vb € B}. We will use the following elementary fact.

Proposition 4.10. Let A be a finite-dimensional graded F-algebra. Suppose that B is a
unital graded subalgebra of A such that B = END(V') for some graded vector space V. Let

C = Cy(B). Then there is a graded algebra isomorphism B® C == A given by b& c — be
forb e B, c € C. Moreover, for any homogeneous primitive idempotent € of B, we have

a graded algebra isomorphism C == cAe given by ¢ — ec.

Proof. We view V as a B-module via the given isomorphism. Let {vi,...,v,,} be a
homogeneous basis of V. For 1 <14,j < m, let e¢;; € B be the element given by e;jvr, =
djrv; for k= 1,...,m. Then {e;; | 1 < 4,57 < m} is a homogeneous basis of B, and
{eii | 1 <i < m} is a full set of primitive idempotents in B; in particular, > " e;; = 1.
Let C' = ej1Aey;. It is straightforward to check that, for any z € C’, the element
&(x) == Y1, einwer; € A commutes with ej;, for 1 < j,k < m, so &(z) € C. It follows
easily that the maps £: ¢/ — C and C — C’, y — eq1y, are mutually inverse isomorphisms
of graded algebras. For any ¢ and j, the graded vector space e;; Aej; is isomorphic to C”,
as the maps ¢/ — eiiAejj, x — ejrxerj and e Aej; — 'y e1;yej1 are mutual inverses.
Observe also that for all € C’ we have e;;§(x) = ejixer; whenever 1 < 4,5 < m. It
follows that e;;C = e;;Aej; for all 4,j. Therefore, the graded algebra homomorphism
defined in the statement of the proposition is an isomorphism B ® C' = A. The last
statement has already been proved for € = ej; and follows in the general case because &

and e1; are conjugate by an invertible element of Byg, (both being primitive idempotents

If 0,8 € Q4+ and ht(8) = m < n = ht(«a), define a graded algebra homomorphism
Ly RAO — RY by 2z eqt? (2) (cf. (3.20)). As before, let

(46) f= BK|p|+de(fp d) = €cont(p),sd € Rccg)nt(p)—i-dﬁ'

Observe that f centralises jcontlp)Fds  pho and that f = 0: the latter fact follows easily
cont(p) cont(p)

from (3.21) and Theorem 4.1. Hence, by Proposition 4.9, the map RCO tp) fRM

cont(p)+do
cont(p)

image is isomorphic to END(V) for some graded vector space V. Therefore, defining

(47) Cpa=C (oo PR D),

chont(p)+d5f cont(p) cont

cont(p)+dd f

given by x — ¢ () f is an injective unital graded algebra homomorphlsm7 and its

we have a graded algebra isomorphism

(4.8) R}

cont(p )®de—>fR

cont(p) +d6f

X nt(p)+dd
g by 0 B ) e R

Hence, in order to prove Theorem 3.4, it suffices to construct a graded isomorphism from
Ré\o 1S4 onto C), 4. Most of the remainder of the paper is devoted to this task.

and ¢ € C, 4, due to Proposition 4.10.

Proposition 4.11. Let w: Rgs — Rho 45 be the graded algebra homomorphism defined

cont(p),

as the composition Ris — Reont(p)ds — R 45 Where the second map is the natural

A
Coont(p),
projection and the first one is given by x — Lcont(p)7d5(ecom(p) ® x). Then:
(i) We have C, q = w(egaRgsesa).
(ii) For anyi € I?\ £y, we have w(e(i)) = 0.

Proof. It is clear from the definition that w(esiRasesi) C €oont(p )(;dRcont( )+ds Ccont(p),54 =

fReont(p)+dsf and that w(Rgs) commutes with Lcont(p Hd&(RAO

nt(p) cont(p)) Thus, w(€5de5€5d) -
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Cpq. For the converse, let x € C,4. Then it follows from Proposition 4.8 that x =

cont(p)+dé ; pA
> iy ajcj for some ay, ... am € Lcontgﬁi (B nt(py) and c1, ... em € w(esaRasesa) C Cpa,
where ay, ..., a,, may be assumed to form a basis of LiZEEEZ%eré(RQ;’m(p)) with a; = f. Due

to injectivity of the map in Proposition 4.10, we infer that z = ¢, so x € w(esaRgsesa),
and (i) is proved.

For (ii), note that for all j € I*° we have ji ¢ I”* by Lemma 4.6 and hence e(ji) = 0
by Theorem 4.1. Thus, w(e(%)) = >_ ;00 €(42) = 0. O

Recall the definition of the quotient Rd5 of Ry4s in §3.3. By Proposition 4.11, the map

w defined in the statement of the proposition induces a homomorphism Rd5 — Rcont(p) 45

which restricts to a surjective graded algebra homomorphism 2: e5de565d — Cp g

4.2. The graded dimension of C, 4. In this subsection, we prove the following result:
Proposition 4.12. We have qdim(C, q) = qdim(R?OZGd) =d! qdim(Rg\O)d. In particular,
C).q is nonnegatively graded.

Turner ([33, Proposition 81]) proved the same result for ungraded dimensions in the
case when & = 1. The proof given below is similar. If p is an e-core and a > 0, let
Std.(u, a) be the set of all standard tableaux with shape belonging to Pare(u,a). Let

Std(p,d) = {t € Stde(p,d) | t<|p|4ra € Stde(p,r) for all r =0,...,d}.
Define the map
B: Std.(p,d) — Std.(p) x Stde(2,1)*?

by B(t) = (t<|p|sS1,---,84) Where, for r = 1,...,d, the tableau s, is the unique standard
tableau which is a translate of the skew tableau of size e given by m — t(|p|+e(r—1)+m),
m = 1,...,e; such a translate exists and has a shape belonging to Par.(&, 1) by Lemma 4.3.

For any i € {0,...,e — 1}, let v; be the number of beads in the i-th column of Aby(p).
For any A € Par.(p,d), let A\®) be the partition such that Ab})k (A9) is the projection
onto the first component of Abx(A) N (N x {i}). Up to a permutation, the sequence
()\(O), cee )\(5_1)) is known as the e-quotient of \.

Lemma 4.13. Let A € Parc(p,d) and (u,s1,...,sq) € Std(p) x Stde(@,l)Xd. For each
i=0,...,e—1, letd; = #{r € {1,...,d} | Shape(s;) = (i + 1,1¢7"1)}. Then

el (0 _ _ -
871 (a, 51, ., 84) N Std(A )—{}}_Mstd(A )| if XD = d; fori=0,. 1

otherwise.

Proof. The map

(4'9) t—= (Shape(té\/ﬂ)vShape(tg\pHe)a Shape(t<|p|+ed))

is clearly a bijection from B~ !(u,s1,...,s4) N Std(\) onto the set of sequences p = pu® C

p' C oo C pd = X of partitions such that p” \ pu"~! is a translate of Shape(s,) for each

r=1,...,d If1<r<d 0<i<e—1v¢&Par(p,r — 1) and p € Parc(p,r) are such
B

that v C pu, then by Lemma 4.3 and [6, Lemma 4(2)], p\ v is a translate of (i +1,1¢7¢71)
if and only if Aby(u) is obtained from Aby(v) by the move (¢,i) — (¢t + 1,1) for some
t > 0. It follows immediately that 8~ '(u,sy,...,s4) N Std(\) = & unless |\ = d;
for all i = 0,...,e — 1. Assuming that ])\(i)| = d; for all i, for any given sequence
p=p’ cp C--- Cpu? = Xasabove and any i € {0,...,e — 1}, let t; € Std(A®)
be defined as follows. Let {m; < --- < mg,} be the set of elements m € {1,...,d} such
that Shape(s;,) = (i +1,1°7"1): then Shape((t;)<x) = (u"*)® for all k = 1,...,d;. This
assignment of a tuple (to, ..., te_1) to each sequence p = u° C --- C u? = X with the above
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properties defines a bijection from the set of such sequences onto Std(A(®) x- - -xStd(Ale=1)
and therefore, in view of (4.9), completes the proof.

Lemma 4.14. For any t € Std.(p,d), if B(t) = (u,s1,...,84), then deg(t) = deg(u) +
Z?:1 deg(sr).

Proof. Due to (4.2), it is enough to prove that for any r = 1,...,d,

(4.10) D di(iolte(r—1)+k) (Shape(t < plse(r1)4k)) = deg(sy).
k=1

We will use the following general fact, which follows easily from (4.1). Let A be a
partition with /(A\) < N. For t > 0 and 0 < ¢ < e, write

ceri(N) = | Aby(\) N {(0,1),..., (t—1,0)}.

Let a = (k, A;) be a removable node of A, and let (¢, ) be the bead of Abx () corresponding
to this node, in the sense that A\ + N — k = et + i. Then we have

(4.11) da(N) = c<ti-1(A) = c<ri(A) 1fz >0,
c<te—1(A) — c<ir10(N) if i =0.

Let p = Shape(t<|pte(r—1)), ¥ = Shape(t<|y4er), and let (t,i) — (¢ + 1,i) be the
move converting Aby () to Aby(v). As in the proof of Lemma 4.3, we have {(¢,4), (¢, +
1),...(t,e—1)} C Aby(p) and {(t +1,0),...,(t +1,i — 1)} NAby(u) = @. There exists
an ordering My, ..., M, of the e moves listed under (4.3) such that, for each k =1,...,d,
Abpy (Shape(t(|p| + e(r — 1) + k))) is obtained from Aby(Shape(t(|p| +e(r—1)+k —1)))
by the move My. Let A = Aby(u) and consider any abacus A’ obtained from A by
arbitrary addition or deletion of beads in any positions not belonging to the set Z :=
{(t,i),...,(t,e—1),(t+1,0),...,(t+1,4)}. Let i’ be the partition defined by the condition
that Aby/(u') = A’, where N’ is the number of beads in A’, and set

(4.12) d(A) = da, (1 U{as, ..., ar}),
k=1

where aq,...,a. are the nodes added to y’ by the moves Mj,..., M, in this order. In
particular, d(A) is the left-hand side of (4.10). We claim that d(A") = d(A). To prove this,
it suffices to show that, for any A’ as above, d(A’) does not change when one alters A’ by
adding or deleting a bead in a position (¢',j) ¢ Z. If  >t+1ort' =t+1 and j > 4, then
a bead in position (¢, j) does not affect the calculation of d(A") via the formula (4.11).
On the other hand, if ¢ < t or ' =t and j < 4, then the total contribution of any bead in
position (¢, ) to the calculation of d(A") via (4.11) is 0 (because such a bead contributes
1 to one of the summands of (4.12), —1 to another summand and 0 to the remaining
summands). This proves the claim.

