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ROCKING RESPONSE OF FREE-STANDING BLOCKS UNDER

CYCLOIDAL PULSES

By Jian Zhang1 and Nicos Makris,2 Member, ASCE

ABSTRACT: This paper examines in depth the transient rocking response of free-standing rigid blocks subjected
to physically realizable trigonometric pulses. First, the expressions for the dynamic horizontal and vertical
reactions at the pivot point of a rocking block are derived and it is shown that the coefficient of friction needed
to sustain pure rocking motion is, in general, an increasing function of the acceleration level of the pulse.
Subsequently, this paper shows that under cycloidal pulses a free-standing block can overturn with two distinct
modes: (1) by exhibiting one or more impacts; and (2) without exhibiting any impact. The existence of the
second mode results in a safe region that is located on the acceleration-frequency plane above the minimum
overturning acceleration spectrum. The shape of this region depends on the coefficient of restitution and is
sensitive to the nonlinear nature of the problem. This paper concludes that the sensitive nonlinear nature of the
problem, in association with the presence of the safe region that embraces the minimum overturning acceleration
spectrum, complicates further the task of estimating peak ground acceleration by only examining the geometry
of free-standing objects that either overturned or survived a ground shaking.

FIG. 1. Overturned Electrical Equipment at Sylmar Converter Station
after 1971 San Fernando Earthquake (Top: Front View; Bottom: Side
View) (Steinbrugge Collection, Pacific Earthquake Engineering Research
Center, University of California, Berkeley)

INTRODUCTION

Under strong ground shaking, tall, rigid structures might
enter into rocking motion that occasionally results in over-
turning. As examples, Fig. 1 shows electrical equipment at the
Sylmar Converter Station that overturned during the 1971 San
Fernando earthquake, and Fig. 2 shows the San Francisco-
bound train at Point Reyes that overturned during the 1906
San Francisco earthquake. Early studies on the rocking re-
sponse of a rigid block supported on a base undergoing hori-
zontal motion were presented by Housner (1963). In that study,
the base acceleration was represented by a rectangular or a
half-sine pulse and expressions were derived for the minimum
acceleration amplitude required to overturn the block. Al-
though Housner’s pulses are not physically realizable and his
solution for the minimum overturning acceleration under a
half-sine pulse is unconservative (Shi et al. 1996; Makris and
Roussos 1998, 2000), his pioneering work uncovered a scale
effect that explained why the larger of two geometrically sim-
ilar blocks can survive the excitation that will topple the
smaller block. Following Housner’s seminal paper a large
number of studies have been presented to address the complex
dynamics of one of the simplest man-made structures—the
free-standing block. Yim et al. (1980) adopted a probabilistic
approach and conducted a numerical study using artificially
generated ground motions to show that the rocking response
of a block is sensitive to system parameters. Experimental and
analytical studies on the same problem have been reported by
Aslam et al. (1980), who confirmed that, under artificially gen-
erated motions, the rocking response of rigid blocks is sensi-
tive to the system parameters.

The rocking response of free-standing blocks subjected to
harmonic steady-state loading was studied in detail by Spanos
and Koh (1984), who identified ‘‘safe’’ and ‘‘unsafe’’ regions
and developed analytical methods for determining the funda-
mental and subharmonic modes of the system. Their study was
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extended by Hogan (1989, 1990), who further elucidated the
mathematical structure of the problem by introducing the con-
cepts of orbital stability and Poincaré sections. Perhaps, Ho-
gan’s finding that is most relevant to earthquake engineering
is that the domain of maximum transients of his solutions ap-
pears relatively ordered and possesses a high degree of pre-
dictability despite the unpredictability that is present in the
asymptotic part of the solutions (Hogan 1989). The steady-
state rocking response of rigid blocks was also studied ana-
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FIG. 2. Overturned Train (San Francisco Bound) at Point Reyes Sta-
tion during 1906 San Francisco Earthquake (Roy D. Graves Collection)

FIG. 3. Schematic of Free-Standing Block in Rocking Motion (Top)
and Its Moment Rotation Diagram (Bottom)

lytically and experimentally by Tso and Wong (1989a,b). Al-
though their theoretical study was not as in-depth as the one
presented by Hogan (1989), their experimental work provided
valuable support to theoretical findings. Other related studies
are referenced in the above-mentioned papers.

Although the early work of Yim et al. (1980) used artifi-
cially generated white-noise–type motions and the work of
Spanos and Koh (1984), Hogan (1989, 1990), and Tso and
Wong (1989a,b) used long-duration harmonic motions, this pa-
per is redirected to pulse-type motions, which are found to be
good representatives of near-source ground motions (Campillo
et al. 1989; Iwan and Chen 1994; Makris and Roussos 1998).
Herein this study builds on Housner’s early work (1963) to
investigate the overturning potential of simple trigonometric
pulses known as cycloidal pulses (Jacobsen and Ayre 1958).
This study examines in-depth the rocking response of a free-
standing block to one-sine and one-cosine acceleration pulses.
These two trigonometric pulses are physically realizable and
resemble in several occasions the fault-parallel and fault-nor-
mal component of motions recorded near the source of strong
earthquakes (Makris and Roussos 1998, 2000).

