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Abstract-The response of a rigid rectangular block resting on a rigid foundation and acted upon 
simultaneously by a horizontal and a vertical random white-noise excitation is considered. In the 
equation of motion, the energy dissipation is modeled through a viscous damping term. Under the 
assumption that the body does not topple, the steady-state joint probability density function of the 
rotation and the rotational velocity is obtained using the Fokker-Planck equation approach. Closed 
form solution is obtained for a specific combination of system parameters. A more general but 
approximate solution to the joint probability density function based on the method of equivalent 
non-linearization is also presented. Further, the problem of overturning of the block is approached 
in the framework of the diffusion methods for first passage failure studies. The overturning of the 
block is deemed incipient when the response trajectories in the phase plane cross the separatrix of 
the conservative unforced system. Expressions for the moments of first passage time are obtained via 
a series solution to the governing generalized Pontriagin-Vitt equations. Numerical results illustra- 
tive of the theoretical solutions are presented and their validity is examined through limited amount 
of digital simulations. 

INTRODUCTION 

The behavior of block-like structures which rock while resting on a moving base has been 
a subject of considerable technical interest [l-3]. This problem is of relevance in the seismic 
safety analysis of nuclear containment structures, dams and heavy equipment. In engineer- 
ing seismology this problem is of interest from the point of view of characterizing the 
ground motion level through the study of overturned objects. The simplest of the math- 
ematical models that has received notable attention in the past has been the planar rocking 
of rigid rectangular blocks under harmonic base motions. In this problem, the non-linearity 
arises not only in the load deflection characteristic but also in the dissipation of energy due 
to impacts. Recent studies on the response of this system have revealed the presence of a rich 
variety of non-linear resonances and even the possibility of the response becoming chaotic 
14-61. While rocking response under deterministic excitation has received considerable 
attention, the corresponding studies on stochastic behavior are sparse. A significant work 
on stochastic analysis has been by Spanos and Koh [7]. They have employed the statistical 
linearization technique to study the stochastic rocking of a rigid rectangular block on 
Winkler’s foundation due to non-stationary foundation shaking. Koh [G] has further 
studied this problem through a digital simulation technique and has estimated the probabil- 
ity of no toppling. In the present study, the stochastic response of a rigid rectangular block 
resting on rigid foundation and acted upon simultaneously by a horizontal and a vertical 
stationary white-noise excitation is considered. The sliding of the block is assumed to be not 
possible. The dissipation of energy due to impacts is assumed to be not possible. The 
dissipation of energy due to impacts is approximately modeled through an equivalent 
viscous damping term. For small noise levels, it is assumed that the body does not topple. 
For this case the stationary response probability density function (pdf) is obtained by 
solving the governing Fokker-Planck equation. An exact solution is found to be possible 
only for a specific combination of system parameters. A general, but approximate, solution 
is also obtained using the method of equivalent non-linearization. The problem of the 
overturning of the body is posed as a first passage problem. The system is considered to 
have failed or overturned when the response trajectory in the phase plane crosses the 
separatrix of the undamped unforced motion. Expressions for the moments of the first 
passage time are obtained by solving the governing generalized Pontriagin-Vitt (GPV) 
equations using a series solution technique. 
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Fig. 1. Rocking rigid block. 

EQUATIONS OF MOTION 

The system under consideration is shown in Fig. 1. Under the action of the base 
accelerations h(t) and u(t) the block rocks about the corners o and 0’. The equation of 
motion for the rotation 0 can be shown to be given by 

Ii4 + C6 + WR sin (a sgn 0 - 0) [l + u(t)/~] 

+ WR cos(asgnO - 0) h(t)/g = 0. (1) 

Here dots denote the derivatives with respect to the time t, and sgn ( . ) is the Signum 
function. The angle 0 is taken to be positive when the block rocks about the comer 0’. 
Introducing the notations w2 = ( WR/Z), 2qo = (c/l), W,(t) = V(t)/g and W2(t) = h(t)/g 
the above equation can be rewritten as 

6 + 2~06 + 02sin(asgn0 - 0) [l + W,(t)] 

+ w2cos(asgn0 - 0) W2(t) = 0. (2) 

In the ensuing analysis WI(t) and W2(t) are taken to be stationary Gaussian white-noise 
processes with the correlation functions given by (W&i) Wr(t2)) = 2D,6(t2 - tl), i,] = 1 
and 2. Here ( . ) denotes the expectation operator and S( . ) is the Dirac’s delta function. It 
may be noted that for the rectangular block one gets o2 = 0.75 g/R. For the case in which 
no forces act on the system, the singular points of the governing equations of motion can 
easily be shown to be given by (0, 9) and (0, f a). Here the origin is found to be a stable 
singular point while the other two points are unstable. For the case of undamped free 
vibration the energy curves of the system are given by the equation 

I 
8 

h * = 0.5 6” + co2 sin (a sgn r - {)d{ . 
0 

(3) 

A phase portrait of the free vibration for the case of a = 1.1, w = 1 and for different values of 
ho is shown in Fig. 2. It may be observed from this figure that the stable rocking motions 
about the origin are bounded by a separatrix. Thus it would be reasonable to take the 
region outside the separatrix to correspond to the unstable overturning of the block. 