Now consider the abacus A’ obtained from A by deleting all beads outside positions
(t,4),...,(t,e—1),(t+1,0),...,(t+1,4) and then adding a bead in each of the positions
(t,0),...,(t,i — 1). Then d(A") = d(A). On the other hand, for each k¥ = 1,... e, the
abacus obtained from A’ by the moves M, ..., M), is precisely the abacus Abc((s,)<g)
with ¢t empty rows added on the top. It follows by (4.11) that d(A") = deg(s,), and we
have proved (4.10). O

Proof of Proposition 4.12. The second equality in the statement is obvious, so we only
need to prove that qdim(C, q) = d! qdim(Rg\O)d. For any e-core ;1 and a > 0, let

Xua={(t,t") € Stde(i,a) | t and t’ have the same shape }.
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Using (4.6), Theorem 4.1 and Lemmas 4.13 and 4.14, we compute

qdim(fRé\(fm(p)eréf) = Z qdes(®)+deg(t")
(t,¢/)€Xp,an(Stde (p,d) x Stde (p,d))

eg(u)+deg(v d ?
N E SR (do, de_1>

ey

u,u’€Std(p) do,...,de—1>0
d0+“'+de—1:d
e—1 "
X H Z qu;(deg(si,z)+deg(s;,l)) Z ’ Std()\i)|2
=0 si,l,‘..,si7di,s; 1"“’S'Ii d,EStds(i—i-l,le*i*l) )\iGPar(di)
— deg(u)-+deg(u) d
=d! q
d07 ce 7de—1
u,u’eStd(p) do,...,de—1>0
d0+"'+de—1:d
e—1 "
X H Z qzzél(deg(sz‘,z)-ﬁ-deg(s;l))
1=0 Sz‘,l,n-,si,dwsé 1reesSh 4 EStde(i41,167171)
=dl Y glesttdes) 3 2= (deg(sr)-+deg(s])
u,u’eStd(p) (s1,81)s.(s8d,8))EXp 1
— A : Ao : Aoyd
=d! qdlm(RCOHt(p)) qdim(R5°),

where for the third equality we use the classical identity } - cpa(y) | Std (w)|? = m!, which
holds for all m > 0. The desired identity is now obtained by dividing both sides by
qdim(Ré\g)m(p)) and using the graded isomorphism (4.8). O

5. A HOMOGENEOUS BASIS OF Rg\o

Recall that § = ag + -+ + @e—1 € Q+ is the fundamental imaginary root. In Rs, we
have ¥, 110res = Yrp1UrPriies for all r =1,... e — 2 because for each ¢ € I° we have
it # iy for 1 <t <t <e. Hence, by Matsumoto’s Theorem (see e.g. [26, Theorem 1.8]),
for any v € &, the element ,es does not depend on the choice of a reduced expression
for v. For each i,5 € I°, let w; j be the unique element of &, such that w; ;7 = 1.

The following three lemmas are left as exercises for the reader. In the first two, we
identify every i € I with the corresponding element of {0,1,...,e —1} CZ. If 4 € I", we
say that a tuple j is a subsequence of @ if j = (i4,,...,1q4,,) for some ay,...,amy € {1,...,n}
such that a1 < ... < a,.

Lemma 5.1. An element i € I° belongs to I?' if and only if iy = 0 and both (1,2,. .. ic—
1) and (e —1,e — 2,... i + 1) are subsequences of 1.

Lemma 5.2. Let i € I?'. Then the set {t € Std(e) | i* = i} consists of precisely two
tableauz, namely, a standard tableau of shape (i +1,1°7%~1) and degree 1 and a standard
tableau of shape (ic, 1°7%) and degree 0.

Lemma 5.3. If 0 < m < e, then all standard tableauz of size m have degree 0.
Proposition 5.4. The algebra Rg\o has a homogeneous basis By L By Ll By where
By = {$uye(i) | 4.5 € 17" de = je},
Bi = {thu; ;e(d) | 4,5 € I e = je £ 1},
By = {$u, yee(d) | .5 € 17 ie = je}.
and deg(x) = m for all x € B,,, m =0,1,2.
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If e = 2, then the homogeneous basis given by the proposition is simply {e(01), y2¢(01)}.

Proof. Note that by Lemma 5.3 and Theorem 4.1 we have Ré\ﬂl = (Rgfl){o}, SO Y1 =
cov =9Ye—1 = 0in R?El. Since the graded algebra homomorphism ¢ _; (see §3.1) is well
defined, we have y; = - = yo_; = 0 in R2 as well. By Lemma 5.2 and Theorem 4.1, the
following statements are true for any 4,5 € 19!

1. If ic = je, then qdim(e(j)Rg\Oe(i)) =1+q%

2. If i, = jo + 1, then qdim(e(j)R5e(3)) = ¢.

3. If jo & {ie,ic — 1,ic + 1}, then e(j)R50e(i) = 0.
In particular, R?O = (R?O){O,LQ}. By Theorem 3.5(i), it follows that, whenever i, € %!
and i, = j., the vector space e(j)Rg‘Oe(i) is spanned by {4, ;€(%), Pw, ;yee(i)} and hence,
by comparing graded dimensions, that these elements form a basis of e(j )Ré\oe(’i) and have
degrees 0 and 2 respectively (the latter fact is also easily seen directly from definitions).
Similarly, if je = ic £ 1 (and hence e > 2), then the singleton set {1y, e(?)} spans the
vector space e(j)R20e(i) and hence forms a basis of this space; moreover, the unique
element of this set has degree 1. The proposition follows from the above assertions. O

Lemma 5.5. Assume that e > 2. Then
(i) If i,3 € I and je € {ic — 1,i. + 1}, then

) yee(d) if je =i — 1,
ww,;ijwj,ie(z) - { yee(i) ifje = ie + 1.

(i) The algebra R?O is generated by (ngxo){o,l}'

Proof. (i) It is easy to see that there exists k € 191 such that k. = i, and ke_1 = jo. Then
k' := s._1k also belongs to 9!, and k. = j.. We have Wi j = WjkSe—1Wy ; and, since
Se_1 € (6*171)9§6_171) and w; g, Wy ; € G(e_1 1), it follows that ¢y, ;€5 = Vu,  Ye—1Yw,, ;€6
Similarly, ., e5 = ¢wj,k/¢efl¢wk,ie5- Since i, = ke, we have deg(1y, ;e(i)) = 0, and
hence, applying repeatedly the case i, + i,4+1 of the relation (3.11) and using the fact that
Wip = w,;i, we obtain ¥y, , Y, ;(2) = e(i). Similarly, Yu, k,wwk,je(k/) = e(K'). Set
e=1if jo=14.+1and e = —1if jo =i, — 1. Using the above equalities together with the
fact that y.—1 = 0 (see the proof of Proposition 5.4) and that 1, ; commutes with y. (as
wg,;(e) = e), we obtain

YV, ;Yw; 1€(8) = Y, p Ve—1Vuwy, Vw, o Ve—1Vu, ;€(2)
= wwi,kwefﬂwk/,jwwg”k/€(k,)¢e—1¢wk,¢€(i)
= Yu Ve 1e(K)u, .e(4)
= eVuw; (Ve — Ye—1)Puy, (%)
= eWu; 1 YeWuwy, 1€(8) = €Wy Yy, 1 Ye(E) = eyee(s).

(ii) Since e > 3, for each i € I9'!, there exists j € I9'! such that j. € {i, — 1,4, + 1}.
The result now follows from (i) and Proposition 5.4. O

6. WREATH PRODUCT RELATIONS IN A QUOTIENT OF A KLR ALGEBRA

In this section we construct a unital graded algebra homomorphism O: Ré\o 164 —
esaRgsesa (cf. (3.26)). As is mentioned in §3.3, we adapt ideas from [17, Section 1] in order
to define the images 7. of elementary transpositions s, € G4 under ©. The elements 7, are
defined by Equation (6.9), and their needed properties are summarised in Theorem 6.14.
The present set-up is quite different from that of [17]: in particular, the “error terms”
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€, appearing in (6.9) have no analogue in [17]. Consequently, the presentation below is
largely self-contained.

6.1. The intertwiners ¢,,. Fix n > 0. We recall necessary facts from [17, §1.3.1]. For
1 <r < n, define p, € R, by

ore(i) = {(wryr —yrbr)e(t) = (Ur(yr — yry1) + De(@)  if 4 = iy,

(6'1) a ¢r€(i) if iy # iy

for all 2 € I™.

If w=s, sy, is a reduced expression in &,, define ¢, = @, -+ ¢p,. It follows
from part (ii) of the following lemma and Matsumoto’s theorem that ¢,, depends only on
w, not on the choice of the reduced expression. In particular, we note that

(6.2) PovPw = Pow

whenever v,w € &,, and f(vw) = £(v) + (w). Also, we will repeatedly use the fact that
owe(t) = e(wi)p, for all it € I, w € G,,.
Lemma 6.1. [17, Lemma 1.3.1] For 1 <r<n,1<t<n,we &, andi € I",
(i) ‘P%e(i) = (Liryir+l(y7'7y7“+1) + 5iryir+l)€(i)7.
(4) orori1pr = Pry10r@rr1 if r <n—1;
(111) LYt = Yuw(t)Puw;
(iv) if 1 <k <n and w(k +1) = w(k) + 1, then oo = Vuy(k)Pw;
(v) u-10we(t) = [T1<a<b<n (Ligi,(Yas Yo) + ig iy )€(2).
w(a)>w(b)
Suppose now that n = 2e. Recalling the definition before Corollary 3.9, consider the
subalgebra R, of Rys.

Lemma 6.2. Let w = (1,e + 1)(2,e + 2)---(e,2e) € Gy, and let K be the ideal of
Fly1,...,y2] generated by the set {yr —y: | 1 <rt <e}U{yr —y | e+1<rt < 2e}.
Then, in Ros, we have

(6.3) Pwess € Yl — Yer1))* + Kless+ Y $uRjs
veZ5e 9\ {w}

Proof. The idea of the proof is the same as that of [17, Proposition 1.4.4]. Note that w is
fully commutative (see [20, Lemma 3.17]), and hence v, does not depend on the choice
of a reduced expression for w. Let j,k € I° and i = jk. It is enough to show that

pue(d) € Yoy — Yer1) + K)e(@) + Y uRj;
veZ8E N\ {w)

for all such 2. Let w = Spot SroSry be a reduced expression, and let u, = s,, | ---s,, for
1 <k < e? We have

(6.4) pwe(t) = Prpo e Pr ().
For each k, one can replace the multiple ¢,, by ¢, e(uxt) without changing the value of
the expression on the right-hand side.