This paper reveals that under cycloidal pulses a free-stand-
ing block can overturn with two distinct modes: (1) by exhib-
iting one or more impacts; and (2) without exhibiting any im-
pact. The existence of the second mode results in a safe region
that is located over the minimum overturning acceleration
spectrum. It is found that the shape of this region depends on
the coefficient of restitution and is sensitive to the nonlinear
nature of the problem. The transition from mode 1 to mode 2
is sudden and results to a finite jump in the minimum over-
turning acceleration spectrum. In a recent study, Anooshehpoor
et al. (1999) attempted to construct minimum overturning ac-
celeration spectra due to a one-sine pulse. Their study was
motivated from the temptation to back-figure peak ground ac-
celerations that overturned the locomotive shown in Fig. 2.
Unfortunately, their analysis (1) failed to identify the second
mode of overturning (without impact) and therefore ignored
the presence of the aforementioned safe region; and (2) over-
looked the sensitivity of the rocking response to its nonlinear
nature. This study addresses these issues in conjunction with
the interface condition needed to sustain purely rocking mo-
tion.

REVIEW OF ROCKING RESPONSE OF
FREE-STANDING BLOCK

Condition for Initiation of Rocking Motion

Consider the rigid block shown in Fig. 3 (top) with slen-
derness a, which can oscillate about the centers of rotation O
and O9 when it is set to rocking. Depending on the level and
form of the ground acceleration, the block may translate with

the ground, slide, rock, or slide rock. Prior to 1996, the mode
of rigid-body motion that prevailed has been determined by
comparing the available static friction to the width-to-height
ratio of the block, irrespective of the magnitude of the hori-
zontal ground acceleration. At about the same time, Scalia and
Sumbatyan (1996) and, independently, Shenton (1996) indi-
cated that, in addition to pure sliding and pure rocking, there
is a slide-rock mode and its manifestation depends not only
on the width-to-height ratio and the static friction coefficient
but also on the magnitude of the base acceleration.

Physically realizable cycloidal pulses have displacement
histories that are continuous and differentiable signals that
build up gradually from zero. Their corresponding acceleration
histories might be zero at the time origin or exhibit a finite
value that can be as large as their maximum amplitude. Fig.
4 plots the acceleration, velocity, and displacement histories
of a one-sine pulse (left) and one-cosine pulse (right). In the
case of the one-sine pulse, the ground acceleration is zero at
the initiation of motion and builds up gradually. In contrast,
in the case of a one-cosine pulse, the ground acceleration as-
sumes its maximum value at the initiation of motion. Under
other cycloidal pulses such as Type-Cn pulses (Makris and
Roussos 1998), the ground acceleration is finite at the initia-
tion of motion but assumes a value that is smaller than its
maximum amplitude ap. With reference to Fig. 3 and assuming
that the coefficient of friction m > (b/h) = tan a, static equi-
librium yields that the minimum horizontal acceleration that
is needed to initiate rocking is = g tan a. Consequently,ap,min

pulses with amplitude ap > g tan a will induce rocking to a
rectangular block with slenderness a.
Consider a cycloidal pulse with acceleration amplitude ap > g
tan a, and let lap be the value of the ground acceleration when
a block with slenderness a is about to enter rocking motion.
Depending on the type of pulse, l assumes different values;
however, it is bounded by

g tan a
< l # 1 (1)

ap
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FIG. 4. Acceleration, Velocity, and Displacement Histories of One-Sine Pulse (Left) and One-Cosine Pulse (Right)

FIG. 5. Free-Body Diagram of Rigid Block at Instant That It Enters
Rocking Motion

Fig. 5 shows the free-body diagram of a free-standing block
that is about to enter rocking motion due to a positive ground
acceleration. With the system of axis shown, a positive accel-
eration will induce an initial negative rotation (u < 0). Adopt-
ing the notation introduced by Shenton (1996), let fx > 0 and
fz > 0 be the horizontal and vertical reactions at the tip O9 of
the block. Dynamic equilibrium at this instant (u = 0) gives

¨f (0) = m(la 1 hu(0)) (2)x p

¨f (0) = m(g 2 bu(0)) (3)z

¨I u(0) = 2f (0)h 1 f (0)b (4)cg x z

where Icg = moment of inertia of the block about its center of
gravity (for rectangular blocks Icg = mR 2/3). Substitution of (2)
and (3) into (4) gives the value of the angular acceleration

at the instant when rocking initiatesü0

lap2¨ ¨u(0) = u = 2p sin a 2 1 (5)0 S Dg tan a

in which p = = frequency parameter of the block3g/(4R)Ï
(rad/s); whereas R = = half-diameter of the block2 2b 1 hÏ
—a measure of its size. To avoid sliding at this instant (t = 0)

f (0)x
# m (6)

f (0)z

and substitution of the value computed by (5) into (2) and (3)
gives the condition for a block to enter the rocking motion
without sliding

