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Abstract 

Earthquake resilient steel frames, such as self-centering frames or frames with passive energy dissipation devices, have 

been extensively studied during the past decade but little attention has been paid to their column bases. The paper presents 

a rocking damage-free steel column base, which uses post-tensioned (PT) high strength steel bars to control rocking 

behavior and friction devices (FDs) to dissipate seismic energy. Contrary to conventional steel column bases, the rocking 

column base exhibits monotonic and cyclic moment-rotation behaviors that are easily described using simple analytical 

equations. Analytical equations are provided for different cases including structural limit states that involve yielding or 

loss of post-tensioning in the PT bars. A step-by-step design procedure is presented, which ensures damage-free behavior, 

self-centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite 

element (FE) model of the column base is developed in ABAQUS. The results of the FE simulations validate the accuracy 

of the moment-rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a 

simplified model for the column base is developed in OpenSees. Comparisons among the OpenSees and ABAQUS models 

demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel 

building is designed as a self-centering moment-resisting frame with conventional or rocking column bases. Nonlinear 

dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminate the 

first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking 

motion, and thus, ignores 3D rocking effects such as biaxial bending deformations in the FDs. The FE models, the 

analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after 

forthcoming experimental tests on the column base.  
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1. INTRODUCTION 

Conventional seismic-resistant structures, such as steel moment resisting frames (MRFs), are designed to experience 

significant inelastic deformations under strong earthquakes [1, 2]. Inelastic deformations result in damage of 

structural members and residual interstory drifts, which lead to high repair costs and disruption of the building use or 

occupation. The aforementioned socio-economic risks highlight the need for widespread implementation of 

minimal-damage structures, which can reduce both repair costs and downtime. Examples of such structures include 

steel frames equipped with self-centering beam-column connections, structural fuses, passive energy dissipation 

devices, self-centering braces, and others [3-7 and references therein]. These earthquake-resilient steel frame 

typologies have been extensively studied during the last decade but little attention has been paid to the behavior of 

their column bases. 

     Conventional steel column bases typically consist of an exposed steel base plate supported on grout and secured 

to the concrete foundation using steel anchor rods. In terms of their strength, column bases are typically designed as 

full-strength so that plastic hinges are developed in the bottom end of the first story columns [1, 8]. Apart from the 

fact that plastic hinges in the columns induce non-repairable damage, this design approach needs very strong column 

bases with adequate over-strength to account for material variability [9]. Moreover, it results in conservative 

foundation designs since the full moment resistance of the column profile is transferred to the foundation. 

Alternatively, Eurocode 8 allows the design of partial-strength column bases, which are designed to develop plastic 

deformations [1, 8]. Such design philosophy however needs the knowledge of the plastic rotation capacity of the 

column base under cyclic loading, which is difficult to predict [10]. A recent work developed a model for exposed 

steel column bases under cyclic loading and highlighted the complexity of their hysteretic behavior [11]. Most 

importantly, field observations after strong earthquakes confirmed the susceptibility of column bases to difficult-to-

repair damage such as concrete crushing, weld fracture, anchor rod fracture and base plate yielding [12]. In terms of 

their rotational stiffness, previous studies indicate that when designed as rigid, conventional column bases may be 

flexible under applied moments, while when designed as pinned, they do possess some rigidity. Under seismic 

loading, modelling the column bases of a steel MRF as rigid leads to unconservative results in terms of the first story 

drift and collapse resistance [13]. On the other hand, ignoring their rigidity and modelling the column bases as 

pinned could result in an over-conservative design of the columns. Therefore, the current design assumption of 
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perfectly rigid or pinned column bases may produce erroneous results and jeopardize economy, serviceability and 

safety. In addition, the design of semi-rigid column bases is not straightforward as previous studies show that their 

rotational stiffness is strongly affected by the base plate flexibility and the magnitude and proportionality of the axial 

force [14]. 

     Few research works proposed alternative column bases with the goal of overcoming the shortcomings of 

conventional column bases. Mackinven et al. [15] proposed a steel column base that involves the use of unbounded 

steel bars to act as re-centering devices while the column rocks under lateral loads. This column base lacks energy 

dissipation and develops significant stress concentration during rocking. Based on the concept of the sliding hinge 

originally developed by Clifton [16], MacRae et al. [17] proposed a steel column base where a pin is used to resist 

axial and shear forces. Flexural resistance and energy dissipation is provided by friction due to relative movement of 

the column flanges with respect to foundation flange plates with slotted holes. This column base has minimal-

damage behavior in the strong column axis direction. Yamanishi et al. [18] developed a steel column base that 

involves exposed yield bolts anchored on a strong plate welded on the column and connected to the foundation 

anchor bolts through couplers. The yield bolts are the only components that experience damage and can be easily 

replaced. Chi and Liu [19] developed a damage-free steel column base that involves post-tensioned (PT) bars 

anchored at the mid-story height and at the bottom of a grade steel beam. Energy dissipation is provided by 

buckling-restrained steel plates, while shear resistance by bolted keeper plates. Chou and Chen [20] developed a 

similar self-centering column base but with PT bars anchored at the top and at the base of the first story columns. 