Let k run in the decreasing order through the elements of {1,. .., e?} satisfying (uyi),, =
(ug?)r,+1. Note that there are exactly e such values of k since each of j and k is a permu-
tation of (0,1,...,e — 1). For each such k, we have ¢, e(uit) = ¥, (Yr, — Yrp+1)e(urt) +
e(uxt). Consequently, the product (6.4) decomposes as a sum of two summands, which
correspond to ¥, (Yr, — Yro+1)e(urt) and e(uyi) respectively. By Lemma 6.1(iii), the
first summand does not change if we remove the factor (y,, — yr,+1) and instead in-
sert Yu () ~ Yurt (retl) at the right end of the product (note that u,;l(rk) < e and

1
k
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u; '(r,+1) > e). After these manipulations are performed for all such k in the decreasing

order, we have decomposed the product (6.4) into 2¢ summands. Of these, all the sum-

mands for which the second option was chosen at least once belong to > DN () Yy Rs s
v 2¢ w

by Theorem 3.5(ii) together with the argument used to prove Corollary 3.6. The remaining
summand belongs to ww((g'ﬂ —Yet1)€(?)+K), as in all cases we have Yo (r) " Yur (rsn) €
Y1 —Yer1+ K. Thus, gpe(t) € Y (Y1 —Yet1)°+K)es s +a for some a = Zve_@(EQ)\{w} Uy,
2e
with a, € Rsse(s) for each v. Since pye() € Rys and 1y, ((y1 — Yet1)€ + K)e(i) C Rby,
we have a € R);. By Theorem 3.5(i), we can write a, = ZzeeB(e,e) .e()x, , with
Ty € Fly1,...,Y2¢], so that a = Zv6@2(22>\{w} ZzEG(e,e) Yytpze(d)x, .. We may assume
that for any such v and z the reduced expression for the definition of ¢, is chosen in such
a way that ¢, = ¥,1,. Then, by Theorem 3.5(i) and Proposition 3.8, z,, ., € R} for all
v and z, and hence a € > Vo R 5. O

6.2. Quotients of Rs. Throughout this subsection, we view 1, and y; for 1 < r < e and
1 <t < e as elements of either Rs or R?O (depending on the context) via the natural
projections R, — Rs and R}o — Ré\o. Let V be the 2-sided ideal of Rjs generated by
&1 = {e(i) | i € I°\ I?'}, so that Rs = R;/V (cf. §3.3). Let : Rs — Rs be the natural
projection.

Lemma 6.3. We have ¢, = 0.

Proof. If not, then by the relation (3.5) there exists i € I*! such that s13 € I?!. Since
every j € I9! satisfies j; = 0 and js # 0, this is impossible. O

UE@ézQ)\{w}

Lemma 6.4. There is a unital graded algebra homomorphism n: R?O — Rs given by

n(e(d) =e(@), n(br) =¥, 1Y) =0 —

fori€I5, 1<r<eandl <t<e.
Proof. To begin with, n is a homomorphism from the free algebra on the standard genera-
tors of Rfs\o to Rs. It is immediate that 7 respects the defining relations of Ré\o (including
the cyclotomic relation 42" e(4) = 0), with the possible exception of relations (3.8)— (3.10)
(note that (yr+1 — yr) = ¥Ypy1 — ¥, for 1 <r < e and that n(y;) = 0).

Recall that i, # i,,1 for all 4 € I and 1 < 7 < d. We have n(¢;) = 0 by Lemma 6.4,
so both sides of (3.8), (3.9), (3.10) are mapped by 7 to 0 for r = 1. For r > 1, we have

N(Yr+1¥r) = Uri1 = Y00 = Gra1¥r — 0,01 = G — U1) = 0(4ryr),
where the second equality is due to (3.8) and the third one is due to (3.9). Relations (3.8)
and (3.9) for r > 1 are checked similarly. O
Lemma 6.5. Let z be an indeterminate, and view F'[z] as a graded algebra with deg(z) = 2.
We have a graded algebra isomorphism R?O ® F[2] == Rs given by a ® 2™ — n(a)y7 for
allm>0 and a € R?O.

Proof. By Lemma 6.3 and the defining relations of R, the element 7, centralises n(Rgo).
Hence, it follows from Lemma 6.4 that we have a graded unital algebra homomorphism
¢: R?O ® F[z] — Ry defined as in the statement of the lemma.

By an observation in [17, §1.3.2] (cf. (3.23)), there is a unital algebra homomorphism
R; — R @ F[z] given by

(6.5) e(i) —e(d) @1, Y=Y ®1, yoyuRl+1lo:z

forz € I‘S, 1<r<e, 1<t<e ByTheorem 4.1, we have e(z) = 0 in Rg\o for ¢ € I‘S\I@J,
so the map (6.5) factors through Rs. It is easy to check that the resulting homomorphism
Rs — R?O ® Fz] is both a left and a right inverse to §. O
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Using the fact that Rjs is nonnegatively graded and Proposition 5.4, we immediately
deduce the following result.

Corollary 6.6. The map n restricts to a vector space isomorphism from (Ré\o){m} onto

(Ed){o,l}- Moreover, (Eé){o,l} = Zieml Zve@e F%e(i)-

Let K be the left ideal of Rs generated by the set {7, — 7, | 1 < k,t <e}. Foric I,
1<r<eand1<rt<e, wehave (7, — y;)¥, (%) = V,e(2)(Ts, (k) — Us,(1))- Hence, K is
a 2-sided ideal of Rj.

Lemma 6.7. Let z be an indeterminate. The F-linear map (Rs)go1; ® F[z] — Rs/K
gwen by a ® 2™ — ay" + K is an isomorphism of vector spaces.

Proof. Using Proposition 5.4, we see that the image of K in R?O ® F[z] under the inverse
of the isomorphism of Lemma 6.5 is equal to (Rg\o){g} ® F'[z]. Hence, the map (R?O){Ojl} ®
F[z] - Rs/K given by a ® 2™ — n(a)y}* + K is an isomorphism of vector spaces. Due to
Corollary 6.6, the result follows. O

6.3. A homomorphism from Rg\o 1S, to esaRgsesa. Fix an arbitrary integer d > 0.
Let V be the 2-sided ideal of Rgsa generated by the set

{e(@® ... aD) [ @O,....iD) e (17)4\ (171) ).

Let U be the 2-sided ideal of Rgs generated by {e(7) | i € I% N\ &4} (cf. (3.24)), so that
Rgs = Rgs/U. Define Rga to be the image of Rga under the natural projection Rgs — Rys.

Lemma 6.8. We have:
(i) Uesa = RysV;
(ZZ) U ﬂR(gd = V,'
— — — d
(i1i) Rgsesa is a free right Rga-module with basis {1, | w € @éz )}.

Proof. (i) By Lemma 4.5, V C U. Hence, R4sV C Uega, as Vesa = V. By Corollary 3.6,

Rasess = 3 ety YuwRga. Since R = 3,00 jwepon e(@M .. i D)Rsa + V, we have
de

Risesa =D ce, €(1) Rasesa+ RasV. Hence, for any i € I\ £;, we have e(i) Rgsega C RasV.
Since U =), rds\g, Rgse(i)Rys, the inclusion Uega C Rg5V follows.
(i) and (iii) follow from (i) and Corollary 3.6. O

Due to Lemma 6.8(ii), Ryza is naturally identified with Rgq/V. Hence, the isomorphism
Lsd: R?d 3 Rsa induces an algebra isomorphism ¢: E?d 2 Rya.

Throughout the rest of the section, symbols of the form ¥y, 1y, ©r, Yw, €(2), eq and
y; that would previously be interpreted as elements Ry, represent their images in Rgs. It
follows from Lemma 4.5 that, if i(l), ey i@ e 1¢, then we have e(i(l) .. .i(d)) =0 in Rys
unless ¢V, ..., i@ e 191, Hence,

(6.6) esa= . (@M. i)
i ideroa
For 1 <r <d, let
(6.7) wr=((r—De+1,re+1)((r—1)e+2,re+2))---(re,(r + 1)e) € Sge.

This element is fully commutative (cf. the proof of Lemma 6.2), s0 0, := 1, € Rys is well
defined in the sense that it does not depend on the choice of a reduced expression for w;..
Let B4 be the subgroup of G4, generated by the elements w,, 1 < r < d. Then we have a
group isomorphism o: &4 — By, s, — w,, and By C (ed)@ésd) (cf. [21, §4.1]).

For each u € &4, choose a reduced expression v = s, - - - Sy, and define oy, = oy, -+ - 0y,
We may assume that o, = 9),(,), as the decomposition o(u) = wy, - --wy,, can be refined

m
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to a reduced expression for o(u) in S4.. Note that o,e5a = esacy, for all u € &;. We have
{1,...,de} = |_|fql:1 X;, where X, :={(r —le+1,...,re}.

Lemma 6.9. (i) We have esaRasesi = Y, cq, OuRsa.
(it) For all u € &4, we have oyesa € (Ras){o}-
(iii) The algebra egaRgsesa is nonnegatively graded.

Proof. For (ii), it is enough to consider the case when u = s, for some r € {1,...,d —
1} because each o, centralises esa. The fact that o,e5¢ is homogeneous of degree 0 is
easily verified using (6.6). Part (iii) follows from (i) and (ii) because Rsga = L(R?d) is
nonnegatively graded. o B
Thus, it remains only to prove (i). By Theorem 3.5(i), we have Rysesa = Y D Yoy Rga.
w de

If w € By, say, w = o(u), then egathy, Rga = €500y Rga = 0, Rga. So it will suffice to prove
d —

the following claim: if w € .@C(IZ ) \ By, then egatpy, Rsa = 0.

If not, then by (6.6) there exist i), ..., e 1! such that w(zV ... i@) = ;) 5@

d

for some jM, ..., e 191 Since w € @éi ) \ By, there exist k € {1,...,d} and
t € {2,...,e} such that w((k —1)e + 1)) € X; and w((k — 1)e +t) € X,, for some
m > [l. Let such k,t be chosen so that m is greatest possible. Let r € {1,...,d} be such
that w((r — 1)e +1) = (m — 1)e + 1 (note that w='((m — 1)e + 1) = 1 (mod e) because
the only zeros in i) ... 4 4 oceur in positions with numbers congruent to 1 modulo e).
Note that r # k, as (k — 1)e + 1 and (r — 1)e + 1 have distinct images under w. By

maximality of m, we have w(X,) C X,,, whence w(X,) = X,,,. This contradicts the fact
that w((k —1)e +t) € Xp,. O

Recall the ideal K of Rs defined in §6.2 and let

d
K=Y Ry o KoR"") C Ry

r=1

In other words, K is the 2-sided (or, equivalently, left) ideal of Rzu generated by the
elements of the form (y, — yt)esa with r,t € Xj for 1 < k < d. We have a natural
isomorphism

(6.8) (Rs/K)?? 5 Ru /K, (11 4+K)®--- @ (zg+ K) = 1(z1®---@24) + K

for x1,...,2q4 € Rs.