STATIONARY STOCHASTIC RESPONSE 

For low levels of external noise, motions of the block initiated near the origin can be 
expected to result in rocking of the block without toppling. For this case one can further 
expect an existence of a stochastic steady state. In order to characterize such a response it 
may first be noted that the solution vector [o(t), b(t)] of equation (2) constitute a Markov 
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Fig. 2. Phase plane diagram for undamped free vibration w = 1, a = 1.1. 

vector process. Accordingly, the Fokker-Planck equation governing the transitional pdf, 
~(0, 6, t 1 @(to) = x, @to) = y) can be derived as 

aP -=- *- 
at 

6~~-${[-2~&-02sin(crsgn@-O)]p} 

+ I@) -g (4) 

fW = 04[D1 i sir? (a sgn 0 - 0) + D22 cos2 (a sgn 0 - 0) 

+ Di2 sin2 (a sgn 0 - O)] . (3 

For large times Jp/dt + 0, and the stationary solution can be obtained by solving the 
corresponding reduced Fokker-Planck equation. For this purpose, two cases can be 
considered separately. 

Case (i). This is a special case in which D1 1 = D22 and Di2 = 0. Here the diffusion 
coefficient f(0) reduces to a constant given by f(0) = 04Dll. In this case the stationary 
solution of equation (4) is obtained exactly as 

~~(0, 6,) = do exp [- (2q/Dw3) (o.s8’ + o2 [’ sin(crsgnr - C)d<}]. (6) 

Here $,, is the normalization constant which ensures that 

0.5X (0 

I I 
p,(O, @dO db = 1. 

-O.Sn -m 
(7) 

It follows from equation (6) that 0 and 6 are independent in the steady state, and also that 
6 is Gaussian distributed, while the pdf of 0 is non-Gaussian. 

Case (ii). This is a general case in which Dll # D22 and Di2 # 0. In this case the exact 
stationary solution of equation (4) is no longer obtainable. Thus, in the further analysis 
approximations are needed. In this study the method of equivalent non-linearization [9] is 
adopted for this purpose. Here the given equation 

is replaced by an equivalent system 

(9) 
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Here p is the equivalent parameter which in general can be a function of the energy of the 
system given by 

8 
H o=o.5&+0* 

1 
sin (a sgn r - Ode. (10) 

0 

In the present analysis, however, for the sake of simplicity p is taken to be a constant. 
Accordingly, the exact solution of equation (9) is now obtained as 

P,@, 6,) = 4. exp [ - (2~~/p)~.581 + u? J‘oesin(asgnC - S)d<}] (11) 

where dro is the normalization constant satisfying equation (7). In order to determine the 
value of p it may first be noted that the error of replacing equation (8) by equation (9) is 
given by the equation 

azp a2p 
e=S@)m-kgp (12) 

The equivalent parameter p is determined by minimizing the error 

O.Sn La 
E = 

I s 
e’(O, 6) d@db (13) 

-0.5% -00 

with respect to p. Combining this criterion with equation (11) one obtains 

0.5x 

fWdWd@ 
-0.5x 

cc = 
s 

I 

0.5X (14) 
p,2(0) dO 

-0.sn 

Here p,(O) is the marginal pdf of 0. It must be noted that p,(O) itself is a function of p; this 
means that the above equation is a non-linear equation in p. From equation (1 l), it may be 
noted that 0 and 6 are independent in this case also and again 6 is normally distributed 
while 0 is non-Gaussian. 

To illustrate the above theoretical results the case of q = 0.05, a = 1.1 and o = 1 is 
considered. The theoretical pdf of 0 and 6 based on the exact solution of equation (6) for 
thecaseofD,, = Dz2 = 0.005 and Di2 = 0 is shown in Fig. 3. The results for Dll = 0.005, 
Dz2 = 0.0025 and Di2 = 0.0 based on the non-linearization solution of equation (11) is 
shown in Fig. 4. In these figures the results of digital simulations are also shown. In the 
simulation studies, equation (2) has been integrated from t = 0 to t = 500(2rr/w) s. The first 
50 cycles of the response have been discarded to account for the transients. With the 
remaining sample solution, the pdf of the response has been estimated under the assumption 
of ergodicity. The response standard deviation obtained using the theory and the simulation 
respectively are also shown in Figs 3 and 4. 