Recently, Borzouie et al. [21] presented experimental results on the behavior of a column base using an asymmetric 

friction connection. The system experiences rocking and energy is dissipated with friction/sliding surfaces parallel to 

the column strong axis. Superior behavior was achieved under loading in the column strong axis direction, while 

damage and stiffness degradation were observed under loading in the column weak axis direction. 

     This paper presents a rocking damage-free steel column base, which uses PT high strength steel bars to control 

rocking behavior and friction devices to dissipate seismic energy. The column base monotonic and cyclic moment-

rotation curves are defined with the aid of simple analytical equations that consider different limit states. In addition, 

a design procedure based on non-dimensional parameters and a simple graphical tool is presented. In order to 

validate the accuracy of the moment-rotation analytical equations and to demonstrate the efficiency of the design 

procedure, finite element (FE) simulations are performed in ABAQUS [22]. Moreover, a simplified two-

dimensional model of the rocking column base is developed in OpenSees [23]. The latter is used to conduct 

nonlinear dynamic analyses on self-centering moment-resisting frame (SC-MRFs) using the rocking column base. 

2. ROCKING DAMAGE-FREE COLUMN BASE 

2.1 Structural details 

Figure 1 shows the proposed rocking damage-free column base, which in concept has similarities with the column 

base proposed by Kamperidis et al. [24]. A thick steel plate with rounded edges is welded on the bottom of a circular 

hollow steel section. The rounded edges help the column base to avoid stress concentration and damage during 

rocking of the hollow steel section on the steel base plate. Four PT high strength steel bars (or alternatively strands) 

are symmetrically placed around the center of the column base to increase the axial force and further control the 

rocking behavior. The PT bars are anchored to the bottom of the foundation (by running through steel ducts) and to a 

thick plate welded on the top of the hollow steel section (i.e. anchor plate in Figure 1(a)). Friction devices (FDs) are 

placed to the four sides of the column base to provide energy dissipation during rocking. As shown in Figure 2(a), 

the FDs consist of two external steel plates bolted to the base plate; an internal steel plate welded to the circular 

hollow section; and two plates of brass material in the interface. Rocking of the column base results in sliding of the 

internal plate with respect to the brass and external plates, and thus, in energy dissipation due to friction. The 

internal plate is drilled with inclined slotted holes to enable sliding, while the external plates and the brass plates are 

drilled with aligned rounded holes to accommodate four pre-tensioned bolts that are used to tune the friction force in 

the FDs. The dimensions of the inclined slotted holes are chosen to accommodate the superposition of all possible 

bolt travel paths during rocking of the column base as shown in Figure 2(a) [25]. As shown in Figure 2(b), a shear 

key is used to provide shear resistance to the column base. The shape of the shear key is designed with the goal of 

avoiding interlocking during rocking of the column base. Shear resistance is also provided by friction in the base 

plate-circular steel section interface. 
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Figure 1. Proposed column base (a) 3D view; (b) lateral view and sections. 

  

Figure 2. (a) Details of the friction device; (b) steel plate with rounded edges and shear key. 

2.2 Moment-rotation behavior 

Figure 3(a) shows the fundamental dimensions of the column base that control the moment-rotation behavior in the 

rocking direction, i.e. b is the dimension of the contact surface; bPT is the distance among the PT bars; bFD is the 

distance among the centers of the FDs; and hFD is the distance of the centers of the FDs from the base plate. Figure 

3(b) shows the column base at the onset of rocking with respect to its right edge under the effect of the internal axial 

force (N), shear force (V), and bending moment (M). In Figure 3(b), FPT,u and FPT,d are the forces in the PT bars, 

while FFD,u, FFD,d and FFD,c are the forces in the FDs. The subscripts u and d denote whether the point of application 

of these forces will move upwards or downwards during rocking. The subscript c denotes the force in each of the 

two central FDs. The lever arms of the forces in the PT bars with respect to the center of rotation are given by: 
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     The level arm of the central FDs is assumed equal to their horizontal distance from the center of rotation 

according to Equation 2. Further discussion on this assumption, which is true for rotations within the range of 

practical applications, is provided in Section 4. 
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Figure 3. Column base (a) fundamental dimensions, (b) forces and lever arms of the FDs and PT bars during rocking 

for loading from left to right. 

