
ROCK· FRACTURE VIA STRAIN-SOFTENING 

FINITE ELEMENTS 

By Zden~k P. Batant, l F. ASCE and Byung H. Oh,2 A. M. ASCE 

AssnlACT: The fracture of rock is assumed to arise from propagation of a blunt 
crack band with continuously distributed (smeared) microcracks or continuous 
cracks. This approach, justified by material heterogeneity, is convenient for fi­
nite element analysis, and allows analyzing fracture on the basis of triaxial stress­
strain relations which cover the strain-softening behavior. A simple compliance 
formulation is derived for this purpose. The practical form of the theory in­
volves two independent material parameters, the fracture energy and the ten­
sile strength. The width of the crack band front is considered as a fixed material 
property and can be taken as roughly five-times the grain size of rock. The 
theory is shown to be capable of satisfactorily representing the test data avail­
able in the literature. In particular, good fits are demonstrated for the measured 
maximum loads, as well as for the measured resistance curves (R-curves). Sta­
tistical analysis of the deviations from the test data is also presented. 

INTRODUCTION 

The test results on fracture of rock, on a scale that is not very large 
compared to the size of inhomogeneities, show significant deviations 
from linear fracture mechanics (16,17,23,39-41). Various methods to de­
scribe this phenomenon, consisting chiefly in adaptations of ductile frac­
ture mechanics and the method of resistance curves (R-curves) (1,26-
28,35,43), have been proposed. However, there seems to exist no model 
which could represent the gradual strain-softening caused by disperse 
microcracking of rock, and which would be particularly designed for use 
in finite element codes. The development of such a model, paralleling 
a previous, similar work for concrete (12), is the principal objective of 
this paper. The model will be calibrated and verified by comparisons 
with test data from the literature and the results will be subjected to 
statistical analysis-an important aspect for materials of great random 
variability such as rock. 

From the physical point of view, the fracture properties of the material 
will be characterized in the present model not only by the fracture en­
ergy, but also by two additional parameters-the tensile strength and a 
certain characteristic length. The idea of introducing such further pa­
rameters is not new and dates back to the works of Dugdale (19) and 
Barenblatt (1-2). It is also commonly understood that the use of material 
parameters of this kind implies a yielding zone or fracture process zone 
of a finite size. In ductile fracture of plastic metals, the yielding (non­
linear) zone is large but the fracture process zone is normally assumed 
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negligible. If the latter zone is finite, one needs to model strain-soften­
ing. This was originally done by postulating for the crack extension line 
a stress-displacement relation with a gradual decline of stress to zero 
instead of a plateau followed by a sudden stress drop. Such an approach 
was introduced by Knauss (28), Wnuk (43), and Kfouri, et al. (26-27). 
For concrete, a line crack model of this type was introduced in finite 
element analysis by Hillerborg and coworkers (22,36). As far as the over­
all response is concerned, the present model is approximately equivalent 
to Hillerborg's model, if the transverse displacement accumulated from 
transverse normal strains across the crack band representing the fracture 
process zone is made equal to the displacement used in the stress-dis­
placement relation for the crack line. Nevertheless, the present ap­
proach, based on a strain-softening constitutive relation, is advanta­
geous for numerical implementation in finite element codes. Moreover, 
this approach makes it possible to translate into fracture modeling cer­
tain effects known from stress-strain relations. 

HYPOTHESIS OF BLUNT CRACK BAND 

Following an approach initiated in 1979 for concrete (7-9,12), we pro­
pose to model the front of a fracture in rock as a band of parallel cracks 
(or microcracks) that are continuously distributed (smeared) over a cer­
tain characteristic width, we' The salient feature of this approach is that 
We is regarded as a material property. This is necessary for the smeared 
cracking: firstly because otherwise the strain-softening concept would 
not lead to results that are objective in the sense of being independent 
from the choice of element size (7) (except for a negligible numerical 
error that converges to zero); and, secondly, because analysis of strain­
localization instability (4,6) shows that, in a continuum, the width of the 
crack band front always localizes into the smallest width permitted by 
the continuum smearing of a heterogeneous microstructure. The com­
putationally convenient hypothesis of blunt crack band rests on the fol­
lowing two physical justifications. 

Justification 1.-The stresses and strains with which we deal in any 
practical problem are not the actual stresses and strains at a point of the 
material but the stresses and strains in an equivalent homogeneous con­
tinuum which smears the inhomogeneous microstructure and averages 
the properties of the actual material over a certain characteristic volume 
(which is called the representative volume in the language of the statis­
tical theory of randomly heterogeneous media). The representative vol­
ume must be sufficiently large compared to the maximum size of the 
inhomogeneities, i.e., the maximum grain size, in case of intact rock. 
For acceptable representation, the representative volume must be taken 
at least several times the grain size. Within shorter distances, the de­
tailed distribution of stresses and strains would require statistical treat­
ment and is not of great interest. Thus, if the width of the crack band, 
We, is not more than several times the grain size, there could be no 
significant differences from the line crack model in the representation of 
the actual behavior of rock [see Fig. l(a,b)). 