3 ap
la 2 g cos a sin a l 2 1p S D4 g tan a

# m (7)
3 ap2g 1 g sin a l 2 1S D4 g tan a
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Eq. (7), initially presented by Shenton (1996) and subse-
quently by Pompei et al. (1998), indicates that, under some
excitation pulses with amplitude ap, the condition for a block
to enter rocking motion without sliding depends on the value
of ap. However, this is true only for pulses that have a finite
acceleration at the initiation of motion. For pulses in which
acceleration history builds up gradually (such as a one-sine
pulse), the value of lap at the initiation of rocking is equal to
g tan a and (7) reduces to

b
tan a = # m (8)

h

which is the traditional expression that one derives from static
analysis. Once the block enters rocking motion, the horizontal
reaction fx(t) and vertical reaction fz(t) fluctuates with time.
Consequently, to avoid sliding during the entire duration of
the rocking motion

f (t)x < m at all times (9)U Uf (t)z

This dynamic condition is investigated in the subsequent sec-
tion, because it involves the time histories of the angular ac-
celeration and the angular velocity.

Governing Equations under Rocking Motion

Under a positive horizontal ground acceleration and assum-
ing that the coefficient of friction is large enough so that there
is no sliding, the block will initially rotate with a negative
rotation, u < 0, and, if it does not overturn, it will eventually
assume a positive rotation, and so forth. The equations that
govern this motion are

¨I u(t) 1 mgR sin[2a 2u(t)] = 2mü (t)R cos[2a 2u(t)],0 g

u(t) < 0 (10)

¨I u(t) 1 mgR sin[a 2 u(t)] = 2mü (t)R cos[a 2 u(t)],0 g

u(t) > 0 (11)

Eqs. (10) and (11) are well known in the literature (Yim et al.
1980) and are valid for arbitrary values of the angle a =
atan(b/h). For rectangular blocks, I0 = (4/3)mR 2, (10) and (11)
can be expressed in the compact form

üg2ü(t) = 2p sin[a sgn[u(t)] 2 u(t)] 1 cos[a sgn[u(t)] 2 u(t)]H Jg
(12)

The oscillation frequency of a rigid block under free vibration
is not constant, because it strongly depends on the vibration
amplitude (Housner 1963). Nevertheless, the quantity p is a
measure of the dynamic characteristics of the block. For an
electrical transformer, p ' 2 rad/s, and for a household brick,
p ' 8 rad/s.

Fig. 3 (bottom) shows the moment-rotation relationship dur-
ing the rocking motion of a free-standing block. The system
has infinite stiffness until the magnitude of the applied moment
reaches mgR sin a, and once the block is rocking, its stiffness
decreases monotonically, reaching zero when u = a. During
the oscillatory rocking motion, the moment-rotation curve fol-
lows this curve without enclosing any area. Energy is lost only
during impact, when the angle of rotation reverses. When the
angle of rotation reverses, it is assumed that the rotation con-
tinues smoothly from points O to O9. Conservation of mo-
mentum about point O9 just before the impact and right after
the impact gives

˙ ˙ ˙I u 2 mu 2bR sin(a) = I u (13)0 1 1 0 2

where = angular velocity just prior to the impact; and =˙ ˙u u1 2

angular velocity right after the impact. The ratio of kinetic
energy after and before the impact is

2u̇2
r = (14)2u̇1

which means that the angular velocity after the impact is only
times the velocity before the impact. Substitution of (14)rÏ

into (13) gives
2

3 2r = 1 2 sin a (15)F G2

The value of the coefficient of restitution given by (15) is the
maximum value of r under which a block with slenderness a
will undergo rocking motion. Consequently, to observe rock-
ing motion, the impact has to be inelastic. The less slender a
block (larger a), the more plastic is the impact, and for the
value of a = = 54.737, the impact is perfectly plas-21sin 2/3Ï
tic. During the rocking motion of slender blocks, if additional
energy is lost because of interface mechanisms, the value of
the true coefficient of restitution r will be less than the one
computed from (15).

Condition for Sustaining Rocking Motion

When the block is rocking, the horizontal and vertical re-
actions at points O or O9 fluctuate with time. Dynamic equi-
librium in the horizontal and vertical directions gives

f (t) = m(ü (t) 1 ẍ(t)) (16)x g

f (t) = m(g 1 z̈(t)) (17)z

where x(t) and z(t) = horizontal and vertical displacements of
the center of mass of the block. The kinematics of the rocking
motion yields that

2¨ ˙ẍ(t) = Ru(t)cos[a sgn[u(t)] 2 u(t)] 1 Ru(t) sin[a sgn[u(t)] 2 u(t)]
(18)

2¨ ˙z̈(t) = Ru(t)sin[a sgn[u(t)] 2 u(t)] 2 Ru(t) cos[a sgn[u(t)] 2 u(t)]
(19)

and = angular velocity of the block; and = angular˙ ¨u(t) u(t)
acceleration of the block that is given by (12). Eqs. (18) and
(19) can also be found in the paper by Pompei et al. (1998).
The substitution of (16) and (17) into (9) in association with
(12), (18), and (19) gives that the condition needed to avoid
sliding during the entire rocking motion is

f (t) üx g= (5 2 3 cos 2[a sgn[u] 2 u]) 2 3 sin 2[a sgn[u] 2 u]U UHf (t) gz

2u̇ üg
1 6 sin[a sgn[u] 2 u] 5 2 3 sin 2[a sgn[u] 2 u]JYH2p g

2u̇
1 3 cos 2[a sgn[u] 2 u] 2 6 cos[a sgn[u] 2 u] < mJU2p (20)

The reader can easily verify that, under a one-sine pulse at the
instant when rocking initiates (t = 0), üg(0) = g tan a and

= 0. With these initial conditions, (20) reduces to (8),u̇(0)
which is the traditional expression that one derives from static
analysis.