Let J = esaRqsK, so that J is a left ideal of ega Rgsega. The map Rsa — egaRasega )T
given by a + a + J has kernel K and image (Rga +J)/J. For any a + J € esaRasesa/T
and b € Rga, the product (a + J)(b+ J) = ab+ J is well-defined. Thus, esiRgsesa/T is
naturally an (esa Rgsesd, (Rga+J)/J)-bimodule. It follows from Lemmas 6.8(iii) and 6.9(i)
that egaRgsega/J is free as a right (Rse + J)/J-module with basis {0, +J | u € &4}
In particular, (Rga + J)/J is a free right (Rsa + J)/J-submodule of esaRgsesa/J. The
subspace (Rga + J)/J also has an F-algebra structure arising from the isomorphism
Ryi/K ~(Rsa +T) /T, b+ K +— b+ T, and the right (Rza + J)/J-module structure on
(Rsa + J/J) induced by this algebra structure coincides with the aforementioned module
structure. These facts are used repeatedly in the sequel.

Define

S = ((Rs)jo1y)® C By and

T = Z O’uL(S) C 65d§d5€5d.
ueSy
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Note that 7" is a graded vector subspace of Rgs. For all 1 < r < d, set
Zr = Yr—1)es1650 + T € (Rya + T) /T
These elements commute and generate the subalgebra F|z1,. .., 24] of (Rga + J)/J-
Lemma 6.10. Let Zq,..., 2, be algebraically independent indeterminates. Consider the
F-algebra F|z1,..., 24, graded by the rule deg(2,) =2 for 1 <r <d.
(i) The F-linear map FS;® S ® F[Z1,...,2q] — esaRasesa/T given by u @ a ® g
out(a)g(21, ..., 2a) (for u € &g) is an isomorphism of vector spaces.
(ii) The F-linear map T ® F[Z1,...,24] = esaRasesa/T given by t @ g — tg(z1,...,24)
1 a graded vector space isomorphism.
Proof. Part (i) is established by combining Lemma 6.7, the isomorphism (6.8) and the fact
that {0, + J | u € &4} is a free generating set of esa Rgsesa/J as a right (Rsa + J)/J-
module. The map in part (ii) is easily seen to be a graded homomorphism. The fact that
it is bijective clearly follows from (i). O

Corollary 6.11. We have (egaRasesa) o1y C T
Proof. This follows from Lemmas 6.9(iii) and 6.10(ii). O

If w=(p1,...,m) is a composition of dé, let z,: Ry, ® -+ ® Ry, — Rgs be the compo-
sition of ¢, with the natural projection Rg5 — Rys. Fix an integer r such that 1 < r < d.
Let S0 ="' @ (Rs) o1y ® (Rs) o1y @ "1 C S.

Lemma 6.12. We have oy, e5a + T € 0r(2r — 2041)¢ + L(ST)F [z — 2041].
Proof. Let B: Ros — Rgs be the algebra homomorphism defined by
B(w) = L5r-1 95 ga—r—1 " Tere eg@d_r_l).
We use Lemma 6.2 and apply § to both sides of (6.3). It follows from (6.6) and the
J— 2
relation (3.5) that esaB(1y)esa = 0 in Rys for all v € 92(2 ) \ {1,w1}, as the set {1,e + 1}
is not v-invariant for any such v and every element of I?'! has 0 as its first entry. Since
€s5dPw, €5d = P, €s5d, We conclude that
Ouw,sd + T € Py, (2r — 2r41)° + Y,

in egaRgseza/J where Y = (B(Rf,) + J)/J. Tt follows from the definition of 7 (and of
K) together with Corollary 3.9 applied to R}, that

Y C ) Blves2)Flz — zr41).
UEG(E’E)
By Corollary 6.6, we have 3(1yes2) +T € B(rs2((Rs){0,13®(Rs)g0,13)) +T forallv € &, (),
and the result follows. O
Observing that deg(py,esq) = 2e, deg(oresa) = 0, S = (S(T)){O,LQ} and deg(z, —
zr+1) = 2, we deduce from Lemma 6.12 that

e—1

(6.9) Ow.esa + T = Tr(2r — 2r41) + € (20 — 2r41)

for some elements 7, € ore5a + L(Sgg)}) C esaRgsesa and €, € L(Sg)}) C Rga, which are

determined uniquely due to Lemma 6.10(ii). By considering degrees, we see that €, €
@y @ (Rs)qy ® (Rs)qy @es™ 1),

For 1 < t < d, define a graded algebra homomorphism 7;: Ré‘o — Rga by mi(z) =
W @ n(r) ® E?d_t), where 7: R?O — Rj is given by Lemma 6.4. Note that, by
Corollary 6.6, we have (Rs)1y = n((Ré\O){l}), and hence

(6.10) er € 1 ((R5) (1)1 ((R5) (1)
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Remark 6.13. For any i, 3D e % the element are(i(l) .. .i(d)) is the image of the
element of Ry45 represented by the following Khovanov-Lauda diagram:

.g—l) Z.§7~+1) i) Z.;r+2)

’Ll 7:2 ’Le 1 le Zl ’L2 e ’LéT+1) ’L.§T+2) ig‘+2) Z(d)(d) (d)

(cf. Remark 3.1). Any element of S (including €,) is a linear combination of the images
of diagrams of the form

ig"*l) Z.gurz)
N O I
..................... A B
T T \
2(11)2(21) Z.((zl) 2.gr—l) Z.((27“—1) ZY)Z(QT) Z.gr)igr—f—i:—i_l)i(er—&—l)igr—i—ﬁ Z.(67"-‘,-2) ng)lgd) Z.gd)
2
where i(l), el i@ e 1% and A, B are diagrams representing elements of Rg.

Now we can state the main result of this section. The equalities in parts (i)—(iv) of the
following theorem are between elements of Rgs.

Theorem 6.14. For 1 <r < d, we have:
(i) T7"2 = €sd;
(it) T Tp 1T = Trp 1 TrTrg1 if 7 <d —1;
(iii) T, =y if 1 <t <dand|t—r|>2.
(iv) if x € Rg\o, then ny ()7 = 7onrg1(2) and neg1(z) 7 = 70 (). B
(V) Yret1€5a € TY(r—1)e41Tr + T, where T is the unital subalgebra of esaRsaesa generated
by TUK.

Remark 6.15. If one of parts (i),(ii),(v) of Theorem 6.14 holds for d = 2, then it holds
in general, and if part (iv) holds for d = 3, then it holds in general. This may be
seen by applying the graded algebra homomorphism ¢, ;: R;5s — Rgs induced by the map
Ris — Ras, © L_5r717l(575d—r7l+1(€g~®7._1 ® 2@ ey, with | = 3 for part (iv) and
I = 2 for the other parts. (The fact that this map factors through R;s follows easily
from the description of &; in §3.3.) In particular, it follows from the definitions that
= Ga(Ed T en eyt .

Due to Lemma 6.10(ii), we have esaRasesi/T = @50 T(Fl21;- - -, Zd){2m})- Define
the linear map mp,: esaRasesa/J — esaRasesa/J as the projection onto the component
T(F[zl, e 72d]{2m}>- We write 7 = T1, € = €1 and o = g1.

Proof of Theorem 6.14(iv). We include only the proof of the first equality in part (iv), as
the proof of the second one is similar. Due to Remark 6.15, we may (and do) assume that
d = 2 and r = 1. First, we consider the case when e > 2. Due to Proposition 5.4 and
Lemma 5.5(ii), it is enough to prove the desired equality for all € By U By, where By, By
are as in Proposition 5.4. Thus, we may assume that z = Q,Z)wjyie(i) for some 4, j € I?! with
Je € {ie,ie+1,ie—1}. Note that z = gpwjﬂ.e(i) because the entries of 2 are pairwise distinct
(cf. (6.1)). We view w;; as an element of Gy, via the embedding &, — Sac, 51 — sp,
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and we denote by w;-i the image of w;; under the embedding &, — Gae, 51 > Seqk
(for 1 < k < e). By definitions of ¢,,, and n;, we have n1(e(2))pw, = @uw,n2(e(?)). Since
wj Wy = wlw;- ; and wy € (6’6)92(2’6), using (6.2), we obtain

M(2)Pun €50 = Puj ;M (€())Pun = PunPuy, M2(€(2)) = Puyn2(2)esa.
Using (6.9), we deduce the following equalities in Ros/J:

m(z) (7(z1 — 22)° + (21 — 22)°7") = 7(21 — 22)°m2(x) + €(21 — 22)° "2 ()
(6.11) = 1n2(x)(21 — 22)° + ena(x) (21 — 22)6717

where the second equality follows from relations (3.8), (3.9), (3.10).
We claim that me (11 (2)e(z1 — 22)¢7') = 0. If deg(x) = 0, then n;(z)e € 1(S(sy), and the
claim follows. If deg(x) = 1, then, using (6.10) and Corollary 6.6, we have

(6.12) m(z)e € n((R3°)q2)m2((R5*)1y) C K,

where the second inclusion follows from the fact that n((Rg\O){g}) = F{tw, ;(Ye —y1)e(7) |
i, € I?'}. This concludes the proof of the claim. A similar argument shows that
e (ena(w)(21—22)¢ 1) = 0. Hence, applying 7, to Equation (6.11) and using Lemma 6.10(ii),
we obtain
ro(m (@) + ) = To(ra(x) + ).

By Corollary 6.11, we have n;(x)7, 7n2(x) € T. Thus, n1(x)7 = 7n2(z) by Lemma 6.10(ii).

Now assume that e = 2. This case is treated by a direct calculation, as follows. First,
note that es2 = e(0101) and that

(6.13) Pregz = 0 = P3ese.
Indeed, 13e(0101) = €(0110)13 = 0 because (0110) ¢ &, and the other equality is proved
similarly. We have

Puy €52 = P2ip1p3p2e(0101) = thap1e(0011) 03000 = Ya(Y1(y1 — y2) +1)e(0011) o302
(6.14) = thathrip3e(0011)a(y1 — y3) + Y2i3e(0011)¢pa,

where the last equality is due to Lemma 6.1(iii). Further,

©3e(0011)p2 = (13(y3 — ya) + 1)p2e(0101) = ¢3102€(0101)(y2 — y4) + ¥2€(0101).
Substituting this into (6.14), we obtain

Puresr = (Vo132 (Y1 — y3) (Y2 — ya) + Yatb1vha(yr — y3) + Yotbstha(y2 — ya) + ¥3)ege.
Since Y3es2 = —(y2 — y3)2es2 by (3.11), we deduce that

(6.15) puies + T = (0= 1)(21 = 22)* + (Y192 + Paipaiha) (21 — 22).
Now by the braid relations (3.12) and by (6.13), we have

Pop1hoes: + T = (Y1hat)r +2y2 — y1 — y3)esz + J = 21 — 22.