Another consequence of the material heterogeneity is that the crack 
path is not a straight line or a smooth curve but a highly tortuous line 
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FIG. 1.-(8) Fracture In Heterogeneous Brittle Materials, (b) Random Scatter of 

Actual Stresses In Microstructure and Their Continuum Smoothing, (c) Crack Band 
In Finite Element Mesh 

swa~g to each side of a straight or smoothly curved ideal crack path 
?y dIstances equal to about the size of the grain. At the front, fracture 
IS precede~ ?y. a form~tion of .dispersed microcracks which gradually 
grow and Jom mto a smgle major crack. The microcracks ahead of the 
fracture front do not lie on one straight line but deviate from such a line 
significan~y. The~ seem to be concentrated along a microscopically highly 
tortuous line whIch eventually becomes the continuous fracture. It is 
thus geometrically obvious that a crack band of several grain sizes in 
width can represent the tortuous crack path and the scattered micro­
cracks. ~t t~e fracture front at least as well as a straight line [Fig. l(a)]. 
JU~bfl.cabon 2.-1£ the energy release rate caused by unit fracture ex­

tension IS calculated from the overall energy changes in the entire struc­
ture, then the line crack model and the recently proposed crack band 
model give essentially the same results, provided the mesh is not too 
crude (i.e., at least 10 elements are used over the cross section of the 
domain to be solved). This fact has been numerically demonstrated for 
the case when the stress in the element at the fracture front drops sud­
denly to zero [provided the energy criterion is used (7-8)]. A demon­
stration has also been given for the case when the stress declines to zero 
gradually, over a certain distance ahead of the fracture front (see Fig. 2, 
Part II of Ref. 12). 
Consequent~y, the argument whether the fracture is better repre­

sented by a line model or a crack band model is moot. The relevant 
distinction is that of convenience in modeling. Although Ingraffea's work 
(25) showed that the line crack model can be used effectively once a 
sophisticated finite element code has been developed, the blunt crack 
ban~ model generally seems preferable for finite element modeling. In 
the line crack model, either a node must be split into two nodes as the 
fracture passes through it, or two coinciding nodes must be introduced 
at the outset for each node where cracking is a possibility. This increases 
the number of unknowns during the process of analysis, and in the for­
mer case the nodes must be renumbered if the band structure of the 
structural stiffness matrix should be preserved. When the direction of 
pr~pagation of the fracture is not known at a certain stage of compu­
tation, ~he nodal coordinates must be redefined during computation and 
calculations must be run for various conceivable locations of the node 
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into which the fracture front extends, so as to be able to select among 
these locations the correct one. 

By contrast, neither doubling of the nodes nor their renumbering is 
needed in the blunt crack model. Satisfactory results for failure loads 
ca~ be obtained by using a uniform square mesh, without any mesh 
refinement near the fracture front. So, the fracture front location need 
not be known in advance (7-9,12). Furthermore, propagation of fracture 
in an arbitrary direction can be represented using the same fixed mesh, 
~thout red~fin~g th~ coordinates of the nodes. A fracture propagating 
m a skew dIrection With regard to the mesh lines is here represented as 
a zigzag crack band whose overall direction characterizes the direction 
of the actual fracture. The direction of cracks within the band can be 
inclined with regard to the mesh lines, which is represented in a finite 
element code by using inclined directions of orthotropy for the material 
stiffness matrix of the cracked material. 

The fact that, in the crack band model, the fracture formation is rep­
resented by means of changing the stiffness (or compliance) matrix of 
the material is quite convenient for computer programming. This fact 
also provides additional possibilities in introducing various influencing 
factors by means of the stress-strain relations for the crack band. It has 
been shown for concrete, for example (12), that the effect of the com­
pressive normal stress in the direction parallel to the fracture can be 
introduced into the stress-strain relation for the crack band utilizing pre­
viously established biaxial failure envelopes for concrete. A similar ap­
proach may be possible for rock. Another possibility in the crack band 
model is to utilize for the time-rate effect in fracture what is known about 
viscoelastic stress-strain relations. 

The idea of a continuous (smeared) representation of cracking in finite 
elements, introduced by Rashid (37), and Ngo and Scordelis (34), has 
been widely used since the 1960s in large computer programs because 
of its simplicity. In these programs however the fracture extension has 
been decided on the basis of the strength criterion. It has been shown 
(7-9) that the use of this criterion is not objective in that the results of 
calculation may often depend very much on the analyst's choice of the 
size of the finite element, and may converge to an incorrect solution for 
which cracking consumes zero work and crack propagation occurs for 
an arbitrarily small load. This lack of objectivity (or incorrect conver­
gence) can be remedied by adopting an energy criterion for fracture. 

STIFFNESS MATRIX OF FULLY CRACKED MATERIAL 

For many practical situations it is possible to assume that the direc­
tions of the principal stresses and strains coincide and do not rotate sig­
nificantly during the time interval in which the fracture front passes 
through a given station. Under this assumption we may characterize the 
stress-strain relation of the material in terms of principal stresses CTx , CT , 

CTz and principal strainSEx , Ey , Ez . Subscripts x, y, and z refer to cartesian coci'r­
dinates Xl = X, X2 = Y and X3 = z. The crack planes are assumed 
to be normal to the axis, z. Grouping the principal stresses and strains 
into column matrices CJ' = (CTHCTy,CTz)T, E = (Ex,Ey,Ez)T, in which T de­
notes the transpose, we may write the elastic stress-strain relation as CJ' 
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= DE in which 
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Dn 

D= 

sym. 

~: gj ................................... (1) 

This is the stiffness matrix of the uncracked elastic material subjected to 
small strains. The matrix in Eq. 1 is written in the general orthotropic 
form since rocks are often orthotropic. 