The response of a free-standing block subjected to various
horizontal cycloidal pulses with frequency vp—such as a one-
sine pulse (Type-A pulse), one-cosine pulse (Type-B pulse),
and pulses with n cycles in their displacement histories (Type-
Cn pulses)—was investigated in recent studies by Makris and
Roussos (1998, 2000). Those studies were motivated by an
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increasing number of ground motions, recorded near the
source of strong earthquakes, that contain one or more rela-
tively long-duration coherent pulses. In view of the relatively
long duration of the coherent pulses, the range of interest in
the frequency ratio, vp/p, for electrical equipment p ' 2 rad/s
is 0 # vp/p # 3. Within this range of excitation frequencies
(0 # vp/p # 3), the minimum overturning acceleration spec-
trum of cycloidal pulses is nearly linear. Makris and Roussos
(1998, 2000) proposed the approximate expression

a vp0 p
' 1 1 b (21)

ag p

where ap0 = minimum overturning acceleration of the pulse;
and a = angle of the block slenderness. The coefficient b =
1/6 for Type-A or Type-Cn pulses, and b = 1/4 for a Type-B
pulse. For values of vp/p $ 3, the minimum overturning ac-
celeration spectra become increasingly nonlinear. Although the
range of vp/p $ 3 is not of central interest in evaluating the
overturning potential of long period motions, it is of prime
interest when the overturning of a block is the result of a high-
frequency spike with short duration.

ROCKING RESPONSE UNDER ONE-SINE
(TYPE-A) PULSE

The analysis presented in this section concentrates on the
overturning potential of a one-sine pulse shown in 4 (left) with
ground acceleration

ü (t) = a sin(v t 1 c), 2c/v # t # (2p 2 c)/v (22a)g p p p p

ü (t) = 0, otherwise (22b)g

where c = sin21(ag/ap) = phase angle when rocking initiates.
At this instant, üg(0) = ag = lap, and, according to (8), the
condition for the block to enter pure rocking is tan a = (b/h)
< m. However, to maintain pure rocking motion during the
entire excitation, the minimum values of the coefficient of fric-
tion are bounded by (20). For tall, slender blocks, the angle a
= atan(b/h) is relatively small and (10) and (11) can be line-
arized.

Anooshehpoor et al. (1999) attempted to construct the min-
imum overturning acceleration spectra due to a one-sine pulse
by considering the linear approximation. Their study was mo-
tivated from the temptation to estimate peak ground acceler-
ation at Point Reyes, Calif., during the 1906 San Francisco
earthquake. Unfortunately, their study ignored the presence of
the second mode of overturning (without impact), which fur-
ther complicates the dynamics of the response, and they over-
looked the sensitivity of the response to the nonlinear nature
of the problem. In this section the correct minimum overturn-
ing acceleration spectra of a free-standing block subjected to
a one-sine pulse are computed: (1) by adopting the linear ap-
proximation; and (2) by considering the fully nonlinear nature
of the problem.

Linear Formulation

Within the limits of the linear approximation and for a hor-
izontal ground acceleration given by (22), (10) and (11) be-
come

ap2 2 2ü(t) 2 p u(t) = 2 p sin(vt 1 c) 1 p a, u < 0 (23)
g

ap2 2 2ü(t) 2 p u(t) = 2 p sin(vt 1 c) 2 p a, u > 0 (24)
g

The integration of (23) and (24) gives

u(t) = A sinh(pt) 1 A cosh(pt) 2 a1 2

1 ap
1 sin(v t 1 c), u < 0p2v gp1 1 2p (25)

u(t) = A sinh(pt) 1 A cosh(pt) 1 a3 4

1 ap
1 sin(v t 1 c), u > 0p2v gp1 1 2p (26)

where

˙ ˙u v /p a u v /p cos(c)0 p p 0 p
A = A = 2 cos(c) = 2 a1 3 2 2 2 2p 1 1 v /p g p 1 1 v /p sin(c)p p

(27)

1 a ap
A = u 1 a 2 sin(c) = u 1 a 2 (28)2 0 02 2 2 21 1 v /p g 1 1 v /pp p

1 a ap
A = u 2 a 2 sin(c) = u 2 a 2 (29)4 0 02 2 2 21 1 v /p g 1 1 v /pp p

The time histories for the angular velocities are directly ob-
tained from the time derivatives of (25) and (26)

u̇(t) = pA cosh(pt) 1 pA sinh(pt)1 2

v ap p
1 cos(v t 1 c), u < 0p2v gp1 1 2p (30)

u̇(t) = pA cosh(pt) 1 pA sinh(pt)3 4

v ap p
1 cos(v t 1 c), u > 0p2v gp1 1 2p (31)

The solutions given by (25) and (26) can be pieced together
to construct the time history of the rocking response under a
given acceleration amplitude ap. Furthermore, this solution can
yield the minimum overturning acceleration amplitude, pro-
vided that a condition of overturning is available.