The moment contribution of the axial force, N, is given by: 

 
2

N
N
b

M = ⋅  (3) 

The forces in each PT bar are function of the rotation, θ, of the column base and are given by: 
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where TPT is the initial post-tensioning force of each PT bar; 
PT PT PT PT
K E A L=  is the stiffness of each PT bar; EPT, 

APT and LPT are respectively the Young’s modulus, the cross-sectional area and the length of each PT bar; 
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the rotation at which the PT bars (in position u) yield; and 
, ,PT d f

θ  is the rotation at which the force of the PT bars (in 

position d) becomes zero, i.e. when loss of post-tensioning occurs. The PT bars should be designed to avoid either 

yielding or loss of post-tensioning for a target rotation θT by using the following inequalities: 
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where 
, ,PT y y PT PT

F f A= ⋅ is the yield force of the PT bars and 
,y PT
f  is the yield stress of their steel material. Therefore, 

the moment contribution of the PT bars is given by: 
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The friction force, 
,FD i

F , in each FD is given by: 
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where µFD is the friction coefficient of the surfaces in contact; nb is the number of bolts and Nb is the bolt preloading 

force. The bolts preloading force can be determined from the tightening torque by means of the following equation 

according to Latour et al. [26]: 
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where Tb is the value of the tightening torque and d is the bolt diameter. Therefore, the moment contribution of the 

FDs is given by: 
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Figure 4(a) shows the moment contributions of the axial force, MN; of the PT bars, MPT; and of the FDs, MFD. The 

decompression moment, ME, and the moment at the onset of rocking, MD, are given by: 

 
,0E N PT

M M M= +  (10) 
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where MPT,0 is the moment provided by the PT bars at zero rotation (i.e. θ=0.0 in Equation 6). 

 

MPT 

θ 

M 

ME 

MD 
MFD 

MN 

MN 

MPT,0 

 

θ 

M 

1 

2 

4 

3 

 
Figure 4. Moment-rotation behavior of the column base. (a) Moment contribution of the axial force, MN; of the PT 

bars, MPT; and of the FDs, MFD; (b) hysteretic behavior. 

The rotational stiffness contribution of the PT bars is given by: 

 ( )2 2

, ,
2

PT PT PT u PT d
S K z z= +  (12) 

and therefore, the moments corresponding to points 1 to 4 of the cyclic M-θ behavior of the column base in Figure 

4(b) are given by: 
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From M2 to M3 there is a sudden moment reduction equal to 2MFD for a constant rotation value due to the rigid 

behavior of the FDs and the change in column base rotation direction.  

To ensure that the column base provides full self-centering capability, the following relation should be satisfied: 

 
4
0M ≥      →     

E FD
M M≥  (14) 

The aforementioned equations do not account for geometrical nonlinearities (i.e. P-Δ effects), material nonlinearities 

(i.e. PT bar yielding), and mechanical nonlinearities (i.e. loss of post-tensioning in the PT bars). Analytical 

equations for the definition of the monotonic moment-rotation behavior of the column base accounting for such 

nonlinearities are provided in the Appendix.  

3. DESIGN PROCEDURE FOR THE ROCKING COLUMN BASE 

This section describes the steps of a design procedure that ensures that the column base has damage-free behavior, 

self-centering capability, and adequate energy dissipation capacity. The design procedure requires as input the cross-

section of the column; the axial force in the column due to the gravity loads of the seismic load combination, NEd,G; 

the axial force due to the seismic load combination, NEd; and the first story drift due to the seismic load combination. 

3.1 Geometry of the column base 

Based on the cross-section of the first story column, the fundamental dimensions of the column base (i.e. b, bPT, bFD, 

and hFD) are selected with respect to practical and geometric considerations. The PT bars should be as close as 

possible to the column to avoid large elongations and yielding during rocking as well as to decrease the moments 

that they induce on the anchor plate. Given the fundamental dimensions of the column base, the parameters zPT,u, 

zPT,d, zFD,u, zFD,c and zFD,d can be calculated by using Equations 1 and 2. 

a) b) 
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3.2 Design of the PT bars 

The moment at the target rotation, MT, should be lower than the plastic moment of resistance of the column, MN,Rd 

[27], to protect the latter from yielding. Therefore, MT is defined as: 
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T

T

M
M

γ
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where γT can be calculated as 1.1γov according to Eurocode 8 [1]. The material over-strength factor, γov, reflects the 

ratio of the actual-to-design yield strength of steel, which, in the absence of measurements, can be assumed equal 

to1.25. γov is further amplified by 1.1 to account for other material effects such as strain hardening and strain rate. 

Therefore, the typical value of γT is 1.375 but higher values could be used to achieve more conservative designs 

against column yielding. To ensure self-centering behavior, the moment provided by the FDs, MFD, should not 

exceed the decompression moment, ME (see Eq. (10)), i.e. 
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where αsc is a design parameter with a value larger than unity. The self-centering behavior of the column base could 

be influenced by several aspects, i.e. hardening of the friction material, etc. Recommendations for the choice of 

appropriate values for the parameter αsc is out of the scope of the present paper and will be a task after a near future 

experimental evaluation of the column base. The moment at the onset of rocking, MD, can be calculated as: 
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Then, the moment at the target rotation, MT, can be calculated as: 
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By defining 
,PT y PT
fκ σ=  as the stress ratio in the PT bars (σPT as the stress in the PT bars), MT can be expressed 

as: 
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Further re-arrangement of Equation 19 provides: 
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Equation 20 shows that κ, APT and LPT are the design variables, while all the other parameters are selected by the 

designer. A simple re-arrangement of Equations 5 yields: 
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Equation 20 together with Equations 21 can be used to calculate the design variables κ, APT and LPT. 