Similarly, 1tp310es2 + J = 21 — z2. Substituting the last two identities into (6.15), we
obtain @, e52 +J = (0 + 1)(21 — 22)%, whence 7 = (0 + 1)ese.

By Proposition 5.4, it is enough to show that n;(x)7 = Tn2(x) for each x € {es2, yaes2 }.
For x = es2, this is clear, whereas for x = yoes52, we have

m(x)T = (y2 — y1) (V219392 + 1)es:
= o1y31h3e(0011) b — hay1901e(0011)1p3102 + (y2 — y1)e(0101)
= (VY201 (Y3ys — 1)Y2 — 2(P1y2 — 1)P3¢02 + y2 — y1)e(0101)
= (VY2h1¥3th2ys — Yoth1tha — Yath13bays + Yatbsba + y2 — y1)e(0101)
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= (o(ys —y3) +y2 — y1 — (V1v2th1 + 2y2 — y1 — y3)
+ (131213 — 2y3 + Y2 + y4))e(0101)

= (04 1)(ya — y3)e(0101) = 7m2(2)
by (3.8), (3.9), (3.10), (3.12) and (6.13). O
Lemma 6.16. The set J is a 2-sided ideal of egaRysega.

Proof. Clearly, it suffices to show that Kegsa Rgsesa C J. By Lemma 6.9(i), it is enough to
prove that Ko,esa C J whenever 1 <r < d (as K is a 2-sided ideal of Rga). It follows from
Proposition 5.4 that K is generated, as a left ideal of Rz, by the set Ule nt((Rg\O){Q}).
Also, o,e54 € Tp+Rga. By Theorem 6.14(iv), we have nt((RQO){Q})Tr = Tmsr(t)((R?(’){g}) C
J for 1 <t <d, and the result follows. O

Set H = 1o (n®?): (Rfs\o)@d — Rya, so that H(z1 ® -+ ® zq) = m1(z1) - - - na(z4) for all
T1,...,2q € Rg\o.

Lemma 6.17. (i) The unital subalgebra of esa Rgsega generated by T1,...,7Tq_1 is con-
tained in T(oy.
(ii) The unital subalgebra of egaRgsesa generated by {1, ..., 74_1}+ U (S) is contained in
T+J.

Proof. By Corollary 6.11, we have 7,, - - - 7.
{1,...,d — 1}, which proves (i).

Let .0 = H((R(/S\O)@d). It follows from the definition of n that +(S) C .. By Theo-
rem 6.14(iv), /7. = 7.7 for 1 <r < d. Hence, the subalgebra defined in (ii) is contained
in the sum of the subspaces of the form 7, --- 7. . with r1,...,rn € {1,...,d — 1}. We
have

(6.16) Tiop(S) = Y out(Spop)u(S) = > our(S) =T,
ueSy ueSy

where the first equality holds by Lemma 6.9(i). For 1 <r < d, we have ’I’]r((Ré\O){Q}) cK
by Proposition 5.4. Hence, . C ¢(S) + K C «(S) + J. Therefore,

Ty Ty C Ty o T tl(S) + T CTipe(S) +T C T+ J. O

S (e(gdﬁdge(gd){o} C T{D} for any r1,...,rm €

m

By Lemma 6.16, we have a natural algebra structure on ega Rgsega/J -
Lemma 6.18. For 1 <t <d, the equality zipw, €50 = Pu, 2s,(1) holds in esiRasesa )T -
Proof. We have
ZtPw,€5d = Yt—1)et1Pw €sd T T = Pw,Y(s,(t)—1)e+r1€5d + T = Pw, Zs,. (1)
where the second equality is due to Lemma 6.1(iii). O

Proof of Theorem 6.14 (i), (ii), (i), (v). Part (iii) is clear from the definitions. For the
remaining parts, we will repeatedly use Lemma 6.18 without explicit reference. By Re-
mark 6.15, we may assume that » = 1. We consider part (i). By Lemma 6.1(v),

(6.17) gp?ule(;d + T = (=1)¢(z1 — 22)%.
On the other hand, by (6.9),
Ponesa+ T = (T(z1 — 22)° + (21 — 22)° pw,
—1)*Tpu, (21 — 22)° + (1) ey (21 — 22)°
—1)67'2(21 - ZQ)Qe + (—1)67'6(,21 — 22)26_1

1)6—167_(21 _ 2,2)26—1 + (_1)6—162(2,1 . 22)26—2.

(6.18)

(
(
(
(

_l’_
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By Lemma 6.17(ii), we have e, 7e,e? € T + J. Therefore, applying 7o, to the right-hand
sides of (6.17) and (6.18), we obtain (21 — 29)% = 72(21 — 22)?¢. By Lemma 6.17(i), we
have 72 € T, whence 72 = ega by Lemma 6.10(ii).

For (ii), writing vy = 71, v1 = €1, V) = T2, V| = €2, we have

Pwy PuwsPur €50 + T = Z Va(21 = 22) “PusPu,
ac{0,1}

Z VaPwsPwy (ZQ - 23)67(z

ac{0,1}

eE—a

= ) vtz — 28) "puy (22 — 23)
a,be{0,1}

= Z ValVhuw, (21 — 23)¢7 (20 — 23)°~
a,be{0,1}

= Z Vaple(z1 — 22) (21 — 23)64’(2’2 — 23)¢"

a,b,ce{0,1}

By Lemma 6.17(ii), we have v,vjv. € T+ 7 in all cases. Hence, 73, fixes the summand
corresponding to a = b = ¢ = 0 and sends the other 7 summands to 0, so

7T3e(</?w190wgtpw1€5d + j) = 717271(21 - 22)6(21 - 23)6(22 - 23)6-
A similar computation yields
T3 (P Py Pus st + T ) = ToTiT2(21 — 22)°(21 — 23)%(22 — 23)°.

By Lemma 6.1(ii), we have @, 0w, Pw; = PuwsPuy Pw,- By Lemmas 6.17(i) and 6.10(ii),
the equality 717971 = 70770 follows.
For (v), we compute

Pwi 21Pwy = 90121;122 = (=1)(z1 — 22)2622
using (6.17) and, on the other hand,
Pun 210w, = (T(21 = 22)° + €(21 — 22)° ) 2100,
= T210uw, (22 — 21)° + €y, 22(22 — 21
= (=1)°ry17(21 — 22)% + (=1)°T21€(21 — 22)
= (=1)%my17(21 — 22)% + (—1)T21€(21 — 22

+ (—1)6716T22(2’1 - 22)2671 + ( )e 16222 zZ1 — 22)2672.

)e—l

2e—1 e—1

+ €pw, 22(22 — 21)
2e—1

(
Hence, using Lemma 6.17(ii) (and the equality z1e = €z1), we obtain
(

(=121 — 22)*22 = Moer1(Pun 219w,) = M1 (1) Tyr7 (21 — 22)%),
whence, by Lemma 6.10(ii), we have zo = m(7y17 + J). Since deg(tyi17) = 2, it follows
that Ty17 + J = 29 + (x + J) for some z € T(9y. Hence, yer1 — 7n7 € T+ J. By
Lemma 6.9(i), J = >_,ce, 0wk C TK, and (v) follows. O
Write 7(ZD7 = {GW) . 4@) |0 @ ¢ 191} Note that ez = > e €(t) by
Lemma 4.5. Recall that (R?O)@’d and F&, are identified with subalgebras of R2 )&, and
recall the homomorphism H: (R?O)‘@d — Rga defined before Lemma 6.17.

Corollary 6.19. (i) There is a graded unital algebra homomorphism
O: RQO 16y — egdﬁdge(;d

given by ©(a) = H(a) and ©(s,) =7, for all a € (R£°)®d and 1 <r <d.
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(ii) Suppose that w: esaRysesa — A is a unital algebra homomorphism onto an algebra
A such that for all i € I@D" we have w(yie(i)) € F{w((ye — y1)e(i))}. Then the
composition w o O: R?O 164 — A is surjective.

Proof. The fact that © is a homomorphism follows directly from Theorem 6.14(i)—(iv).
Since H is graded and deg(s,) = 0 = deg(7,) for 1 < r < d, we see that © is graded as
well.

For (ii), observe that «(S) C imH C im©, whence oresa € 7 + ¢(S) C im© for
1 < r < d. By Lemma 6.9(i) and Corollary 6.6, the algebra esiRgsesa is generated by
the subset T'U Fy1, ..., Ygelega. Further, T'= 3" s 0ut(S) Cim© (cf. (6.16)), so it is
enough to show that w(yjesd) € im(w o ©) whenever 1 <1 < de. Note also that K = K>9
and Ky C im H because Kqy is generated by L(S){O} and the elements of the form
(ye — yp)e(d) with t,¢' € {(k—1)e—+1,..., ke} for some k € {1,...,d} and i € I@D" and
all such elements (y; — y/)e(2) belong to im H by definition of 7.

Let 7 be defined as in Theorem 6.14(v); then 75 C im ©. Now we prove by induction
on r that w(yrer1€5a) € im(w o ©) for all » = 1,...,d. The case r = 1 holds by the
hypothesis, and the inductive step follows from the fact that yre+1€50 — 7y (r—1)e+17r € Ti23
for 1 < r < d, which is derived from Theorem 6.14(v) by considering degrees. Since
K2y C im H, it follows that w(y,esa) € im(w o ©) for all [, as claimed. O

7. SURJECTIVITY OF THE HOMOMORPHISM

Let H,q be a RoCK block of residue x. We have constructed all the maps in the
diagram (3.26): the homomorphism 2 is defined after Proposition 4.11, and © is defined
by Corollary 6.19(i). Thus, we have a graded unital algebra homomorphism = = =) .=
Qorot, 0 O: Rg\o 16y — C, 4. Due to Proposition 4.12, in order to complete the proof
of Theorem 3.4, we only need to show that = is surjective. First, we state and prove
Proposition 7.2, which applies to the case when d = 1. Using Corollary 6.19(ii), we will
then deduce surjectivity of = in the general case in §7.3.

7.1. The case d = 1. In this subsection, we assume that p is a Rouquier e-core of residue s
for the integer 1, write C = C, 1 and consider the homomorphism Z := SO Ré\o — C. By
Proposition 4.12, we have qdim C' = qdim(Ré\O), and hence C' = CYq,1 2y by Proposition 5.4.