Consider now that the material is intersected by a system of contin­
uously distributed parallel cracks normal to axis z. Since there is no stiff­
ness in the direction, z, normal to the cracks, the third column and the 
third row of the stiffness matrix must be zero. The remaining (2 x 2) 
diagonal submatrix must then take the form of a stiffness matrix for plane 
stress behavior. Accordingly, the stress-strain relation of a fully cracked 
material takes the form (J' = D fr E, in which superscript "fr" refers to 
the fractured state and 

[

Dn - D~3Dil, D12 - D13D23Dil, 0] 
Dfr = D22 - DhD331 , o ................... (2) 

sym. 0 

(see e.g., Ref. 42). Note that this stiffness matrix requires all cracks to 
be perfectly normal to axis z, which is not exactly true, and that it also 
neglects characterizing the friction properties of inclined cracks sub­
jected to shear. Since we, however, assume the cracks to form in the 
direction of the maximum principal tensile stress, the latter limitation is 
not serious for the front of the fracture. 

COMPLIANCE OF PROGRESSIVELY MICROCRACKINO MATERIAL 

To characterize the progressive development of microcracks in the 
fracture process zone (i.e., in the crack band), we need to introduce a 
continuous transition from the secant stiffness matrix of the uncracked 
material (Eq. 1) to the secant stiffness matrix of the fully cracked material 
(Eq. 2). This task is not very simple in the stiffness matrix formulation 
since every element of the stiffness matrix has to be changed. It was 
found (12), however, that this task becomes much easier if one considers 
the inverse, compliance matrix C. In this case the stress-strain relation 
is E = C (J' in which 

[ 

Cn 

C = D-1 = 

sym. 

~: ~j ................................... (3) 

At this point we should note that introduction of cracks normal to axis 
z should have no affect on the compliances in the directions parallel to 
cracks; it should only cause an increased compliance for the direction 
normal to the cracks. This compliance should become infinite when the 
material is fully cracked. This suggests (12) defining the secant compli­
ance matrix for a partially cracked material in the form 
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[ 

Cn 

C(IL) = 

sym. 

~: C~:J .............................. (4) 
Parameter IL, called the cracking parameter (12), is introduced to char­
acterize the progressive development of microcracks normal to axis z. 

First, we must check whether the use of the secant compliance matrix 
in Eq. 4 is equivalent to the use of the stiffness matrix in Eq. 2 (which 
is now a generally accepted practice widely used in finite element pro­
grams). That this is indeed so ensues from the following statement 
(theorem) which can be easily proven (12): 

Dfr = lim C-1(1L) ............................................... (5) 
",-0 

This means that the foregoing stiffness matrix of a fully cracked material 
(Eq. 2) is the limit of the inverse of the compliance matrix with cracking 
parameter IL (Eq. 4) as this parameter tends to O. 

Consequently, a gradual transition from a crack-free state to a fully 
cracked state may be simply obtained by a continuous variation of pa­
rameter IL between the limits 1 and 0, Le. 

uncracked: IL = 1; fully cracked: IL = 0 ........................... (6) 

In practical computer programming, the fully cracked material may be 
conveniently characterized by setting IL -1 to be a very large number (e.g., 
1030

). The computer may then be left to carry out the inversion, which 
yields almost exactly the stiffness matrix in Eq. 2, the elements of the 
last row and column being of the order of 10-30 instead of zeros. This 
procedure saves a programmer's time. 

The variation of the cracking parameter, IL, can be determined either 
indirectly from fracture tests, or directly from the complete uniaxial ten­
sile stress-strain diagram in which the stress is reduced to zero at in­
creasing strain. The indirect determination of IL will be pursued here, 
for lack of tensile strain-softening data. Such data can be measured, as 
is well-known, only when a sufficiently fast servo-control is available 
and the testing machine is sufficiently stiff, or when the specimen is 
stabilized by sufficiently stiff parallel steel bars. According to their pri­
vate communication in August 1983, S. P. Shah and J. Labuz of North­
western University succeeded in directly observing strain-softening in 
tensile tests of granite. However, since appropriate tensile test data do 
not appear to exist for rock, no such results for rock seem as yet to have 
been published, although they have been obtained for concrete, which 
behaves similarly (20-21,24,38) to rock. These tests clearly confirm the 
existence of the gradual decrease of stress at increasing strain (Le., strain­
softening). The softening slope is normally three to four times smaller 
than the initial tangent modulus. Although the actual stress-strain re­
lation appears to be smoothly curved, it is convenient to approximate it 
by a bilinear stress-strain diagram (Fig. 2), in which the declining (strain­
softening) segment is characterized by compliance C k . For uniaxial ten­
sile stress (1z, we may then write 

Ez = C33 1L -l(1z or (1z = C 331 
J.LEz •••••••••••••••••••••••••••••••••• (7) 
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FIG. 2.-(a) Idealized Bilinear Uniaxial Stress-Straln Relation Used to Fit Test Data, 

(b) Stress-Strain Relation with Sudden Stress Drop (c) with a Reduced Strength 
Limit 

This must be equivalent to the following equation for the straight line 
of the strain-softening branch: 

Ez - Eo 
(J'z=~ •••.•...•..•.....•.••••••••••....•...•••••••••••.•.. (8) 

Here C k is negative and Eo represents the terminal point of the strain­
softening branch at which the tensile stress is reduced to zero (Fig. 2). 
This point is related to the strain, Ep ' at the peak stress point as EO = Ep 

+ (-C;3)!; . Comparison of Eqs. 7-8 provides 

-1 _ -C;3 Ez 
IL - C

33 
Eo - E

z 
•••••••••••••••••••••••••••••••••••••••••••••• (9) 

This is the law which governs the variation of the cracking parameter, 
IL, at increasing Ez (loading). 