3.3 Design of the FDs 

Once the PT bars are designed, Equation 16 is used to calculate the MFD. Then, the FDs can be designed by selecting 

appropriate values of the parameters in Equation 9. 

3.4 Design example  

The novel column base is designed for a HEB 300 column cross-section; axial force NEd,G equal to 537.8kN; and 

axial force NEd equal to 565.3kN. The plastic moment of resistance MN,Rd is calculated equal to 308.9kNm. The 

target rotation is assumed equal to 0.023rads. Based on the geometry of the column cross-section, a circular hollow 

section with 323.9mm diameter and 40mm thickness is adopted. A circular steel plate with the same diameter is 
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welded at the bottom of the hollow section. Standard mechanical processing provides this plate with rounded 

circular edges having a radius of 40mm as well as with appropriate space to accommodate the shear key. The 

contact surface has a dimension b equal to 243.9mm. The anchor plate of the PT bars in the top of the hollow steel 

section is square and has width and thickness equal to 550mm and 50mm, respectively. The distance among the PT 

bars bPT is selected equal to 390.0mm. Moreover, Table 1 provides the assumed material properties (E: Young’s 

modulus; fy: yield stress; fu: ultimate stress; and β: strain hardening ratio), which has been selected on the basis of 

experimental results [28, 29]. 

Table 1. Material properties. 

Elements  E fy fu β  ν  

  [ GPa ] [ MPa ] [ MPa ] [ ] [ ] 

Column and plates S355 210 355 510 0.00338 0.30 

PT bars *** 205 900 1100 0.01754 0.30 

Bolts Class 10.9 210 900 1000 0.00855 0.30 

Brass *** 100 *** *** *** 0.35 

 

     Figure 5(a) shows the variation of κ with respect to LPT for different dPT values. The coefficients γT and αsc have 

been assumed equal to 1.4 and 1.3, respectively. Any pair of κ and LPT with values within the highlighted acceptable 

zone can be selected. However, the optimum design that satisfies the design criteria and minimizes the length of the 

PT bars should be a point close to the intersection of the κmin and κmax curves. In this example, dPT is selected equal 

to 15mm, LPT equal to 2240mm, and κ equal to 0.189. The latter corresponds to TPT equal to 30.0kN. The rotations 

, ,PT u y
θ  and 

, ,PT d f
θ  are equal to 0.0252rads and 0.0255rads, respectively. Figure 5(b) shows the moment-rotation 

behavior for the column base. The decompression moment, ME, the moment at the onset of rocking, MD, and the 

moment provided by the FDs, MFD, are equal to 80.3kNm, 142.0kNm and 61.7kNm, respectively. 

  
Figure 5. (a) Variation of κ with respect to LPT for different dPT values; (b) moment-rotation behavior of the column 

base. 

      FDs are introduced on the four sides of the column base as described in Section 2; the relevant dimensions are 

bFD = 623.9mm and hFD = 315mm. The thickness of the internal and external plates of the FDs are 15mm and 10mm, 

respectively. Two 3 mm thick brass plates are used as friction interfaces. The friction coefficient at the brass-steel 

interface is assumed equal to 0.15 according to [26]. M12 class 10.9 bolts are preloaded at 45kN by tightening. The 

dimensions of the slotted holes are designed to allow a very large rotation (i.e. close to 0.06rads) without bearing of 

the bolts on the plates. Figure 6 summarizes the geometry of the column base. 
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Figure 6. Geometry of the column-base (dimensions in mm). 

4. NONLINEAR MODELS FOR THE COLUMN BASE 

A detailed three-dimensional nonlinear FE model in ABAQUS [22] and a simplified two-dimensional nonlinear 

model in OpenSees [23] are developed to simulate the cyclic behavior of the column base designed in the previous 

Section (see Figure (6)). The results of the two models are compared and used to assess the effectiveness of the 

analytical equations presented in Section 2.2 and the effectiveness of the design procedure presented in Section 3. 

4.1 FEM model in ABAQUS 

All the components of the column base are modeled using the eight-node linear brick element (C3D8R) available in 

the ABAQUS library. Elements C3D8R rely on ‘reduced integration’ and ‘hourglass control’ and meshing is carried 

out using the ‘structured’ and ‘swift’ mesh techniques. An overview of the model and details of the mesh in areas 

with contact interactions are shown in Figure 7. 