8’ 
Sld. dcv. la) 3- Std. dcv. 
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Simulolion:O.O66 
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Fig. 3. Response probability density function; D, I = Dz2 = 0.005, D12 = 0.9 = 0.05, o - 1, z = 1.1. 
- theory; l simulation. 
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Fig. 4. Response probability density function; Dll = 0.005, Dz2 = 0.0025, DL~ = 0, q = 0.05, w = 1, 
CI = 1.1. - theory; l simulation. 

OVERTURNING OF THE BLOCK 

The analysis presented in the previous section is based on the assumption that the block 
does not overturn while rocking, and that the kind of stochastic steady-state assumed in the 
analysis exists. In practice, however, the response trajectories over a long run of time can be 
expected to cross the critical response levels leading to the toppling of the block. If one 
allows this possibility into the analysis, the solution of equation (4) will have to be obtained 
in conjunction with an absorbing barrier placed along a suitably defined critical response 
level. Alternatively, one can study this as a first passage problem. Here one typically obtains 
the probability density function or the moments of the time required for the block to reach 
the critical level as a function of the initial position in the phase plane. Let CJ denote the safe 
region in the phase plane. This means that if a trajectory exits from R, it would automati- 
cally lead to the toppling of the block. Further, define the random variable T(x, Y) as the 
time required for a trajectory initiated at @(to) = x and 6(t,) = Y to exit from the safe 
region n for the first time. The moments of this random variable denoted by M, = (T”), 
satisfy the well known GPV equations [lo] given by the equation 

LM,+nM,_,=O n=0,1,2 ,... (15) 

with M,, = 1. Here L is the backward Kolmogorov operator 

L=y$ - [2tpoy + &sin (a sgn x - x)] z- + f(x) 
a2 

aY ay” 
(16) 

The boundary condition for equation (15) is 

M.(0) = 0. (17) 

It may be pointed out here that if overturning is to be taken as a failure, it may not be 
sufficient to take just the level 0 = + a as the critical position. Even though under static 
considerations toppling is imminent at 0 = f a, it is clear that under the dynamic situation 
failure should depend on both 0 and 8. Here it seems appropriate to take the region 
bounded by the separatrix in the phase plane to be the safe region. However, since it is 
difficult to handle the analytical equation of the separatrix, for purposes of co-ordinate 
transformation the separatrix is approximated by the elli.pse written as 

(x2/c?) + [y2&“/32)] = 1. (18) 

Further with the transformations 
x=racos* 

Y = wprsin # (1% 

NLM 26:6-G 
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the safe region gets mapped onto a circle with unit radius. Equation (15) in the (r, $) 
co-ordinate system can now be written as 

ujIr sin * 
[ 

aM. 
-+cos I/I/~) + T (- sin +/ra) 1 

- {2r& fir sin $ + 0’ sin [a sgn(ra cos *) - Tacos J/l} 

[ 
?$sin @/ofi) + 2 (cos */WI)] 

+ f(ra cos $) 
[ 

C$ (sin’ 1+9/o fi2) + 2z(sin $ cos Jl/rw2/12) 

+ F(cos2 $/*w2/32) + % (cos2 */r2w2fi2) 

+ $$(- sin2*/r2w2f12)] + &4,-r = 0. (20) 

The appropriate boundary condition for this equation is 

KU, $) = 0. (21) 

The solution of equation (20) using Galerkin’s technique can be obtained by assuming 
a series of solution of the form 

M,(r, t,b) = 7’,(r) + f [a.,(r)sin 2nm$ + b,,(r) cos2am$]. 
m=l 

(22) 

This leads to a set of ordinary differential equations for the unknown coefficients T,,, a,, and 
b,, which further have to be solved under the condition of equation (21). If as a first 
approximation only one term is retained in the expansion, the equation for T,, is obtained as 

Qz(r) 
d2T dT 
-$Q~(~)-~+~T~_~ =o. (23) 

T,(l) = 0. 
Here 

QI = - rjwr + [l/(rw2/?2)] (1/2x) 
s 
:’ f(ra cos $) cos2 JI d$ (24) 

Further introduce 

Q2 = CMw282)l WW 
I 

‘lf(ra cos I/I) sin2 $ dJ/. 
0 

This, together with the condition T,(l) = 0 leads to 

The governing equation for P, is 

n 
Pm=%. 

s 

1 

T,(r) = - P,(s)ds. 
, 

z 7 (QIIQMn = - n L- JQ2. 