For unloading and reloading, it is assumed that the stiffness and com­
pliance matrices remain constant and the same as they were at the last 
maximum of Ez • If this last maximum is exceeded, then Eq. 19 for virgin 
loading is again followed unless Ez > Eo. Admittedly, this description of 
unloading is simplified. However, it is found that the results for maxi­
mum loads of typical fracture specimens, as well as the R-curves, de­
pend very little on the form of the law for unloading and reloading. 

The use of a straight line for the strain-softening segment avoids some 
more complicated questions in relating the fracture energy to the stress­
strain diagram. The formation of the fracture process zone may be re­
garded as a strain-localization instability of a continuum. The onset of 
this instability depends on the tangent modulus and the unloading mod­
ulus at the current point of the stress-strain curve. If the tangent mod­
ulus varies continuously, as is the case for a smoothly curved tensile 
stress-strain relation, the instability that leads to fracture can initiate at 
various points on the strain-softening branch (for a more detailed anal­
ysis, see Eqs. 38-52 of Ref. 4). According to such an analysis, the work 
consumed by fracture does not necessarily correspond to the complete 
area under the stress-strain curve. Rather, it equals the area limited by 
th~ strain-softening branch and the unloading branch from the point on 
thIS curve at which the instability initiates, which does not have to co­
incide with the peak stress point. Depending on the precise point at 
which instability initiates, various areas corresponding to fracture en-
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ergy can obviously be obtained. For the bilinear stress-strain diagram 
considered here, however, the tangent modulus is constant along the 
entire strain-softening branch, and the unloading modulus decreases 
(which tends to stabilize the specimen as shown in Ref. 14). If the frac­
ture should occur under such circumstances, it must occur right at the 
peak stress point, in which case the work consumed by fracture corre­
sponds to the complete area under the stress-strain curve (4). Thus, the 
bilinear stress-strain diagram avoids ambiguity in relating the fracture 
energy to the stress-strain diagram, for which stability analysis would 
otherwise be necessary. 

Many rocks, like concrete, may be treated as isotropic. The compliance 
and stiffness matrices for a partially cracked isotropic material then as­
sume the following special forms: 

q.) ~ ~ [ ~: :~]... ..... ..... ...... .. (10) 

E [1 v 
Ofr= -- v 1 

1 - v2 

a a 
n ........................................ (11) 

in which E = Young's modulus;, and IL = Poisson's ratio. 
The foregoing matrices are in effect secant stiffness or compliance mat­

rices. For finite element computation, the total stress-strain relations de­
fined by these matrices may be converted to an incremental form. This 
form may be obtained by differentiating the equation E = C (1, in which 
C is given by Eq. 3 or Eq. 10. In this manner the appropriate quasi-elastic 
incremental stress-strain relation may be obtained. 

For finite element computations, it is also necessary to enlarge the 
compliance or stiffness matrices to a (6 x 6) form, inserting additional 
three rows and columns for the shear strains and stresses. The precise 
values of the associated shear compliance or stiffness coefficients are not 
too important, since fracture is assumed to be normal to the direction 
of the maximum principal tensile stress, in which case the shear stress 
is zero. The question of shear terms, however, acquires some impor­
tance if either during the fracture process or after the completion of the 
fracture the subsequent loading produces relative tangential displace­
ment across the crack band. In such a case, it is appropriate to use shear 
stiffness or compliance coefficients which reflect the frictional-dilatant 
properties of cracks (10,15). 

The fact that total (secant) stress-strain relations are used implies that 
response is path-independent. In reality, of course, all inelastic behavior 
is path-dependent. Nevertheless, the simplification seems to be accept­
able since the principal stress directions normally do not rotate signifi­
cantly during the passage of the fracture process zone through a fixed 
station in the material. In any case, the same assumption of a path-in­
dependent stress-strain relation in the vicinity of the fracture front is 
implied in the J-integral method for ductile fracture, which represents a 
well-substantiated and widely-used approach. 

The fact that cracking is modeled solely by modifying one diagonal 
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term of the compliance matrix, without any change in the off-diagonal 
terms, is justified by assuming all microcracks to be perfectly flat and 
normal to axis z. In reality, one must expect a certain statistical distri­
bution of the orientations of the microcracks, the orientation normal to 
axis z being the prevalent one. This could be modeled by adjusting the 
remaining two diagonal terms of the compliance matrix (Eq. 4), e.g., by 
dividing Cll and C22 in Eq. 4 by [a + (1 - a)f.L] where a is a coefficient 
for transverse damage, 0 < a ~ 1. However, no test data appear to exist 
for determining a. Anyhow, in simulating the fracture tests considered 
here, coefficient a would have a negligible effect because the normal 
stress parallel to the crack is almost zero near the crack front for all types 
of tests. 