 

 

 

 

 

 

Figure 7. (a) Overview of the FE model of the column base, (b) FE model of the plates and bolts of the friction 

device, and (c) FE model for the plate with rounded edges, the shear key, and the base plate. 
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The bottom surface of the base plate and the bottom ends of the PT bars are fully fixed. Lateral and gravity loads are 

simulated by a controlled horizontal displacement and a concentrated vertical force applied at the centroid of the 

cross-section at the top of the column. A multi-point constraint is used to uniformly distribute these actions to all 

nodes of the top column cross-section. A ‘bolt load’ is used to model the initial post-tensioning force in the PT bars 

and the bolts. The ‘apply force’ option is used to keep the force in the bolts constant throughout the analysis, while 

the ‘adjust length’ option is used to allow the force in the PT bars to change due to elongation or shortening during 

rocking.  

     A TIE constraint is used to simulate welding (i.e. monolithic connection) among different parts of the column 

base, i.e. among the external plates of the friction devices and the base plate; the central plates of the friction devices 

and the circular hollow section; the column and the anchor plate; the circular hollow section and the anchor plate; 

the circular hollow section and the bottom circular plate with rounded edges; and the shear key and the base plate. 

     Convergence of the analysis is highly influenced by the definition of adequate contact properties. Contact 

interaction is defined among: the base plate and the bottom column base part with the rounded edges; the PT bars, 

the washer, and the anchor plate; the friction interfaces in the friction devices. The ‘surface-to-surface’ interaction 

property is used to describe the contact behavior between the aforementioned parts. This is implemented using the 

HARD contact property to describe the behavior in the direction normal to the interface plane, while the PENALTY 

option is used for the tangential response with values of the friction coefficient equal to 0.30 for interfaces among 

steel parts and 0.15 for the brass-steel interfaces of the FDs. Both ‘automatic stabilization’ and ‘contact controls’ are 

employed to overcome convergence problems associated with the nonlinear nature of the contact regions. 

     The ‘von Mises yield criterion’ coupled with ‘isotropic hardening’ was used to describe plasticity. The actual 

material properties used in the model are those reported in Table 1. The nonlinear equilibrium equations are solved 

using the ‘static general’ analysis procedure. The standard ‘Full Newton’ solution technique is adopted together with 

an automatic incrementation scheme for the application of the loading. 

4.2 Model in OpenSees 

The OpenSees model is shown in Figure 8. ‘Elastic beam-column’ elements with very high flexural stiffness are 

used to model the almost rigid components of the column base, i.e. the interface where rocking takes place; the 

anchor plate and the internal plates of the FDs. 

     To capture rocking behavior, ‘zero-length’ contact spring elements associated with the ‘elastic compression-no 

tension’ material of OpenSees [23] are used to connect the nodes of the column base and the fixed nodes of the 

column base at the locations of the centers of rotation. The compression stiffness of the contact springs is assumed 

equal to 20 times the axial stiffness of the column following the modeling approach in [30]. Larger values of this 

stiffness were found to produce practically the same results but with higher computational cost. 

     PT bars are modeled using truss elements running parallel to the column center-line axis and connected to the 

rigid elements simulating the anchor plate. To simulate loss of post-tensioning, a ‘zero-length’ contact spring with 

an ‘elastic compression-no tension’ material is introduced between the PT bars and the anchor plate. The truss 

elements have a cross-section area equal to the area of two PT bars to simulate the four PT bars of the column base 

in a simple way. To account for post-tensioning, an initial strain equal to ( )
,PT i PT PT

F A E  is first assigned to the 

truss element. Post-tensioning results in shortening of the circular hollow section, which in turn decreases the post-

tensioning force. To account for this decrease, the initial strain in the ‘truss’ element was increased to ensure that the 

post-tensioning force in the PT bars will be equal to 
,PT i

F  after the hollow section shortening. The 

‘InitStrainMaterial’ [23] along with the elastoplastic material ‘Steel01’ is used for the PT bars truss elements. 

     The FDs are modeled by using truss elements placed at appropriate locations in order to account for their true 

level arms. The two central FDs are modeled by assigning to the internal truss element an area that is twice the area 

of the external ones. A bilinear elastic-plastic material (‘Steel 01’ material in OpenSees [23]) with very high initial 

stiffness and very low post-elastic stiffness is assigned to these truss elements in order to model the FDs behavior. 

The yield stress assigned to the material model and the area of the truss elements are appropriately defined to 

represent the friction force in the FDs. 
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Figure 8. OpenSees model for the column base.  

4.3 Comparison of the results 

This Section compares the results from the ABAQUS FE model, the OpenSees model, and the analytical equations 

presented in Section 2.2. The results are plotted for cases with and without P-Δ effects, i.e. with or without including 

large displacement effects in the analyses. Figure 9(a) shows the monotonic moment-rotation curve of the column 

base for rotations up to 0.07rads. The results show an excellent agreement for rotations of practical interest, i.e. up to 

0.03rads. For larger rotations, the analytical equations and the OpenSees model underestimate the moment compared 

to the ABAQUS model. Such underestimation is the result of the assumption (in the analytical equations and the 

OpenSees model) that the central FDs are rigid elements contributing to the moment of the column base solely 

through the vertical friction force. In reality though the plates of the central FDs develop deflections and internal 

bending moments under large column base rotations, which in turn increase the moment resisted by the column base. 