The solution of this equation in general can be written as 

(25) 

(26) 

(27) 

(28) 

pn(d = ev[-J(Ql/Qddr] { - 1: ev[ I(Q,le,,ds] (n T,-,/Q2)ds + Cm>. (29) 
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The constant of integration C,, appearing in the above solution has to be evaluated to satisfy 
the condition M,(O) < co. For illustration, the case of n = 1, D1 l = Dz2 = D and D12 = 0 is 
considered. Here one gets 

Ql = - rpr + o.sDw2/(r/?2) 

Q2 = OSDO~//~~. (30) 

Accordingly, equation (29) can be simplified as 

PI(~) = CMv-d + (Cd4 exp Cr2]182/P41. (31) 

The constant C1 is now chosen to ensure P,(O) = 0. This leads to 

pi (r) = c I/(VNl {I - expCr2tf821PNl). (32) 

Using the series expansion for the exponential term, one further gets 

Combining this with equation (27), the mean first passage time is obtained as 

The numerical results based on the above result for the case of r = 0, a = 1.1, o = 0.05, and 
for different values of D and o are shown in Fig. 5. The summation appearing on the 
right-hand-side of the above equation was found to converge with fifteen terms. Results of 
digital simulations for the case of o = 1 are also shown in this figure. In the simulation 
work, numerical integration of equation (2) for every sample of W1 (t) and W2(f) was carried 
out till ) o(t)1 reached the value of 0.5~. The corresponding value of the time variable was 
recorded as the sample realization of the first passage time. The estimate of the mean first 
passage time shown in Fig. 5 has been obtained with a sample size of 500. 

DISCUSSION AND CONCLUSIONS 

In this paper, the planar rocking of rectangular blocks under white-noise base excitations 
has been studied using Markov process techniques. For low levels of the noise wherein the 
toppling of the block is unlikely, the stationary solution of the governing Fokker-Planck 
equation for the response pdf has been obtained under the assumption of the existence of 
a stochastic steady state. The exact solution presented in equation (6) is valid only for 
a specific combination of system parameters, while the approximate solution based on the 
equivalent non-linearization technique given in equation (11) is more generally valid. It may 
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Fig. 5. Mean first passage time; q = O.OS, a = 1.1. - theory; l simulation for o = 1. 
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benotedthatforthecaseofD22--rD11andD,, + 0, the non-linearization solution reduces 
to the exact solution given in equation (6). The theoretical response probability density 
functions are found to be in good agreement with the digital simulation results. 

As the noise level is increased, the possibility of the toppling of the block becomes 
imminent and the assumption of the existence of a stochastic steady-state is no longer 
tenable. The problem of toppling of the block has been handled in the framework of first 
passage failure studies. In the analysis, the toppling of the block, or in other words, the 
failure of the system, is considered to have occurred when the response trajectory in the 
phase plane crosses the separatrix of the undamped free vibration of the system. A general 
expression for the n-th moment of the first passage time has been obtained using a one term 
Galerkin’s series solution to the governing GPV equations. The preliminary numerical 
results on the mean first passage time for the specific case of D,, = Dz2 and D12 = 0 are 
found to compare favorably with the digital simulation results. It may be emphasized here 
that in the simulation work the block was considered to have toppled only when the 
rotation response reach the level + 0.5~. The numerical results obtained support the 
choice of the separatrix of the unforced undamped motion as the critical barrier. For low 
levels of noise the theory is, however, found to overestimate the mean first passage time. The 
results are expected to improve with the inclusion of greater number of terms in the series 
solution given in equation (22). In this context it may be noted that as a consequence of 
retaining only one term in the series solution, the moments of the first passage time become 
axisymmetric in r - rl/ pl ane. Further work to incorporate the dependence of the moments 
on the t&co-ordinate by including additional terms in the expansion is currently being 
carried out by the authors. 

A limitation of the present work has been the modeling of the dissipation of energy due to 
impacts through an equivalent viscous damping term. It must be noted that the inclusion of 
energy loss due to impacts into the equations of motion results in delta-function type of 
non-linearities which are difficult to treat analytically. However, it appears possible to 
employ a piecewise differentiable transformation on the dependent variable to overcome 
this difficulty. This aspect is also being currently investigated by the authors. 
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