The use of stress-strain relations to describe the fracture process zone 
is advantageous in that certain effects which have already been deter­
mined in terms of the stress-strain relations may be directly introduced 
in fracture. Thus, determining separately the time-dependence (or rate­
dependence) of the stress-strain relation, it should be possible to obtain 
the time (or rate) effect in fracture. Also, the information known from 
testing the failure envelopes under combined stress states may be di­
rectly translated into fracture. For example, it is of interest to describe 
the effect of normal compressive stresses parallel to the cracks. It is known 
that such compressive stresses reduce the tensile strength in the trans­
verse direction, and also reduce the fracture toughness in the transverse 
direction. The measured biaxial failure envelopes in the compression­
tension range seem to consist of approximately straight lines connecting 
the failure points for the uniaxial tensile failure and for the uniaxial 
compression failure in the (O'x ,O'y) plane. Accordingly, one may suppose 
that the compressive stresses, O'x and O'y' parallel to the cracks reduce 
the peak stress (Fig. 2) by the amount Af; = k(O'x + O'y), in which k = 
f;lf~, f; = the uniaxial tensile strength, and f~ = the uniaxial compres­
sion strength. This then yields 

for At: ~ 0: t:c = t: + At:; for At: > 0: fte = t: ............ (12) 

in which f;e = a modified peak stress value to be substituted for f; in 
evaluating f.L (Eq. 9). 

It is also worth noting that the present treatment of progressive mi­
crocracking by reducing material stiffness with a multiplicative param­
eter (as in Eq. 4) bears some resemblance to the so-called continuous 
damage mechanics, which has recently been formulated by LfSland (31), 
Lorrain (32), Mazars (33), and others. However, the treatment of damage 
is here tensorial rather than scalar. Besides, there exists a fundamental 
difference: The concept of damage is here considered to be inseparable 
from a zone of a certain characteristic width, We' to which we now tum 
attention. 

FRACTURE PARAMETERS 

The fracture energy is the energy consumed by the formation of all 
cracks in the crack band per unit length of the band (and unit thickness). 
It may be calculated as 

Gf = Wfwe •••••••••••••••••••••••••••••••••••••••••••••••••••• (13) 
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in which W = width of the crack band front (fracture process zone); and 
W = work of the tensile stress = area under the tensile stress-strain 
cJrve (Fig. 2), i.e. 

W
f 

= IE() O'zdEz ••.•••.•.•.••••••••••..••..•••••..•••.•.•••.••••• (14) 
o 

According to the starting assumptions, We should be the smallest dis­
tance on which the heterogeneous aggregate material may be treated as 
an equivalent homogeneous continuum. This conditi~n however does 
not yield a sufficiently precise value ?f We' In theory, It should be pos­
sible to determine the crack band WIdth by analyzmg, on the baSIS of 
loading and unloading tangent moduli, the strain-localization i~stability 
that leads to fracture (similarly to Refs. 3 and 14). Such an analYSIS would, 
however, be quite complicated. Therefore, We has been determined em­
pirically by optimizing. the fits of fr~cture ~est d~ta. 

For the bilinear tensile stress-stram relation (FIg. 2), we have 

Wf=~(C33-C~)ft=~f;EO ................................... (15) 

from which we obtain 

We = ~~! C
33 

~ C~ .............. '" ....... '" .................. (16) 

in which C~ is negative. This equation indicates that We may be deter­
mined by obtaining, from the condition of optimum fit of fra~ture test 
data, the tensile strength, the fracture energy, and the softenmg com­
pliance. It was this procedure which was applied to generate the data 
fits reported here. . . . 

From the last relation we also see that the uncertamty m We IS related 
to that in the softening compliance. If certain test data can be fitted well 
with different softening compliances, the value of We is not too impor­
tant. This has been the case for some data. However, the value of the 
softening compliance, C ~, affects quite strongly the length of the frac­
ture process zone ahead of the fracture front, and if this length follows 
from the available data unambiguously, so does We' The length of the 
fracture process zone becomes unimportant for sufficiently large struc­
tures for which it is small compared to the dimension of the cross sec­
tion. In such a case, the value of We can be quite arbitrarily chosen, 
preserving, of course, the correct value of the fracture energy. 

To assure that C~ be negative, Eq. 16 with C33 = liE indicates that 
the following condition must be met 

2Gf E (17) 
We < Wo, Wo = tr ......................................... . 

When We = Wo, the stress-strain diagram has a vertical straight drop of 
stress to zero [Fig. 2(b)). 

If the use of finite elements of the size We would lead to too many 
elements, as in the case of a relatively large rock mass, then the finite 
element size may be increased, along with w" if a larger IC~I (steeper 
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strain-softening) is considered as required by Eq. 16 (Fig. 2). This is, 
however, limited by Eq. 17, and a further increase in the finite element 
size (i.e., in we) cannot be obtained. 

If the rock mass is so large that still larger finite elements are needed, 
then it is possible to modify not only the declining slope to a vertical 
one, but also to reduce the strength limit, f; , provided that the correct 
value of the fracture energy Gf is preserved. That is, we must preserve 
the relation Gf = h f;2 f2E, in which h is the size of square finite elements 
in a regular square mesh. According to this relation, we must then use 
the strength limit 

f~ = ~2~E ................................................. (18) 

which represents what has previously been introduced as the equivalent 
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tensile strength (7-9). It has been verified that for large structures in 
which many finite elements (approximately, over 12) are laid across the 
cross section, the fracture analysis with the equivalent strength accord­
ing to Eq. 18 gives essentially the same results as the fracture analysis 
based directly on fracture energy. The results are then also approxi­
mately the same as those obtained from linearly elastic fracture me­
chanics. In this case, the tensile strength value and the width of the 
fracture front become irrelevant. Thus, the theory presented here has 
the purpose of extending fracture analysis to regions of smaller size as 
compared to inhomogeneities of the material. 