The latter explanation is supported by Figure 10(a) that shows full agreement among all results for the case of the 

same column base without central FDs. FDs using slender plates could limit the aforementioned increase in the 

moment resisted by the column base. Moreover, FDs could be equipped with hinges [31] to avoid bending 

deformations. 

     Both Figure 9(a) and Figure 10(a) show that the ABAQUS model predicts a sudden increase of the moment for 

rotation close to 0.06rads. Such increase is due to the bearing of the bolts on the internal plate of the FDs as shown 

in Figure 10(b). The latter undesired behavior can be avoided by designing the slotted holes of the internal plate of 

the FDs for a longer bolt travel path. 

    Figure 9(b) shows the forces in the PT bars on the right and left sides of the column base (the loading has a 

direction from left to the right) as functions of the rotation of the column base. It is seen that yielding of the left PT 

bars and loss of post-tensioning of the right PT bars take place almost simultaneously at rotations close to the target 

one (i.e. 0.023rads) that was used to design the column base in Section 3.4. These results confirm the effectiveness 

of the proposed design procedure for the column base. After the target rotation, the force in the PT bars on the left 

slightly increase as consequence of the hardening of the material, while the force in the PT bars on the right remains 

equal to zero due to loss of post-tensioning. The results show a good agreement among the results from the 

OpenSees and the ABAQUS models. The ABAQUS model results show a slightly faster drop of the force in the PT 

bars on the right side due to the deformations in the circular hollow section and the plate with rounded edges. 

Numerical models in ABAQUS that consider these elements practically rigid show a perfect agreement with the 

results from OpenSees. 
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Figure 9. (a) Monotonic moment–rotation behavior of the column base; (b) forces in the PT bars for analysis with P-

Δ effects (results are practically the same for analysis without P-Δ effects). 

  

Figure 10. (a) Monotonic moment–rotation behavior of the column base without the central FDs; (b) bearing of bolts 

on the internal plate of the FDs. 

     Figure 11(a) shows the cyclic moment-rotation curve of the column base for rotations up to 0.02rads. All the 

components of the column base remain elastic (i.e. damage-free). Moreover, the results from the analytical equations, 

the OpenSees model, and the ABAQUS model are in very good agreement. Smoother curves are obtained from 

ABAQUS due to modeling of the flexibility of all the column base components. Figure 11(b) shows the force in the 

PT bars for the same cyclic analysis, which again shows an excellent agreement among the OpenSees and ABAQUS 

models. 

     Figure 12 and Figure 13 show the cyclic hysteretic behavior of the column base for rotations up to 0.05rads. In 

this case, comparison is performed only among the OpenSees and ABAQUS models since analytical equations are 

not derived for cyclic behavior that involves yielding of the PT bars. Figure 12(a) shows a very good agreement in 

the cyclic moment-rotation behaviors obtained from OpenSees and ABAQUS. Figure 12(b) shows the forces in the 

PT bars from the same cyclic analysis. In the first loading cycle, the PT bars on the left side of the column base yield 

and experience plastic elongation. Upon unloading, they reach a zero force for a positive rotation (point A in Figure 

12(b)). The same behavior is experienced by the PT bars on the right side of the column base in the case of loading 

in the opposite direction. 

   Figure 13(a) shows the cyclic moment-rotation behavior of the column base under two cycles of loading 

corresponding to 0.04 and 0.05rads. Results are presented from the OpenSees model and for the case of P-Δ effects. 

Figure 13(b) show the forces in the PT bars for the same analysis. Numbers in Figure 13(a) and (b) are used to 

correlate the results and highlight how yielding of the PT bars in the first loading cycle affect the moment-rotation 

behavior in the next loading cycle. 
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Figure 11. (a) Cyclic moment–rotation behavior of the column base for rotations up to 0.02rads; (b) Forces in the PT 

bars for analysis with P-Δ effects (results are practically the same for analysis without P-Δ effects). 

  
Figure 12. (a) Cyclic moment–rotation behavior of the column base for rotations up to 0.05rads; (b) forces in the PT 

bars for analysis with P-Δ effects (results are practically the same for analysis without P-Δ effects) 

  
Figure 13. (a) Cyclic moment–rotation behavior of the column base from OpenSees for two loading cycles (rotations 

equal to 0.04 and 0.05rads); (b) forces in the PT bars. Numbers associate the results in both graphs and illustrate 

how yielding of the PT bars affect the cyclic moment-rotation behavior. 