Under the minimum acceleration amplitude, blocks overturn
during their free-vibration regime at a theoretically infinite
large time when the velocity tends to reach a local minimum
(Makris and Roussos 1998). Accordingly the condition for
overturning is that

ü(t ) = 0 (32)`

where t` = sufficiently large time, where tanh(pt`) = 1.
Under a one-sine pulse, a free-standing block has two

modes of overturning: (1) overturning with one impact (mode
1); and (2) overturning with no impact (mode 2). This result
is true as long as vp/p is sufficiently small. As vp/p increases,
the first mode of impact vanishes and the block overturns only
without impact (mode 2). Accordingly, to back-figure the min-
imum overturning acceleration amplitude by imposing the con-
dition of overturning given by (32), one has to distinguish
between modes 1 and 2.

Mode 1

Denoting the time as tfv when the block enters its free-vi-
bration regime, the condition for overturning after the block
has experienced one impact (mode 1) is

u̇(t ) 1 p[u(t ) 2 a] = 0 (33)fv fv
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In the case where the impact happens before the excitation
expires (ti < Tex), tfv = Tex = (2p 2 c)/vp (case 1). In the case
where the impact happens after the excitation expires (ti > Tex),
tfv = ti (case 2).

Case 1 (ti < Tex). In this case the condition of overturning
given by (32) yields

u̇(T ) 1 p[u(T ) 2 a] = 0 (34)ex ex

where

u(T ) = A sinh[p(T 2 t )] 1 A cosh[p(T 2 t )] 1 aex 3 ex i 4 ex i

a /gp
1 sin(v T 1 c)p ex2

vp1 1 S Dp (35)

u̇(T ) = pA cosh[p(T 2 t )] 1 pA sinh[p(T 2 t )]ex 3 ex i 4 ex i

v (a /g)p p
1 cos(v T 1 c)p ex2

vp1 1 S Dp (36)

The integration constants A3 and A4 are given by

before˙hu (t ) v /p ai p p
A = 2 cos(v t 1 c) (37)3 p i2p gvp1 1 S Dp

1 ap
A = 2a 2 sin(v t 1 c) (38)4 p i2 gvp1 1 S Dp

where h = coefficient of restitution. The time of impact ti is
related to the acceleration amplitude, ap = ag/sin c, with the
expression

vpsin(v t ) 2 sinh(pt )p i i
p

tan c = (39)2 2
v vp p1 1 2 cosh(pt ) 2 cos(v t )i p iS D S Dp p

The condition of overturning given by (34) takes the form

v /p ap p(A 1 A )exp[p(T 2 t )] 1 = 0 (40)3 4 ex i 2 gvp1 1 S Dp

where A3 and A4 are given by (37) and (38); and ti = solution
of (39). The value of ap/(ag) that satisfies (40) is the minimum
overturning acceleration. Eq. (40) is valid when ti # Tex.
Within the limits of the linear approximation (slender block)
and assuming a value of h = 0.9, this happens when 0 # vp/
p # 4.8.

Case 2 (ti > Tex). In this case the condition of overturning
yields

afteru̇ (t ) 2 pa = 0 (41)i

where = andafter before˙ ˙u (t ) hu (t ),i i

av 1 cosh(pT ) vp ex pbeforeu̇ (t ) = 2 1 sinh(pT )i exF G2v sin c tan c pp1 1 2p

av sinh(pT ) vp ex p
?cosh[p(t 2 T )] 1 2 1 cosh(pT )i ex exF G2v tan c pp1 1 2p

?sinh[p(t 2 T )]i ex (42)

In the above equations, the impact time ti is the solution of
the transcendental equation

a(v /p) 1 cosh(pT ) vp ex p
g(t , c) = 2 1 sinh(pT )i exSF G21 1 (v /p) sin c tan c pp

sinh(pT ) vex p
?sinh[p(t 2 T )] 1 2 1 cosh(pT )i ex texF Gtan c p

?cosh[p(t 2 T )] 2 a = 0i ex D
(43)

The simultaneous solution of (41) and (43) gives the minimum
overturning acceleration for the case ti > Tex.