It has been verified numerically (12) that the width of the element­
wide crack band for finer mesh subdivisions and larger structures (com­
pared to aggregate size) can be chosen rather arbitrarily if the strain­
softening slope is properly adjusted. 
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FITTING OF TEST DATA 

The mathematical model just described, which was originally devel­
oped and successfully applied for concrete (12), has been fitted to various 
test data on rock fracture available in the literature. The optimum fits 
attained are plotted as the solid lines in Fig. 3-7. For comparison, the 
linear elastic fracture mechanics fits that are optimum in the least-square 
sense are also shown in these figures (the dashed curves). The material 
parameters corresponding to all the fits are summarized in Table 1. The 

o 
<>. 

0.09 

0.08 

.. 007 

" E 
<>. 

006 

005 

0.48 

o 

(a) Nonlinear Theory 

Linear Theory 

\ Schmidl, LuI. (1979) 0 

\ (We.'erly Granl'e) 

o \ Po 010,800 lb. 
\ 
\ 
\ 
\ 
\ 

0 

~D 
~ I..!.I 

0.52 0.56 0.60 

.. 
" E 

0060 

<>. 0050 

0045 

0.64 0.48 

ReI. Initial Crock Length (o o /WI 

(b) Nonlinear Theory 

Linear Theory 

Schmldl, Lutz (1979) 0 

\ (Weslerly Granite) 

0" Po 0 43,210 lb. 

0.52 

, 
'0 , , 

0.60 0.64 

Rei. Initial Crock Length (00 /WI 

FIG. 6.-Flts of the Maximum Load Data of Schmidt and Lutz (1979) for Westerly 

Gran"e 

90.----------~----, 

60 

E .... 
z 
_40 

'" C> 

20 

(a) 

o 

- Nonlinear Theory 

---- Linear Theory 

o Hoagland, Hahn, Rosenfield (973) 

(Salem Llme.'one) 
O~--_~ ___ -L ___ ~~ 

o 1.0 2.0 3.0 

Rei. Crock Extension (to / Wc I 

160.-------------, 

(b) 

---------------u--
150 

140 o 

E .... o 
~ 130 

'" C> 
0 

120 

0 

110 

o 

- Nonlinear Theory 

---- Linear Theory 

o Schmldl, Lulz (1979) 

(We.,erly Granlle) 
100L-_-L_~ __ ~_~ __ ~ 

o 0.5 1.0 1.5 2.0 2.5 

ReI. Crock Extension (to / Wc I 

FIG. 7.-Apparent Fracture Energy versus Crack Extension According to Hoag­

land et al., (1973) for Salem Limestone, and Schmidt and Lutz (1979) for Westerly 
Granite 

1027 

TABLE 1.-Parameters for Test Data Fits 

t: I in E, in Gf • in Gr. in 
pounds kips per pounds pounds 

per square square per dg • in We, in per 
Test series inch inch inch inches inches inch 

(1 ) (2) (3) (4) (5) (6) (7) 

1. Schmidt (1976) No. 1 356* 3,130* 0.068* 0.0787 0.3935* 0.027* 
2. 2 356* 3,130* 0.068* 0.0787 0.3935* 0.186* 
3. 3 356* 3,130* 0.068* 0.0787 0.3935* 1.751* 
4. Schmidt (1977) No. 1 768* 3,600* 0.121* 0.0197 0.0985* 0.162* 
5. 2 477* 2,232* 0.076* 0.0197 0.0985* 0.168* 
6. Carpinteri 725* 2,200* 0.392* 0.0079 0.0395* 0.530* 
7. Schmidt, Lutz No. 1 1,394* 3,300* 0.874* 0.0296 0.1480* 1.697* 
8. 2 1,394* 3,300* 0.874* 0.0296 0.1480* 0.806* 
9. 3 1,394* 3,300* 0.874* 0.0296 0.1480* 0.879* 

to. Hoagland, Hahn, 
Rosenfield 427* 2,000* 0.374* 0.0787 0.3940* 0.390* 

* Asterisk indicates numbers estimated by calculations; without asterisk-as re­
ported; and Gr = Gf values for the linear theory fits. 

Note: psi = 6,895 N/m2
, lb/in. = 175.1 N/m, in. = 25.4 mm, ksi = 1,000 psi. 

test specimens were assumed in all cases to be in a plane stress state, 
CIy = O. All fits were calculated by the finite element method, using a 
regular square mesh of identical four-node finite elements each of which 
consists of four constant-strain triangles. The stress-strain relation just 
developed has been assumed to apply for all the finite elements but us­
ing small enough loading steps the strain softening regime was reached 
only within one row of finite elements. The tangent stiffness coefficients 
were assumed to be the same for all the four triangles composing a square 
element and were determined from the average of the strains in these 
four triangles. 

Based on our initial arguments relative to homogeneous continuum 
smoothing of a randomly heterogeneous material, the width of the ele­
ment-wide blunt crack band front should not be considered less than 
about We = 3d. in which d. is the maximum size of the inhomogeneities 
(the grain size in rock, or the aggregate size in concrete). On the other 
hand, with regard to the analysis of strain-localization instability in a 
tensile test specimen (3,4,14), We should not be much larger than 3d • . In 
a preceding analysis (12) of 22 series of concrete fracture tests reported 
in the literature-quite a large statistical sample-it was found that for 
all normal concretes the optimum width of the crack band front (fracture 
process zone) which gives the best fits of the test data is roughly We = 

3d. (this was concluded by comparing the fits for We = 2d., 3d. , 4d. , 6d. , 
etc.). 