5. EFFECT OF ROCKING COLUMN BASE ON GLOBAL SEISMIC RESPONSE 

5.1 Seismic design 

Figure 14 shows the plan and elevation views of a 5-story, 5-bay by 3-bay prototype steel building having two 
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identical perimeter seismic-resistant frames in the x plan direction. The study focuses on one perimeter seismic-

resistant frame. This frame is designed as a SC-MRF using PT beam-column connections with the aid of the design 

procedure proposed in [32]. The interior gravity frames (with pinned beam–column connections and pinned column 

bases) are coupled with the SC-MRF through the floor diaphragm. 

  
Figure 14. (a) Plan view; and (b) elevation view of the prototype building. 

 

Table 2. Beam and column cross-sections. 

Floor Column Beam 

1 HEB650 IPE550 

2 HEB650 IPE600 

3 HEB650 IPE550 

4 HEB600 IPE500 

5 HEB600 IPE500 

     The building has ductile non-structural elements, and therefore, the target interstory drift (θs-max) under the 

frequently occurred earthquake (probability of exceedance of 10% in 10yrs) is equal to 0.75% according to 

Eurocode 8 [1]. The design basis earthquake (DBE; probability of exceedance of 10% in 50yrs) is expressed by the 

Type 1 elastic response spectrum of Eurocode 8 [1] with peak ground acceleration equal to 0.35g and ground type B. 

The maximum credible earthquake (MCE) is assumed to have intensity equal to 150% the DBE intensity. The model 

used for the design is based on centerline dimensions without accounting for the finite panel zone dimensions. The 

steel yield strength is equal to 355MPa for the columns, 275MPa for beams and 900MPa for PT bars. The design 

results in the beam and column cross-sections provided in Table 2. The SC-MRF is designed with rigid full-strength 

conventional column bases that promote plastic hinges in the bottom end of the first story columns. For the same 

SC-MRF design, rocking damage-free column bases are also designed in Section 5.2. 

5.2 Design of rocking column bases 

All first story columns have a HEB650 cross-section profile, the target rotation is selected equal to 0.02rads, and 

NEd,G is equal to 837kN. The rocking column base is designed according to the procedure in Section 3. A circular 

hollow section with 457mm diameter and a bottom steel plate with rounded edges of 70mm radius are selected. The 

contact surface of the rounded steel plate with the base plate has dimension b equal to 317mm. The anchor plate has 

670mm width and 50mm thickness. The bPT distance among the PT bars is 450mm. The material properties are the 

same with those in Section 3. PT bars have 60mm diameter, 2100mm free length, and were designed for κ equal to 

0.151. The initial post-tensioning force TPT is equal to 384.25kN. The moment contribution of the FDs is equal to 
313.56kNm. The horizontal distance bFD among the centers of the FDs is 756.9mm, while hFD is equal to 315mm. 

The friction coefficient in the FDs is 0.15. Four M20 class 10.9 are used in each FD. The slotted holes are designed 

in order to accommodate drifts up to 0.06rads without bolts bearing. The post-tensioning force in each of these bolts 

is equal to 98.7kN. 

5.3 Models for the SC-MRFs and earthquake ground motions 

FE models for the SC-MRFs are developed in OpenSees [23]. Information on modeling SC-MRFs in OpenSees can 

be found in [30, 32, 33]. The model for the SC-MRF with rocking column bases is using the model described in 

Section 4.2. The SC-MRF with conventional column bases has T1 equal to 0.94sec, while the SC-MRF with the 

rocking column bases has T1 equal to 0.867sec due to its shorter first story column flexible length. The difference in 

the period of vibration is due to the shorter flexible length of the first story columns of the SC-MRF with the rocking 

column bases. Ten earthquake ground motions (selected from the far-fault ground motions developed by the FEMA 
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P694 project [34]) are used for nonlinear dynamic analyses. These earthquake ground motions are scaled to the DBE 

and MCE seismic intensities as shown in Figure 15. The seismic intensity is described by the spectral acceleration, 

Sa, at T1 [35], while the inherent damping ratio is 3%. 

  
Figure 15. Scaled ground motions for the SC-MRF with rocking column bases (T1=0.87sec); (a) DBE and (b) MCE. 

 

5.4 Seismic analyses results 

Figure 16 and Figure 17 show respectively the peak interstory drifts and the residual interstory drifts of the SC-

MRFs with either conventional or rocking column bases for the ten earthquake ground motions. The median values 

are also shown with solid lines. Figure 16 shows that the use of the rocking column base results in modest increase 

of the peak first story drift as a consequence of the reduced rotational stiffness of the column base after rocking. It 

should be noted that rocking initiates for a bending moment that is smaller than the plastic moment of resistance of 

the first story columns. On the other hand, Figure 17 shows that the SC-MRF with conventional column bases 

experiences appreciable residual first story drifts due to first story column yielding. Such residual drifts reach values 

close to 0.5% under individual earthquake ground motions (i.e. a critical value that is considered as the limit beyond 

which repair of a steel building may not be economically viable [33]). On the other hand, the use of the rocking 

column base essentially eliminates the first story residual drift. 