For 4 € I°, define €'() = > c o0 €(ji) € Rf;?+e. Set
F=BKpelfo) = D> elii) e Ry

jerr0 ier?!
the second equality follows from (3.21) and Proposition 4.11(ii). By the definitions, the
map =: Rg\o — C)1 is given by
(7.1) e(@) = (@), UV = Ypirfs Y Yiplat — Ypl41) S

fori e I, 1 <r <eand 1<t <e ByProposition 4.11, the algebra C' is generated by
the set

[e6) 6 € 1P} U{dyppnf | 1< 7 < e} Udypenf [ 1< T <),
It follows that = restricts to a surjective vector space homomorphism from (R£°)<2

onto Cca, which is seen to be an isomorphism by comparing dimensions. In particular,

RQO/(R(/;\O){Q} = (/Cqgy as graded algebras.
Lemma 7.1. For all i € I?!, we have dim(e’(it%)Caye’ (7)) = 1.

Proof. Recall the notation introduced before Lemma 4.13. By Theorem 4.1 and Lemma 4.3,

qdim(e’(i*”)Rﬁfm(p)Me’(i+”)) =2t gde(®)+deg() where the sum is over all pairs (t,u) €
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Std,,(p,d)*? such that Shape(t) = Shape(u) and, if 5(t) = (t<|,,s) and B(u) = (ug),, 1),
then ¢° = 4 = ¢. By Lemmas 4.13 and 4.14 (together with Theorem 4.1), this sum is
equal to qdim(RAO

cont

tableaux such that ¢° = 4 = ¢ and Shape(s) = Shape(r). Dividing by qdim(Ré\é’nt(p)) and

using the isomorphism (4.8), we deduce that qdim(e/(i7*)Ce’(i1")) = Dler glosle)rdea(x),
and the result follows by Lemma 5.2. O

(p)) > or qdes(s)+dee(r) where the sum is over all pairs (s, r) of standard

Ao

Proposition 7.2. For every i € I?, we have (Y)p|+e — y‘p‘+1)e’(i+“) #0 in Rcont(p)+5,

and hence y,11€' (i77) € F(ypipe — Yjpl+1)€' (E).

If the first statement of the proposition holds, then, by Lemma 7.1, e’(i+"‘)C{2}e’(i+") =
F(Yp4e — y|p|+1)e’(i+”‘) for any 4 € 19!, and the second statement of the proposition
follows. So we only need to prove the first statement.

Proof of Proposition 7.2 for e > 3. It is well known that the algebra Ré\fre = Hplye 18
symmetric (see e.g. [31, Corollary V.5.4]). Hence, writing f = BK|,(f1), we see

that fRf}gnt(p) sl = leApT o/ is symmetric as well by [31, Theorem IV.4.1]. Further,

by Proposition 4.9 and the isomorphism (4.8), the algebra C' := C,; is Morita equiva-
lent to fRAO (0)45 f, whence C' is also symmetric by [31, Corollary IV.4.3]. Thus, C is

cont

isomorphic to C* := Homp(C, F) as a (C,C)-bimodule. Note that we have a grading on
C* defined in the usual way: for n € Z and £ € C*, we have £ € Cfn} if and only if
Elesy -y =0-

Note that C has only one block, i.e. is indecomposable as a (C,C)-bimodule. This
follows, for example, from the fact that the indecomposable algebra H, 1 is Morita equiva-
lent to f,1Hp1fp1 by Proposition 8.2((ii)«(iii)) proved below and hence is Morita equiv-
alent to C. (Alternatively, using Proposition 5.4, one can show without difficulty that
Z (Rf;o / (RQO){Q})){O} is 1-dimensional, so Z(C'){opy must also be 1-dimensional because
C/Cgy = Rg\o/(Rg\O){g}.) By [1, Lemma 2.5.3], it follows that C* = C(n) as graded

(C, C)-bimodules for some n € Z. Since C = Cfg 2y with Cppy # 0 and C* = 030,71,72}’

we have n = —2. The graded isomorphism C' =~ C*(2) of (C,C)-bimodules sends 1 to
some element & € (C*);_yy such that the bilinear form C'x C' — F' given by (a, b) +— £(ab)
is symmetric and non-degenerate.

Let ¢ € I?'1. Since e > 3, we can find j € I®'! such that j. € {ic + 1,ic — 1}. Then
Yuw; ;€(J) is a non-zero element of (Rg\o){l} by Proposition 5.4. Hence, Z(thy, ;e(j)) # 0, so
there exists a € Cyy) such that {(Z(w, ;e(5))a) # 0. Since the bilinear form in question is
symmetric and Z(bu,,¢(7)) = ¢/(i)Z Gy ,0(3)), we have &(E(thu, e(d))ac' (i) # 0,
so we may assume that a = €/(j7")ae’(i*"). Now the subspace €' (§7%)Cpye/ (i) =
E(e(j)(Rg\O){l}e(i)) is 1-dimensional and is spanned by Z(tw, ;e(#)) by Proposition 5.4.
This implies that

0 # E(wwzyge(j))5(¢w]ﬂe(z)) = E(wwi,jﬁbwj,ie(i)) = iE(yee(i)) = i(y|p|+6_y|p|+1)e/(i+’{)7
where the penultimate equality holds by Lemma 5.5(i). O

7.2. A calculation involving the Brundan—Kleshchev isomorphism. In order to
prove Proposition 7.2 for e = 2, we will compute BK|p|+e(ﬂp‘+1fP71). For later use in
Section 9, we begin with a more general set-up and for now let the integers e > 2 and
d > 1 be arbitrary.

Choose and fix an integer N large enough so that for every w € &4, and i € 1% we have
deg(¢pe())+N > 2. Let A= N(Ag+---+Ac—1) € Py. It follows from Theorem 3.5 that
the 2-sided ideal of Rys generated by {ye4s | 1 <t < de} has a zero component in degree
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m for all integers m < 2. This ideal is the kernel of the canonical projection Rg5 —» Ré\g,
which therefore restricts to a vector space isomorphism on each m-component for m < 2.

Let Ei}a be the quotient of Rj; by the two-sided ideal generated by {e(i) | i € I% \ &}
(cf. the definition of Rgs in §3.3). As usual, denotes the natural projections Rge — Rgs
and Ré\e —» Rﬁl\é. As in §6.3, symbols that would ordinarily represent elements of Ry,
will denote instead their images in Rg45. In the rest of this subsection and in Section 9,
we abuse notation by identifying (Rgs)<e with (R))<o and (Rgs)<e with (EQ&)SQ. In
particular, BKél\e(Tr){o,Lz}eéd is viewed as an element of Rys for 1 < r < de.

Lemma 7.3. Assume thate =2. If 1 <r <d, we have

(14 y2r—1 — yor)ega if char F =2,

A —
BKQd(T2r71){0,172}65d = {(_1 + y2r—32r—1)65d Zf char F 7& 9.

Proof. By Lemma 6.3 and the statements after Lemma 6.8, ¢2,_1e5¢ = 0. Note that

ese = e(0101...01). Hence, by (3.14), we have BK2,(To,_1)esa = —Pi(yar_1,yor)esa.
Using the formulas (3.16) and (3.18) for P;, one concludes the proof by an easy calculation
(note that £ = —1 if char F' # 2). O

Proof of Proposition 7.2 for e = 2. As in the statement of the proposition, we consider
the case when d = 1 and assume all the notation of §7.1. Note that ¢ = (01), so ™"
is either (01) or (10), and f := BK,1c(fp1) = €/(¢7"). It follows from (3.14) and

the definitions of Q and rot, that BK|,|1o(T|y+1)0,1,23.f = Q(rotK(BKé\(Tl){071’2}e(;)) and
that BK|,12(T]p|+1)f belongs to the unital subalgebra of fRf,\oT+2f generated by the set
{Wipl+1 15 Y)p+2f} and hence to C' (note that we have 1)), 4.1 f = rot.(2(¢1es)) = 0). Since

C = C{o,1,2y, we see that BK |, o(T]p41)f = Q(rotH(BKS(Tl){o’m}e(;)). Assume for con-
tradiction that (y|,/+2—yjp|+1)f = 0. Using Lemma 7.3, we deduce that BK|,42(T},+1)f =
Q(roty(es)) = —f. Hence, Tjp11fp1 = —fp1-

Note that 7,1 commutes with f,1. Let us view H, 2 and M := f,1H 42 p1 as
Ho-modules with Ty acting via left multiplication by 7}, ;1. It follows from the identity
just proved that M is a direct sum of 1-dimensional simple Ho-modules. On the other
hand, M must be projective because it is a direct summand of H|, o, which is a free

‘Ho-module with basis {T,, | w € (1\p|72)@| pl+2}. This is a contradiction because the only
indecomposable projective Ha-module is Ho itself (note that Hs is isomorphic to the
truncated polynomial algebra F[z]/(x?)). O

7.3. Conclusion of the proof of Theorem 3.4. We return to the case when d > 1 is
arbitrary and H, 4 is a RoCK block of residue . As usual, write f = BKj;4c(fp,a). Let

i € I@1" (see the definition before Corollary 6.19), and write €/(i) = > jeren€(Ji) €

FRY, 4of- For 1 < < e, we have (Q o roty)(yse(i)) = yp4,¢(i*"). Applying the map

lo|+de
Tl
|ol+e

F(Ypl4e — y|p|+1)e’(i+”). Hence, by Corollary 6.19(ii), the graded algebra homomorphism

(z)€' () to the second statement of Proposition 7.2, we see that y,41€/(47") €

=: Ré\o 16y — ()4 is surjective, whence it is an isomorphism by Proposition 4.12. The
proof of Theorem 3.4 is complete.

8. TwWO OBSERVATIONS

8.1. Another formula for the idempotent f, ;. Let p be a Rouquier core for an integer
d > 0. If O is an integral domain, t € O and 1 <r < d, let B,: He(O,t) = Hp4ea(O; 1)
be the unital algebra homomorphism defined by T} — T}, (r—1)ej, 1 < J < e. As before,
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for n > m > 0, we view H,,(O,t) as a subalgebra of H,,(0,t) via the embedding T} + Tj,
1< <m.
If1 <r<d,let bg’)l = (r(bz,1). Note that the idempotents bg}l, ... ,bgf)l commute with

fp,a and with each other. Turner [33, Chapter IV] considers the idempotent f,mdb(@{)1 x 'b(@d’)l
rather than f, 4 (cf. also [6, Section 4]), but the following proposition shows that this makes
no difference.