With this result in mind, the fits of all rock fracture data analyzed here 
have also been sought under the restriction that the ratio we/dg (where 
dg = grain size) be the same for all test data for the various rocks con­
sidered. Thus, the fitting of the test data was carried out under the con­
dition that only the values of Gf and f: (and of the elastic constants) may 
vary from rock to rock (Table 1). Various values of the ratio we/dg were 
tried, and optimum fits were obtained for 
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We = 5dg •••••••••••••••••••••••••••••••••••••••••••••••••••••• (19) 

This.value applies to very different types of rock (Figs. 3-7). 
. J?is result, .however, should be considered as tentative and the pos­

sIbIlity that still other rocks might require for best fits other ratios W /d 
must not be ruled out. At present, much fewer test data exist in eth: 
literature for nonlinear fracture of rock than of concrete. 

Due to the last relation, as well as the energy relation in Eq. 15, the 
prese~t nonlinear fracture theory is a two-parameter theory. The two 
matenal parameters to be determined by fitting test data are G and f' . 

F . . b . fh f I rom mIcroscopIC 0 servations 0 t e microcrack band ahead of the 
crack tip, it is known that the width of this band increases as the crack 
extends and the density of microcracks varies across the width of the 
band. This is not reflected in Eq. 19. However, We should not be re­
gar~ed as the. actual wi~th of the microcracking zone but as some ef­
fective or eqUlvalent WIdth needed to obtain the correct energy con­
sumption. 

The ~est d~ta in Figs. 3-6, obtained by Schmidt, Lutz, and Carpinteri 
for I~dlana limestone, Carrara marble, Colorado oil shale, and Westerly 
granite, are presented as plots of the maximum load, P max' measured in 
the fr~cture. test, versus the length of notch ao. The P max values were 
non-dlmenslOnalized as the ratios PmaxiPo in which Po = the maximum 
l~ad. tha~ is obtained from the bending theory (Le., for a linear stress 
?-lstribution throughout the ligament). In Fig. 3, Po = 2DH2f ;j3L = max­
lffium load based on a bending theory calculation for an uncracked beam, 
where l! = bea~ depth, D = beam thickness, L = beam span, and f; 
= the dIrect tensIle strength. The same definition of Po was used in Figs. 
4-5. For the data in Fig. 6, Po = WDf; in which W = specimen width 
and D its thickness. ' 

The f~nite ele~ent calculati?n was carried out in small loading steps, 
~ontrolling the dl~placement Increments at the loading pOints, calculat­
~g a.t ~ach load ll~crement the reaction at the loading pOint, and then 
Identifying the maxlffium value among these reactions. The dashed curves 
pertaining. t~ linear fracture mechanics were actually calculated also by 
the same fInite element code using the previously published blunt crack 
ban~ approach (7,8), in which a sudden stress drop and a finite element 
~erslOn of th~ energy .rel~ase criterion is considered. With a sufficiently 
fine mesh, thIS analYSIS Yields results which do not differ from the exact 
linear fracture mechanics solutions by more than 1%-2%. 

In judging ~e fits achieved with the present theory (solid lines inFigs. 
3-6), compa~son .should. be made with the dashed lines representing 
the best possIble fIts by linear elastic fracture mechanics. It is clear that 
the improvement is significant. 

The data ~y I:Ioagland, et al. (23), and by Schmidt and Lutz (4) (which 
are shown In FIg. 8), represent the R-curves (resistance curves) in which 
~e apparent fracture energy determined in the test is plotted as a func­
tion of the crack ext~nsion from a notch in slow, stable crack growth. 
'J?e pre~ent th~ory IS also capable of predicting the R-curves, and the 
~ts obtamed W1t~ the present theory are shown in Fig. 7 as the solid 
lines. The reason IS that at the beginning of the crack extension, the zone 
that undergoes strain-softening is small, and therefore little energy is 
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being consumed. The full value of energy consumption, which corre­
sponds to the final asymptotic value of fracture energy, Gf , is obtained 
only when the fracture process zone length develops fully, in which case 
the stress at the tip of the notch drops to zero (for further explanation 
see Ref. 12). The classical linear elastic fracture mechanics predicts no 
R-curve, since the fracture energy is considered as a constant. Thus, the 
dashed lines are plotted in Fig. 7 as horizontal straight lines, made to 
pass through the terminal measured value at which the apparent frac­
ture energy value stabilizes. 

The capability of the present theory to predict the R-curve on the basis 
of only two fracture parameters (Gf and f;) is important from the view­
point of finite element analYSis. The R-curve can hardly be used as an 
input in a general finite element program. Strictly speaking, the R-curve 
can be a material property only in the limiting sense, for crack exten­
s~ons from the notch .which ar~ ~egligible compared to both the ligament 
SlZe and the notch SIze. For fInite crack extensions from the notch, the 
R-curve depends on the type of loading, geometry of the specimen, and 
the path of the crack (e.g., straight, inclined, curved). The present the­
ory indeed yields nonidentical R-curves for various situations. 

STATISTICAL ANALYSIS OF ERRORS 

To examine the errors, we may construct the plot of Y = Pm/PO versus 
X = PtfPo, in which Pm = measured Pmax , PI = theoretical Pmax , and Po 
= failure load based on strength as defined before. With these defini­
tions, it is possible to plot all the data points from Figs. 3-6, whose 
number is M .= 35 in one figure [Fig. 8(a)]. Furthermore, in Fig. 8(b), 
the same plot IS shown for the best results attainable with linear fracture 
mechanics. Since the ratio X generally decreases as the size of the spec­
~en increases, the points at the top right of the plot refer to small spec­
lffiens and those at the left bottom of the plot to large specimens. 