Mode 2

Under this mode, the block does not experience any impact.
The condition of overturning becomes

u̇(T )ex
1 [u(T ) 1 a] = 0 (44)ex

p

where

a(v /p) sinh(pT ) vp ex p
u̇(T ) = 2 1 cosh(pT ) 2 a (45)ex exF G21 1 (v /p) tan c pp

av cosh(pT ) v 1p ex p
u̇(T ) = 2 1 sinh(pT ) 1 (46)ex exF G21 1 (v /p) tan c p sin cp

The substitution of (45) and (46) into (44) leads to

v pp sin c 2 cos c = 2exp (2p 2 c) (47)F Gp vp

The solution of (47) gives the minimum acceleration ampli-
tude that is capable of overturning the block without any im-
pact. Fig. 6 plots the solutions of the condition of overturning
(for h = 0.9) after distinguishing carefully between modes 1
and 2 of overturning. Although the roots are computed nu-
merically, this solution is referred to as an analytical solution
because it is based on the analytical expressions of the re-
sponse given by (25) and (26).

Fig. 6 indicates that, when vp/p is sufficiently small, the
minimum overturning acceleration is the result of mode 1.
Overturning with mode 2 may also happen; however, a much
higher acceleration amplitude is needed to manifest it. The
distinction between modes 1 and 2 of overturning is of partic-
ular interest, because the transition from overturning with one
impact to overturning without impact is not immediate and
there is a finite margin of acceleration amplitudes with mag-
nitudes larger than the minimum overturning acceleration (that
corresponds to mode 1) that are unable to overturn the block.
This interesting behavior, illustrated in Figs. 7 and 8, shows
response time histories of a free-standing block with p = 2.14
rad/s, a = 0.25 rad, h = 0.9, and vp/p = 5 for various levels
of the amplitude ap of the acceleration pulse.

The left and center plots in Fig. 7 show normalized rotations
and angular velocity histories at the verge of overturning be-
cause of the first (minimum) level of the acceleration ampli-
tude. With ap = 3ag, the block does not overturn, whereas
when ap = 3.01ag, the block overturns after experiencing one
impact (mode 1). In this case the impact happens after the
expiration of the pulse. A similar pattern of overturning pre-
vails until the acceleration amplitude reaches ap = 6.32ag. A
notable difference, shown in the right plots, is that, although
the first maximum positive rotation u exceeds a, the deac-
celerating motion of the ground is capable of recentering the
block, which will experience an impact considerably later and
eventually will overturn.
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FIG. 6. Overturning Acceleration Spectrum of Free-Standing Block with h = 0.9 Subjected to One-Sine Acceleration Pulse with Frequency vp (Both
Analytical and Numerical Solutions Shown Are Computed with Linear Formulation)

FIG. 7. Rotation, Angular Velocity, and Horizontal-to-Vertical Reaction Time Histories of Rigid Block (p = 2.14 rad/s, a = 0.25 rad, and h = 0.9)
Subjected to One-Sine Pulse with vp/p = 5 [Left: ap = 3.00ag, No Overturning; Center: ap = 3.01ag, Overturning with One Impact (Mode 1); Right: ap

= 6.32ag, Overturning with One Impact (Mode 1)]

Fig. 8 (left) shows the response of the same free-standing
block when the acceleration amplitude of the one-sine pulse
has been slightly increased, ap = 6.33ag. Interestingly, the
block does not overturn. This finding is because the acceler-
ation pulse is intense enough to induce such a large rotation
that the block escapes most of the overturning effect of the
deaccelerating portion of the excitation pulse. This beneficial
arrangement between inertia and gravity forces holds until ap

= 7.17ag, as shown in the center of Fig. 8. Eventually, if the
acceleration amplitude ap is further increased, the block will
overturn without experiencing any impact (mode 2), as shown

in Fig. 8 (right). It should be noted that Yim et al. (1980) have
reported the situation where a free-standing block topples un-
der a certain level of a given ground motion, yet it does not
topple when the acceleration of the same ground motion is
further increased. Figs. 7 and 8, in association with the fore-
going discussion, elucidate this counterintuitive result.

Accordingly, in the frequency-acceleration plane, there is a
safe area that extends above the minimum overturning accel-
eration boundary due to mode 1 of overturning. When 0 < v/
p # 6.59, (h = 0.9), the minimum overturning acceleration is
the result of mode 1 (one impact). With reference to Fig. 6,
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FIG. 8. Rotation, Angular Velocity, and Horizontal-to-Vertical Reaction Time Histories of Same Rigid Block as in Fig. 7 Subjected to One-Sine Pulse
with vp/p = 5 [Left: No Overturning with ap = 6.33ag, That Is, Slightly Larger Than Acceleration Level, ap = 6.32ag, That Created Overturning; Cen-
ter: Block Does Not Overturn Even for Acceleration Amplitude ap = 7.17ag; Right: Block Eventually Overturns with ap = 7.18ag, without Impact
(Mode 2)]

when v/p > 6.59, blocks overturn only with mode 2 (no im-
pact) and a substantial increase in the acceleration amplitude
is needed to create overturning.