Proposition 8.1. In any RoCK block H, 4, we have fpydb(glv)1 e b(gd}l = fpd-

Proof. As in [11, Section 5], let O = F'[t];_¢), the localisation of the polynomial ring F'[{]
at the ideal (t — &) F[t], and consider the field of fractions K = F(t) of O. For any n > 0,
we have H,, = H,(O,t)/(t—&)F[t|H,(O,t). Since t is not a root of unity in K, the algebra
H, (K, t) is semisimple, with {SM! | X € Par(n)} being a complete set of non-isomorphic
simple modules (see [11, Theorem 4.3]). For every partition A of n, let by be the primitive
central idempotent of H, (K,t) such that bySMSt = SMSE For any (7,1) € Ble(n), let
i)ml = Z)\Epare(ml) by; further, let Bg,)1 = ﬁr(gg’l). It follows from the results of [11, Section

5] together with [11, Lemma 4.6 and Theorem 4.7] that Bml € H,(0,t) and that b, is the

image of lN)ml under the canonical projection H,(O,t) — H,; further, bg’)l is the image of

5%?1 under the canonical map H|,4ae(O;t) = Hp|+de-

If A, 1 and v are partitions with [A| = |u|+|v], let ¢}, be the corresponding Littlewood—
Richardson coefficient (see e.g. [14, Section 2.8]). It follows from [12, Proposition 13.7(iii)]
that the Littlewood—Richardson rule holds for the algebras H,, (K, t): if A, p and v are par-
titions such that [A| = [u[+|v] and if we identify H,,|(K,t) @K H,,|(K,t) with the parabolic
subalgebra generated by {T; | 1 < j < |u| or |u| < j < |A]} of H|y(K,t) in the obvious
way, then the H,|(K,t) @k H,,|(K,t)-module SH Kt @ e SVt appears in the restriction of
SMEE to H (K, t) @k Hy (K, t) with multiplicity CZ\W- Let 1 <r <d, p € Parc(p,7r—1),
A € Pare(p,r) and v € Par(e) \ Par.(2,1). By Lemma 4.3 and the standard combinatorial
description of the Littlewood—Richardson coefficients, we have cﬁy =0, so SHEt @ grE
is not a summand of the restriction of SNt to Hipl+(r—1)e (K, 1) @k He (K, t). Therefore,

babuBr(by) = 0. Summing over all such A, p, v, we deduce that l;pw_ll;p,,«(l — Bg,)l) =0,

whence Bp,r,lépml}gfl = l~)p77«,1l~7p,r. Applying the projection onto H|,;q. and using the

statements at the end of the previous paragraph, we see that bp,r—lbp,rbg)l = byr—1bpr-
The result follows (cf. (1.5)). O

8.2. A condition for Morita equivalence. Let H,, be a RoCK block.

Proposition 8.2. The following are equivalent:

(i) fp,aD # 0 for all simple H, 4-modules D.
(it) foaHpafpa is Morita equivalent to H, 4.
(#i) d < char F' or char F' = 0.
If these statements hold, then H, 4 is Morita equivalent to Hgy 11 64.

Proof. For a finite-dimensional algebra A, denote by ¢(A) the number of isomorphism
classes of simple A-modules. The equivalence between (i) and (ii) follows from the general
properties of idempotent truncations recalled in §1.1. In view of those properties and
Theorem 1.1, statement (ii) holds if and only if {(H,4) = {(Hz,116q).

Recall that, for an integer p > 2, a partition A = (\1,..., \s) is said to be p-restricted
it \j —Ajp1 <pforl <j <sand Ay <p. The simple H,-modules are parameterised
by the e-restricted partitions of n, and for any (m,1) € Ble(n), the simple H,;-modules
are parameterised by the e-restricted elements of Par.(7,1); see [10, Theorem 7.6] and [11,
Theorem 4.13].
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Suppose that A is a finite-dimensional algebra over a field k such that k is a splitting field
for A, and let m = £(A). If chark = p > 0, let RPj, be the set of p-restricted partitions; if
char k = 0, let RPj, be the set of all partitions. Then a well-known argument shows that
{(A16y) is the number of tuples (A!, ..., A\™) of elements of RP, such that Py M| = d;
see, for example, [25, Appendix]. The number of e-restricted partitions in Par.(&,1) is
equal to e — 1. Combining these facts, we see that {(Hg 1! Sq) is the cardinality of the
set Yy of all tuples (A1, ..., A1) of elements of RPr such that Z;;% M| = d.

Each partition A € Par.(p,d) corresponds to a tuple (A, ... \=1) where the def-
inition of A is given before Lemma 4.13. It is easy to see that such a partition \ is
e-restricted if and only if A(¢™Y) = & (cf. [9, Lemma 4.1(1)]). Hence, £(H, 4) = |X4| where
X, is the set of all tuples (A!,..., A°71) of partitions such that >, |A\!| = d. Observe that
Y; € X4. Note that, for a prime p, all partitions of an integer n are p-restricted if and
only if n < p. Hence, if (iii) holds, then Yg = X4 and so £(Hz,1164) = {(H,,q); otherwise,
U(Hz,1164) < L(H,q). This proves the equivalence between (ii) and (iii).

The last assertion of the proposition is an immediate consequence of Theorem 1.1. [

9. ALTERNATIVE DESCRIPTIONS OF THE ISOMORPHISM

In this section, we assume all the notation and conventions of §6.3 and work again with
the algebra ega Rgsega for a fixed d > 0. We have constructed elements 7, € 0,54 + L(S?(;)})

for 1 < r < d satisfying the relations of Theorem 6.14. We show that such elements 7, are
in some sense unique and use this fact to give alternative descriptions of 7.

9.1. A uniqueness result.

Lemma 9.1. Let 1 < r < d. Suppose that an element 7' € ore5a + L(Sg)}) satisfies the
following property:

(i) if e > 2, then n.(x)7" = 7'np 1 (x) for all x € (R?O){O,l};

(i1) if ¢ = 2, then (gar — yor—1)7 = 7/ (420011) — Yorsa).
Then 7 = 7,.

Proof. To simplify notation, we will assume that » = 1: the proof in the general case is
obtained by a straightforward modification of the one below (cf. Remark 6.15). We write

7 = 71. By the hypothesis and Theorem 6.14(iv), 7/ = 7 + ¢(a) for some a € Sg)}. Recall

that we have an algebra isomorphism ¢: R?d % Rsa, defined after Lemma 6.8.

In the case when e = 2, it follows from the hypothesis and Theorem 6.14(iv) that
(y2 — y1)t(a) = t(a)(ys — ya). Moreover, we have (Rg‘o){o} = F{1} by Proposition 5.4,
whence Sygy = 1 by Corollary 6.6, so @ must be a scalar multiple of the identity. By the
same Proposition and Lemma 6.5, we have (7, — 7;)és # 0 in Rs, whence the elements
(Y2 — y1)esa = (o — T1)es @ 85" ") and (ya — ys)esa = u(Es ® (Yo — U1)es @ €54 7%) are
linearly independent. Hence, a = 0, so the lemma holds for e = 2.

Assuming that e > 2, note that a satisfies n1(z)c(a) = t(a)n2(x) for all z € (Rg\o){o’l}.
Using Corollary 6.6, we identify (Rgo){o,l} with (Rs){0,13- Then a = L(a’®ég®d_2) for some
a € (ng\o){o} ® (R?O){O} . Further, we have (z ® e5)a’ = d/(es @ x) for all x € (R?O){Oyl}.
We will prove that o’ = 0 (and hence 7 = 7') by considering a/(es ® e(z)) for each
i € I?'. First, consider the case when i, = 4.1 &+ 1. Since deg(a) = 0, we have
a'(es @ e(t)the—1) € (Ré\o) ® (R?O){l}. On the other hand,

d'(es @ e(t)he—1) = a' (€5 ® €(8)e—1) (s ® €(Se—11))
= (e(i)the—1 @ e5)a’ (€5 @ e(sc-1%)) € Ry @ (R3°) 10y,
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whence a/(es®e(i)1e—1) = 0. Now, as e > 2, it follows easily from Proposition 5.4 that the
linear map from (Rg\ )ore(i) to (R5 ){11€(Se—11) given by ¢ — ci)._1 is injective. Hence,
a'(es ®e(1)) = 0.

Finally, let ¢ € I9! be arbitrary. Using Lemma 5.1, one can easily show that there
exists j € I?'! such that j. = i, and j._1 € {j. = 1}. By the case considered previously,
a'(es @ e(j)) = 0. We have ty, ;1w ;e(i) = e(i) (see the proof of Lemma 5.5), and hence

a(e;@e(i)) = a,(e5®wwi,je(j)d}wj,i) = (wwi,je(j)®e5)a’/(€5®e(j))(€5®¢’wj,i€(i)) =0. 0

9.2. An explicit formula for 7,. Using Lemma 9.1, we can give (without a complete
proof) an explicit formula for 7 = 71 when d = 2. For e = 2, we have already shown in the
proof of Theorem 6.14(iv) that 7 = (o 4 1)e(0101), where we set o := o;. For arbitrary e,

(9-1) T=oess+ Y (1) T (Wuy e (Yo, ;i)
ijel?!
le=Je
where i, is viewed as an element of Z via the identification of I with {0,1,...,e—1}. For

example, for e = 3 we have
T = oes 5 — e(012012) 4 €(021021).

It is possible to show that the right-hand side 7" of (9.1) satisfies n1 ()7’ = 7'ma(x)
for all x € (R(S ){o, 1} by technical calculations using the defining relations of Ras, and
consequently that 7/ = 7 by Lemma 9.1. These calculations are not included in the
present paper, but equivalent calculations have been independently done by Kleshchev and
Muth [22, Section 6] for KLR algebras of all untwisted affine ADE types (cf. Remark 3.10).
For arbitrary r and d, we have 7, = (;2(€5"~ 'o7r® e®d "1) (cf. Remark 6.15).

9.3. A formula for 7. via Hecke generators. Let ¢ > 2 and d > 1, and assume
all the notation and conventions introduced in §7.2 prior to Lemma 7.3. From now on,
we identify H C/l\e with Rfl\e via the isomorphism BK{i\e. As usual, for each w € &g let
Ty="T;---T;, € H Ae, where w = s;, - -+ s;,, is a reduced expression. Recall the elements
wy € Sy, defined by (6.7).

m

Proposition 9.2. We have 7, = (—1)°(egaTw, €5a) {0} whenever 1 <r <d.

It follows from (3.14) that (esaTw,es1)(0p = Cr2((es5,6Tw, €s5)f03). Hence, the general
case of Proposition 9.2 follows from the case when d = 2 and r = 1 (cf. Remark 6.15). We
begin the proof of the proposition in that case with two lemmas.