If the theory were perfect, then the plot of Y versus X would have to 
be a straight line of slope 1.0, passing through the origin. Thus, the 
regression line of the plot, Y' = a + bX, must have a Y-intercept close 
to .zero, and slope b close to 1.0 if the fits obtained before are optimum. 
It IS seen from Fig 8(a) that this is indeed so. The errors, Le., the vertical 
deviations of the data points Y i (i = 1, 2, 3, ... ) from the regression line, 
may be characterized by the coefficient of variation calculated as 

sIn 1 n 
w=- S2= __ ~(y._y')2 Y-=-~Y (20) 

Y
-' -2L.J' , L.J i ................. .. 

n i=1 n i=1 

in which n = number of all. data points in the plot; and s = standard 
error. For the fits from Figs. 3-6, collected in Fig. 8, one obtains 

For the present fracture theory [Fig. 8(a)]; w = 0.106; 

For linear fracture theory [Fig. 8(b)]: w = 0.452; 

For the strength criterion: w = 0.796 ...... , ....... (21) 

The last value for the strength criterion is Simply a statistic of the pop­
ulation of Pm/Po-values. 
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Another possible statistical characteristic is the coefficient of variation 
of the population of the values of X == P m/Pt. For all the points in Figs 
3-6 one obtains . 

For the present fracture theory: w == 0.069; 

For linear fracture theory: w == 0.393 ...................... . (22) 

To carry out a statistical analysis of the errors in the R-curve, the frac­
ture e~ergy values can be normalized with regard to the internal force 
tran~mI~ted by the fracture p~oce~s zone, w~ich is roughly proportional 
to ftdg m.which dg = the gram SIZe. Accordmgly, the comparison may 
?e ~ade m terms of the values of In (Gf/{;dg ) taken from Fig. 7. Thus, 
m FIg. 8(c-d), we use on the Y-axis the measured values G of G and 
on the X-axis w~ use the theoretical values Gt of G

f
. Again, if the {heory 

were perfect, thIS plot would have to be a straight line Y I == a + bX with 
a = 0 and b == 1, ~nd so ~ li?ear regression may be applied. The standard 
error for the vertical deVIation from the regression line is then calculated 
as follows: 
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For the present fracture theory [Fig. 8(c)]: s == 0.046; 

For linear theory [Fig. 8(d)]: s == 0.222 .......................... (23) 

Fig. 8 also shows the 95% confidence limits corresponding to s (the 
dashed lines). These lines are hyperbolas but, due to the relatively large 
size of our statistical samples, these hyperbolas appear to be almost 
straight, passing at the vertical distance ±1.96 s from the regression line. 

From this statistical analysis we may conclude that our nonlinear the­
ory achieves a significant improvement over linear elastic fracture me­
chanics and is capable of satisfactorily describing the available experi­
mental data on rock fracture. 

FURTHER RAMIFICATIONS 

For general finite element analysis, various practical questions arise 
with regard to the modeling of an inclined or curved crack in the form 
of a zigzag crack band in the square mesh. In this representation, one 
must resolve the question of the effective width and length of the zigzag 
crack band. These questions are analyzed in Refs. 6 and 9. 

Another question of importance for general finite element analysis is 
the modeling of fracture when the direction of the principal stresses and 
strains in the fracture process zone rotates during the formation of the 
fracture. This can, for example, happen when a vertical normal stress 
produces only partial fracturing and the fracture is completed in pres­
ence of a superimposed shear stress. For such a case, the secant (total) 
stress-strain relations used in the present work are not well-suited, and 
one needs to formulate a tensorially invariant incremental stress-strain 
relation for tensile strain-softening. One possible formulation is pre­
sented in Ref. 4. That work also addresses the question of the fracture 
energy value when a smoothly curved tensile strain-softening diagram 
is considered. The problem is approached from the viewpoint of strain­
localization instability, which allows deriving certain simplified expres­
sions for the fracture energy relation to the tensile stress-strain diagram. 

It must be emphasized that the present work is limited to Mode I frac­
ture (symmetric, opening mode). In the case of shear fractures or mixed 
mode fractures, various difficult questions arise with regard to the crack 
band representation, particularly when the direction of the crack band 
propagation through the mesh is unknown. These conditions are rele­
gated to subsequent studies. 

CONCLUSIONS 

1. Due to material heterogeneity, fracture can be modeled by means 
of a crack band whose front has the width of several times the size of 
inhomogeneities. 

2. The crack band model is convenient for finite element analysis. At 
its front, the crack band is assumed to have a single-element width, and 
consequently a proper size of finite elements must be chosen. 

3. The crack band model allows the characterization of fracture by 
means of stress-strain relations that cover the strain-softening behavior. 
A simple triaxial form of such stress-strain relations can be formulated 
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using the compliance matrix rather than· the stiffness matrix. 
4. In its simplest form, the crack band model for fracture involves two 

independent material parameters-the fracture energy and the tensile 
strength. These two parameters have to be found by fitting fracture test 
data. 

5. The width of the crack band at its front can be taken as five-times 
the grain size of rock. 

6. The present theory is capable of satisfactorily representing all es­
sential fracture test data on rock existing in the literature. In particular, 
the theory describes well the available maximum load data as well as 
the measured resistance curves (R-curves). 
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