To further validate these results, the various overturning
boundaries were computed numerically by means of a state-
space formulation that were developed to account for the non-
linear nature of the problem. With reference to (23) and (24),
the state vector of the system is merely

u(t)
{y(t)} = (48)H Ju̇(t)

and the time-derivative vector f(t) is

f (t) = { ẏ(t)}

u̇(t)
=

üg2H J2p sin[a sgn[u(t)] 2 u(t)] 1 cos[a sgn[u(t)] 2 u(t)]F Gg

(49)

For slender blocks, the linear approximation becomes de-
pendable and (49) reduces to

u̇(t)
f (t) = { ẏ(t)} = (50)

ü (t)g2H Jp 2a sgn[u(t)] 1 u(t) 2F Gg

The numerical integration of (49) or (50) is performed with
standard Ordinary Differential Equation (ODE) solvers avail-
able in MATLAB (High-performance 1992). The result of the
numerical solution of (50), shown in Fig. 6 with circles, are
in excellent agreement with the analytical solution.

The bottom plots in Figs. 7 and 8 show the time history of
the ratio given by (20) for the case p = 2.14 rad/s, a = 0.25
rad, and vp/p = 5. Although at the initiation of rocking (t =
0), fx(0)/fz(0) = tan a ' 0.25 for all acceleration levels, the

ratio of the horizontal to vertical force later exceeds the slen-
derness of the block. This increase is a function of the ampli-
tude of the input pulse. Fig. 9 (top) plots the minimum value
of the coefficient of friction needed to sustain pure rocking
motion during the entire duration of a one-sine (Type-A) pulse
as a function of the amplitude of the pulse, for a = 0.25 rad
and three cases of vp/p. For each case of vp/p, the values
shown in Fig. 9 were extracted by computing the rocking time
histories until the blocks overturned with mode 2. The values
shown in Fig. 9 have been computed with the nonlinear for-
mulation.

Nonlinear Formulation

Fig. 10 (top) plots with crosses the overturning acceleration
spectra of a rigid block with a = 0.25 rad, p = 2.14 rad/s, and
h = 0.9, where the various overturning boundaries are com-
puted numerically with the nonlinear formulation expressed
with (49). The aforementioned rigid block parameters are
those associated with the locomotive shown in Fig. 2. The
circles shown in Fig. 10 are the results computed with the
linear formulation expressed by (50). Note that, although for
values of vp/p up to 6, the linear approximation gives equally
good results as the nonlinear formulation, for 6 # vp/p # 7.58,
the two formulations give drastically different results. As an
example, under a one-sine pulse with vp = 15.7 rad/s ( f = 2.5
Hz), the linear formulation yields that the locomotive with a
= 0.25 rad, p = 2.14 rad/s, and h = 0.9 will overturn under a
minimum acceleration amplitude, ap0 = 3.24g due to mode 2
whereas the nonlinear formulation yields an overturning ac-
celeration amplitude ap0 = 2.22g due to mode 1. This drastic
difference is because, under the nonlinear formulation, the
overturning ‘‘bay’’ penetrates further into the safe area. These
drastic differences disappear for pulse frequencies beyond 2.58
Hz, because according to both formulations, the free-standing
block overturns with mode 2 (no impact). Accordingly the
results obtained with the linear formulation should be used
with caution. To conclude this example, according to a witness
testimony reported by Anooshehpoor et al. (1999), the loco-
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FIG. 9. Normalized Minimum Coefficient of Friction over Slenderness
of Block That Is Needed to Sustain Pure Rocking Motion under One-
Sine Pulse (Top) and One-Cosine Pulse (Bottom)

FIG. 10. Comparison of Overturning Acceleration Spectra of Slender
Block under One-Sine Pulse Computed with Linear and Nonlinear For-
mulationmotive apparently overturned with mode 1. As is shown in

this nonlinear analysis, mode 1 can exist even under excitation
frequencies as high as f = 2.5 Hz. Assuming the locomotive
overturned because of 15.7 rad/s one-sine pulse with amplitude
ap/(ag) = 2.22/0.25 ' 8.9, Fig. 9(top) indicates that the co-
efficient of friction needed to sustain the rocking motion is
approximately m = 2.5 tan a = 0.625. Although a coefficient
of friction m = 0.625 seems to be high, in the case of the
locomotive shown in Fig. 2, the sliding mode was prevented
because the wheels engage on the tracks and the sole rigid-
body mode of motion is the rocking mode. This implies that
the possibility that the locomotive toppled because of an un-
usually high ground acceleration (üg ' 2.0g) should not be
excluded.

The existence of the safe ‘‘cape’’ that embraces the over-
turning ‘‘bay,’’ and the sensitivity of the response to the non-
linear nature of the problem even for blocks as slender as a
train locomotive (a = 0.25 rad = 14.327), complicates the prob-
lem of estimating ground motions by only observing objects
that either toppled or survived a historic earthquake.

Fig. 10 (bottom) plots overturning acceleration spectra of a
rigid equipment with a = 0.349 rad = 207, p = 2.0 rad/s, and
h = ' 0.825. The crosses are the result of the nonlinearrmaxÏ
formulation, whereas the circles are the results computed with
a linear formulation. Again, within the low range of vp/p, the
linear formulation gives equally good results as the nonlinear
formulation. However, within the range 4.7 # vp/p # 5.8, the
two formulations give drastically different results.