Recall the power series P;, Q; € F([[y,y']] given by (3.16)—(3.19), and write P and

(2

QE ) for the constant coefficients of P; and Q; respectively. In particular, if £ = 1, then

1 if i =0,
1—i~t ifig¢{0,1,-1},
QW ={2 if e #£2andi=—
1 ife#£2andi=1,
\1 ife=2andi=1,
and if £ # 1, then
1—¢ if i = 0,

¢t =0/ -1) ifi¢{0,1,-1},

QU =3¢ -1/ ~1)? ife#2andi=-
1 ife#2andi=1,
1/(€-1) ife=2andi=1.
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One easily checks (using the fact that e is prime if £ = 1) that

(9.2) QY QY = 1.
Lemma 9.3. Assume that d = 2. Then (—1)%(essTw €55) {0} € 01655 + t(St0})-

Proof. Let j(l),j@) € I?!', and let wy = St " Sty 51, be a reduced expression for wy, so
that

(9.3) (es.5Tuwne(GM5)) g0y = (essTi o - Tiye(GV3®)) 0y

Applying (3.14) to the terms T,,...,T;, in this order and using the relations (3.2)

and (3.5), we decompose the right-hand side of (9.3) as a sum of 2¢” terms; these terms
correspond to the choice of either the first or the second summand of (3.14) at each of the 2
steps. The term corresponding to choosing the first summand in every case is agy, where

= (@) =

- (k
a = Qg2---0a1, A = ¢thi£k)—z‘§k)+ (y (k>,y<k) ) for each k, and 7.( ) yereylog
'k k

tet1
sty 56, (713 P). By Theorem 3.5(11), the sum b of the other 2¢° — 1 terms belongs to
(Ew€6267w<w1 6575¢w§575){0} C (Eé,é){o} = 1(S{0y), where the containment follows from
the claim in the proof of Lemma 6.9.

Using Lemma 6.9(ii), since each of 50, j(2) is a permutation of (0,...,e — 1), we have
atoy = ( TT @) ure(05®) = (-1)f0re(iV5)
ijel

by (9.2) and the definition of o1. Therefore, (€557, €(J (152 ))){0} = aqpy+b € (—1)%01e55+
t(S10y), and the lemma follows by summing over all G4 ),3(2) < O

Lemma 9.4. Let 1 < r < d. The element Y(r_l)eﬂe(;d of Es(; commutes with esa and

with each of Tje5d whenever (r —1)e+1 < j < de. Also, T(T_l)eﬂ commutes with esa if
1<t<e.

Proof. By (3.15), the element Y(r 1)et1 belongs to the subalgebra of R;\e generated by
{e(d) |3 € I® }U{U(r—1)et1}> and each T (1 <1 < de) belongs to the subalgebra generated

by {e(3) | i € IP} U {¢1.9;, Y41} Hence, each of the elements X(T Det1 and T(T Dett
(1 <t < e) commutes with ega. o B
By the defining relations of Hé\@ it is clear that X(,_j)eq; commutes with T'; for

(r—1)e+1 < j < de. Thus, it only remains to show that Y(T 1)e+1T(T 41654 =
T(,,_I)GHY(T 1)+1€5¢- By the defining relations (3.2)—(3.6), X(T 1)et+1€5¢ commutes with

Y(r—1)e+1s Y(r—1)e+2 and the elements (1) for i € I%. Moreover, we have gZ} (r—1)e+1€s5¢ =0
due to Lemma 4.5 and the statement after Lemma 6.8. By an observation in the previous
paragraph, the required identity follows. O

Proof of Proposition 9.2. By the discussion following the statement of the proposition, we
may (and do) assume that d = 2 and r = 1. Whenever 1 < ¢ < 2, define elements

th € RdA(; for 1 <1 < e as follows:
(i) if £ =1, then Xt 1 =0 and X, 141 = T(t 1)€+1Xt lT(t Detl T T(t Deqt for 1< 1 < e
(ii) if £ # 1, then th =1 and th+1 £ Tt 1)6+1X”T(t Deqt for 1< <e.

We claim that

(9.4) X(-1yer1€55 = (Xey + X (t-1)e11)€56 if £ =1,

(9.5) X(-1)et1€56 = Xey X (1-1)e41€5,8 if & #1
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for 1 <l <eand 1<t <2 These equalities can be proved by induction on I: the base
case | = 1 is clear, and, for £ # 1, the inductive step | — [+ 1 is proved, using the defining
relations of H2, and Lemma 9.4 as follows:

>

(1=-1)e+141€80 = & T (- 1)etiX (t—1)eti ] (1—1)e+1€6,5
= 57IT(tfl)eHXt,lY(tfl)eﬂ66,5T(t71)e+z€5,6
= E_IT(t—1)e+lXt7lT(t—l)e+ly(t—1)e+1€6,5
= )?t,l-‘rly(t—l)e—i-le&,é-

The proof of the inductive step for § =1 is similar and is left as an exercise.
Let t € {1,2}. It follows from Lemma 9.4 that X;; commutes with Y(t,l)eHeM for 1 <

I < e. Using this observation, Equations (9.4)—(9.5) and the fact that (X (_1)e41 — 0)ess
is nilpotent for ¢ = 1,2 (cf. Theorem 3.2(ii) and (3.13)), we see that

(9.6)  mi(e(i)) Rasess = {v € Ropess | (Xoy— i) v =0for L>>0andall l =1,... e}
whenever i € I?!. For 1 <[ < e, we have

(9.7) TTw, = Tow, = Twiseyy = Tw Te

since £(sywy) = (wq) + 1. It follows easily by an inductive argument that

(9.8) X1/Tw, = Ty Xoy

forall l =1,...,e. By (9.6) and (9.8), we have 65)5?11,1772(6(’1:))?2565’5 C nl(e(i))ﬁé\&e&g,
whence e55(Tw, ) {oym2(e(2)) = 1(e(2)) (T, ) goym2(e(2)) for all 4 € 191, A similar argument
(with (9.6) replaced by an analogous statement where %ﬁﬁé\é is viewed as a right module
over Rgs) establishes the first equality in the following equation:

(9:9)  me(D)(Tw)qoress = m(e(®)(Tw,){oym2(e(d) = es5(Tw, ) oynz(e()).
Assume first that e > 2. By (3.14), we have

. — 0 0 _ .
9100 Ppeverme(e(®) = (Tmverd oy + P, QY )7 m(e(d))
whenever 1 < | < e since the left-hand side is homogeneous of degree 0 or 1. Let
= —=A - - .
T = (—1)6(65’5Tw16575){0} € (Rd6){0} = (Rd(;){o}. Recall that essR4s5es5 is nonnega-
tively graded by Lemma 6.9(iii). It follows from (9.9) that 71 (e(2))7" = 7'n2(e(2)) for all
i € I?'. By (9.10), (9.7) and degree considerations, we have ny(ye(3))7" = 7/n2(11e(1))
whenever 1 < [ < e and 4 € I?!. By Lemmas 9.1 and 9.3 together with the fact that
(R?O){OJ} is contained in the subalgebra generated by the elements of the form e(z) and
Yre(i) for e(i) € 19! and 1 <1 < e, we have 71 = 7.
Finally, consider the case when e = 2. By Lemma 7.3, we have

(Y2t — Yor—1)ess = ((72—1){0,1,2} +1)ess  if charF =2,
’ (2(T'2t-1)10,1,2) + Dess  if char F' # 2.

for t = 1,2. Using this formula, Equation (9.7), Lemma 9.4 and degree considerations, we
obtain (y2 — y1)(€s56Tw,€55){0} = (€551 w, €56) {0} (Y2 —y3), and hence 71 = (557w, €5,5) {0}
by Lemmas 9.1 and 9.3. ]

Let H,q4 be a RoCK block of residue k. We identify mee with H e via the

isomorphism BK |, . Thus, H|, 4. becomes a graded algebra, and C'= C) 4 becomes a
graded subalgebra of H, 1 g.. If 1 <7 < d, define wy = [[_; (|p|+(r—1)e+j, |p| +re+j) €

S\pjade (cf. (6.7)).
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Proposition 9.5. The restriction of the graded algebra isomorphism Z: Hg 1164 == C
defined in Section 7 to F&y may be described as follows: =(s;) = (=1)°(fp,dTw: fp.d){0}
whenever 1 < r < d.

Proof. We may assume that the integer N determining A in §7.2 is chosen to be large
enough so that R‘ lde = (Rf;(\]ere)S?N—?' By definition, Z(s,) = Q(rot.(7.)). We de-
fine Rd5 to be the quotient of Rjs by the two-sided ideal generated by {e(i) | i €
I%\ &} and identify (§d5){071’2} with (ﬁé\(;){(),m} (cf. §7.2). Tt follows from (3.14)
that the automorphism of Ré\a given by (3.25) fixes Tpeqs whenever 1 < k < de, so
by Proposition 9.2 we have rot,(7,) = (—1)rot,((esaTw,e51){0y) = (—1)e€6d(j—\‘wr){0}€5d,
where ~: Rgs —» ﬁd(g is the natural projection. By the choice of N, the map w: Rg5 —

Ré\ont(p) 45 Of Proposition 4.11 induces a homomorphism wh: Rd — R?O‘)nt( )do° It fol-

lows from (3.14) that w®(Tyeqs) = LIpI (econt(p))T|p|+kecont(p)+d(; whenever 1 < k < de.

A |pl+de . Sy =
Therefore, w™(Ty, eq5) = Yol (econt(p))Twlrecont(pHd(;, and so, as (esa) = fp4, we have

Q(ead(fwT){o}e(sd) = (fp,dTw! fp.d){0}- U
Theorem 9.6. Suppose that § = 1, and let f = f,4. Then we have a graded algebra
isomorphism Hpo @ (Ha1 1 6a) == fH|pl4def given as follows:
® (05 @ Tiboy @55 ") = aT)p(r—1yertf forl<r<d,1<l<e,
a®srl—>a(fTw;f){0} for1<r<d
for alla € H,p.

Proof. Due to (4.8) and Proposition 3.3, it is enough to show that we have an isomorphism
from Hg 1164 onto C' given by

(9.11) b @ Tibg 1 @ b5+ Ty (r—1)est f for 1<r<d, 1<I<e,
(9.12) sp = (fTuwr f)1o0} for 1 <r<d.

We identify Hg 1 with R?O via BK¢, so that bz 1 =e5. For 1 <r <d, 1 <[ < e and
i€ I’ we have

_( ®r—1 ® 6( ) ® €®d 7") _ Zeoz(l) N _,i(rfl)(i+/-e)i(r+1) o i(d)),
Eey" " @ 1hies ® €5UT) = Pppiroryert Y e(@EM AT @),

E(e?r_l ® (Y1 — Yr+1)es @ e®d ") =

(y|p\+(r—1)e+l - y|p|+(r—1)e+l+1) Z e(]z(l) - 'i(r_l)(i+ﬁ)i(r+1) s z(d))

where each sum is over all § € I?0 and A B A Gt B GO N OB If;_il. Hence, by
Theorem 3.2(i)(iii), we have u(b®(T ) Tibs 1 ® bg({i_r)) = Tip+-(r—1)e+1.f- By Proposi-
tion 9.5, it follows that the composition of = with the automorphism of Hg 11 &4 that
sends s, to (—1)¢s, for all r and is the identity on ”Hgﬁ is given by (9.11)—(9.12). O

9
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