  
Figure 16. Peak interstory drifts from nonlinear dynamic analysis for the scaled ground motions for the DBE and 

MCE intensities for (a) SC-MRF (b) SC-MRF with rocking column bases. 
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Figure 17. Residual interstory drifts from nonlinear dynamic analysis for the scaled ground motions for the DBE and 

MCE intensities for (a) SC-MRF (b) SC-MRF with column bases. 

      Figure 18 shows the first story drift time histories of the SC-MRFs for a specific earthquake ground motion 

scaled at the DBE and MCE intensities. This figure highlights that the two SC-MRFs experience similar peak first 

story drifts but the residual first story drifts are minimized for the SC-MRF with the rocking column bases. For the 

same earthquake ground motion, Figure 19 compares the stress-strain hysteresis in the flanges of one of the first 

story columns of the SC-MRFs. These figures show that the SC-MRF with conventional column bases experience 

plastic deformations and damage that needs to be repaired in the aftermath of strong earthquakes, while the SC-MRF 

with rocking column bases fully protects the columns from yielding under both the DBE and MCE. 

  

Figure 18. First story drift time histories for a specific ground motion scaled at the (a) DBE and (b) MCE intensities. 

    
Figure 19. Stress-strain hysteresis in the flanges of one of the first story columns of the SC-MRFs for a specific 

ground motion scaled at the DBE and MCE intensities. 

6. CONCLUSIONS 

A rocking damage-free steel column base has been presented. The column base uses post-tensioned (PT) high 

strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. The paper provides 

analytical equations that describe the monotonic and cyclic moment-rotation hysteretic curves of the column base. 
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The latter consider different limit states including yielding or loss of post-tensioning in the PT bars. The column 

base is designed with aid of an optimum graphical design procedure, which ensures damage-free behavior, self-

centering capability, and adequate energy dissipation capacity. Both the analytical moment-rotation equations and 

the design procedure are validated with nonlinear finite element (FE) simulations in ABAQUS. In addition, a 

simplified model of the rocking column base is developed in OpenSees. This model is used to perform nonlinear 

dynamic analyses on steel self-centering moment-resisting frames using the rocking column base. The results show 

that the rocking column base fully protects the first story columns from yielding and eliminates the first story 

residual drift without any detrimental effect on peak interstory drifts. The study focused on the 2D rocking motion of 

the column base. FE models, analytical equations, and an associated design procedure that consider 3D rocking 

motion effects will be developed after a forthcoming experimental evaluation of the column base. 

APPENDIX 

The appendix provides analytical equations for the definition of the monotonic moment-rotation behavior of the 

column base accounting for geometrical, material and mechanical nonlinearities. 

A.1 Geometric nonlinearities  

Geometric nonlinearities (P-Δ effects) reduce the rotational stiffness of the column base. The moment contribution 

of the axial force is calculated by: 

 
2

P

N C

b
M N H θΔ ⎛ ⎞

= ⋅ − ⋅⎜ ⎟
⎝ ⎠

 (A1) 

where HC is the height of the column. Moreover, the level arms of the PT bar forces are given by: 

            (A2) 

where HCB is defined in Figure 3(a). The change in the direction of the force of the PT bars is negligible. The 

moment contribution of the PT bars is given by: 

  (A4) 

where the quantities that reflect the reduction in the rotational stiffness of the PT bars due to geometric 

nonlinearities are calculated by: 

  (A4) 
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A.2 Material and mechanical nonlinearities 

The rotational stiffness contribution of the PT bars in case of material nonlinearities (yielding of PT bars in position 

u), mechanical nonlinearities (loss of post-tensioning of PT bars in position d), or combination of material and 

mechanical nonlinearities (yielding of PT bars in position u and loss of post-tensioning of PT bars in position d) are 

given by Equations (A6), (A7), and (A8), respectively: 
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The moment contribution of the PT bars can be calculated as: 
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 ( ) ( ) ( ),0 , , , , , , , , , ,PT PT PT PT d f PT f PT u y PT d f PT yf PT u yM M S S Sθ θ θ θ θ θ= + + − + −    
, ,

 
PT u y

θ θ≥  (A12) 

A.3 Material, mechanical and geometric nonlinearities 

In the case of material, mechanical, or material and mechanical nonlinearities, the stiffness reduction due to 

geometric nonlinearities is related to the following parameters: 
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where ,2

,

P

PT y
S

Δ  is the stiffness reduction after yielding of PT bars in position u; ,2

,

P

PT f
S

Δ  is the stiffness reduction after 

loss of post-tensioning force of PT bars in position d, and ,2

,

P

PT yf
S

Δ  is the stiffness reduction after yielding and loss of 

post-tensioning force of PT bars in positions u and d, respectively. Then, the moment contribution of the PT bars can 

be calculated as: 
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