ROCKING RESPONSE UNDER ONE-COSINE
(TYPE-B) PULSE

Whereas a one-sine acceleration pulse results in a forward
ground displacement, a one-cosine acceleration pulse results
in a forward-and-back ground displacement. With reference to
Fig. 4 (right), under a one-cosine acceleration pulse, the max-
imum ground acceleration is induced at the instant when rock-
ing initiates (l = 1) and the condition for the block to enter
rocking motion without sliding given by (7) becomes

a 3 ap p
2 cos a 2 1S Dg sin a 4 g tan a

tan a ? < m (51)
tan a 3 ap

1 tan a sin a 2 1S Dsin a 4 g tan a

while for slender blocks (sin a ' tan a ' a and cos a ' 1)
simplifies to

3 1 ap
1

4 4 ag
a ? < m (52)

3 ap21 1 a 2 1S D4 ag

Eq. (51), or its slender-block approximation given by (52),
indicates that, the stronger the acceleration amplitude of a
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FIG. 11. Comparison of Overturning Acceleration Spectra of Slender
Block under One-Cosine Pulse Computed with Linear and Nonlinear For-
mulation

Type-B pulse, the larger needs to be the static coefficient of
friction in order for the block to enter rocking motion. This is
in contrast with a Type-A pulse, where the condition for a
block to enter rocking motion is independent of the accelera-
tion level (tan a < m). Furthermore, to sustain rocking motion
during the entire duration of a Type-B pulse, (20) needs to be
satisfied. Fig. 9 (bottom) plots the minimum value of the co-
efficient of friction needed to sustain pure rocking motion dur-
ing the entire duration of a one-cosine (Type-B) pulse as a
function of the amplitude of the pulse, ap/(ag) for a = 0.25.
In addition, the minimum value of the coefficient of friction
needed for the block to enter rocking motion that is computed
with the static expression given by (51) is shown and it is
observed that it captures with fidelity the results obtained with
the dynamic formulation. As an example, Fig. 9 (bottom) in-
dicates that when a free-standing block with a = 0.25 is sub-
jected to a Type-B pulse with ap/(ag) ' 6, the minimum co-
efficient of friction needed to sustain pure rocking is
approximately two times the value of the block slenderness.

Fig. 11 plots the overturning acceleration spectra due to a
one-cosine acceleration pulse with time history

ü (t) = a cos(v t), 0 < t < 2p/v (53a)g p p p

ü (t) = 0, otherwise (53b)g

The same rigid block with the parameters of the locomotive
shown in Fig. 2 (a = 0.25 rad, p = 2.14 rad/s, and h = 0.9)
is considered. The circles, shown in Fig. 11 (top), are the
results computed with the linear formulation, whereas the
crosses are the results obtained with the nonlinear formulation.
In this case the differences observed between the linear and

the nonlinear formulation are less drastic. Fig. 11 (top) indi-
cates that, under a one-cosine pulse with frequency vp, blocks
that are small enough, vp/p # 4, can experience two distinct
modes of overturning. Again, the existence of these two modes
are responsible for the generation of a safe region that em-
braces the minimum overturning acceleration spectrum. Con-
sequently, similar to the case of one-sine pulse, there is a finite
margin of acceleration amplitudes with magnitudes larger than
the minimum overturning acceleration (which corresponds to
mode 1) that are unable to overturn the block. Fig. 11 (bottom)
plots overturning acceleration spectra under a one-cosine pulse
of a rigid equipment with a = 0.349 rad = 207, p = 2.0 rad/s,
and h = = 0.825. The crosses are the result of the non-rmaxÏ
linear formulation, whereas the circles are the results com-
puted with the linear formulation. In comparing Fig. 11 (top)
with Fig. 11 (bottom), one concludes that the normalized over-
turning acceleration spectra have a mild dependence on the
slenderness of the block a and the frequency parameter p.

CONCLUSIONS

This paper revisits the rocking motion and overturning of a
free-standing block subjected to cycloidal pulses. The dynamic
interface forces that develop during rocking motion are de-
rived, and it is shown that the level of the friction coefficient
needed to sustain rocking motion during the entire duration of
the pulse is an increasing function of the acceleration level of
the pulse.

This paper reveals that, under cycloidal pulses, a free-stand-
ing block can overturn with two distinct modes: (1) by exhib-
iting one or more impacts; and (2) without exhibiting any im-
pact. The existence of the second mode results in a safe region
that is located on the acceleration-frequency plane over the
minimum overturning acceleration spectrum. This safe region
contains acceleration amplitudes with magnitudes larger than
the minimum overturning acceleration (which corresponds to
mode 1) and are unable to overturn the block. It is found that
the shape of this region depends on the coefficient of restitu-
tion and is sensitive to the nonlinear nature of the problem.
The transition from mode 1 to mode 2 is sudden and results
in a finite jump in the minimum overturning acceleration spec-
trum. This paper concludes that the sensitive nonlinear nature
of the problem, in association with the presence of the safe
region that embraces the minimum overturning acceleration
spectrum, complicates further the task of estimating the peak
ground acceleration by only examining the geometry of free-
standing objects that either overturned or survived a ground
shaking.
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