RoCL: A Resource Oriented Communication Library

Albano Alves!, Anténio Pina?, José Exposto, and José Rufino

! Instituto Politécnico de Braganga,
Campus Sta. Apoldnia, 5301-857 Braganga-Portugal
albano@ipb.pt
2 Universidade do Minho
pina@di.uminho.pt

Abstract. RoCL is a communication library that aims to exploit the low-level
communication facilities of today’s cluster networking hardware and to merge,
via the resource oriented paradigm, those facilities and the high-level degree of
parallelism achieved on SMP systems through multi-threading.

The communication model defines three major entities — contexts, resources and
buffers — which permit the design of high-level solutions. A low-level distributed
directory is used to support resource registering and discovering.

The usefulness and applicability of RoCL is briefly addressed through a basic
modelling example — the implementation of TPVM over RoCL. Performance
results for Myrinet and Gigabit Ethernet, currently supported in RoCL through
GM and MVIA, respectively, are also presented.

Keywords: cluster computing, message-passing, directory, multi-threading.

1 Introduction

The appearing of commodity SMP workstations and high-performance SANs aroused the
interest of researchers to the topic of cluster computing. Important tools have been devel-
oped and have provided an inexpensive vehicle for some classical problems. However, to
address an important class of non-scientific large-scale multi-threaded applications and
achieve the desired efficiency, in the presence of multiple communication technologies,
current approaches and paradigms are not adequate.

1.1 Inter-node Communication

Cluster nodes are typically interconnected by means of high-performance networks like
Myrinet or Gigabit Ethernet, but it is also very common to have an alternate low cost
communication facility, like Fast Ethernet, to handle node setup and management. To
interface high-performance NICs, user level communication libraries, like GM [9] and
MVIA [11]] (a VIA [4] implementation), became the right choice because it is possible
to avoid context switching and memory copies.

Several runtime systems and programming environments have been ported to ex-
ploit those technologies (MPI over GM, MPI over Infiniband, PVM over VIA, etc). To
provide a uniform interface to multiple communication technologies, intermediate-level
communication libraries, such as Madeleine [3]], had also been developed. Nevertheless,

H. Kosch, L. Bészorményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 969-579] 2003.
(© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

970 A. Alves et al.

it is not usual to combine multiple technologies in order to speed up application execu-
tion. Moreover, exploiting a secondary network like Fast Ethernet to perform specific
communication tasks to alleviate the overhead of the main networking hardware seems
to be an interesting topic that no one has properly addressed yet.

The point is, low-level communication libraries allow the exploitation of high-
performance networking hardware but their interfaces are inadequate for application
programming and their communication models, mainly concerned with node-to-node
message exchanging, make difficult the integration with higher-level abstractions. For
instance, GM supports up to eight communication end-points per node which are not
enough to deal with the requirements of highly multi-threaded applications.

1.2 Execution Environment

Traditionally the use of parallelism and high-performance computation has been directed
to the development of scientific and engineering applications. Multiple platforms are
available to help programmers design and develop their applications but it is important to
note that the majority of the runtime environments are practically static, since application
modules cannot be started disregarding the running ones; in a PVM application, for
example, an initial task launches some other tasks (processes), which in turn may launch
other ones, and the identifiers of relevant tasks have to be announced by their creators to
other participants; in a PM2 [[L0] application, for example, the programmer is responsible
for defining the routines that will be used to deliver active messages.

To deal with the growing complexity of today’s large-scale parallel applications, as
is the case of a system that integrates crawling, indexing and querying facilities, it is
necessary to have a flexible execution environment where: multiple applications from
multiple users collaborate to reach a common goal; I/O operations (access to databases,
for example) represent a significant part of the application execution time; system mod-
ules may execute intermittently; application requirements may vary unpredictably.

Execution environments that fulfil these requirements may be developed using the
high-level abstractions provided by MPI, PANDA or others. However, the use of an
existing platform imposes some constraints that are incompatible with the innovation
needed to deal with the requirements of novel and more complex applications.

2 Resource Oriented Communication

RoCL, the Resource oriented Communication Library we present in this paper, uses
existing low-level communication libraries to interface networking hardware. As a new
intermediate-level communication library it offers a novel approach to system program-
mers to facilitate the development of a higher-level programming environment that sup-
ports the resource oriented computation paradigm of CoR[12].

2.1 General Concepts

RoCL communication model defines three major entities — contexts, resources and
buffers — and uses the services provided by a specific low-level distributed directory.

RoCL: A Resource Oriented Communication Library 971

A context is defined whenever the library is started up by calling the appropri-
ate init primitive. Every context owns one or more low-level communication ports to
send/receive messages, acting as a message store.

Resources are a common metaphor used to model both communication and compu-
tation entities whose existence is announced by registering them in a global distributed
directory service. Every resource is associated to an existing context and possesses a
unique identifier. ROCL does not define the properties of resources neither limits their
definition. Resources are instances of application level concepts whose idiosyncrasies
result from a set of attributes specified at creation. An attribute is a pair (name, value)
where name is a string and value is a byte sequence. A resource R with n attributes is
defined by the expression R = {(namey, valuey), ..., (name,, value,) }. To register a
specific resource, the programmer must enumerate its attributes (see[3.1).

To minimize memory allocation and registering operations, RoCL uses a buffer man-
agement system. Messages are held on specific registered memory areas to allow zero-
copy communication. Prior to sending messages the programmer must acquire adequate
size buffers. At reception the library is responsible for providing the communication
subsystems with the necessary pre-registered memory blocks.

Resource global identifiers are used to determine the origin and destination of mes-
sages. The identity of a resource may be previously known by the application or it may
be obtained from the directory by querying it.

Figure [[] presents the steps required for the operation of a basic client/server inter-
action, according to the RoCL communication model.

Server Client

initialize a RoCL context
. register resource Ry = {(type, client)}

and store the returned identifier in gida
3. discover resource {(type, server)}

and store the returned identifier in gids

4. obtain a buffer with a specific size
and store the returned pointer in msgo
prepare message data by using msgo
send msgz from gids to gids
7. return buffer msgs to the library

—_
N =

initialize a RoCL context
2. register resource Ry = {(type, server)}
and store the returned identifier in gid;
3. wait for any message sent to gidi
and store the buffer pointer in msg;
4. process message data through msg:
5. return buffer msg: to the library

oW

Fig. 1. A basic modelling example.

2.2 Basic Interface

The basic set of primitives that programmers may use to exploit RoCL is presented in
table[l] organized according to the involved RoCL entities. Resource handling primitives
are discussed through section[3. Buffer management and communication primitives have
been presented in detail in a previous paper (see [[I]]).

In this context it is important to highlight that buffer and communication handling
primitives were designed to keep up zero-copy messaging. The use of low-level com-
munication libraries like GM and VIA does not automatically guarantee zero-copy com-
munication; the higher-level abstraction layer must define an appropriate interface to

972 A. Alves et al.

preserve the low-level features. SOVIA [8]] and PVM over VIA [3], for example, use
VIA, which permits zero-copy communication, but because users may continue to use
the traditional sockets and PVM interfaces, those systems must copy or register user
data (memory regions) before sending and can not avoid one copy at reception.

Table 1. RoCL basic primitives.

Contexts
int rocl_init()
rocl exit()
Resources
int rocl_register(rocl_attrl_t *attrs)
rocl_delete(int gid)
int rocl_query(int *gid, rocl_attrl_t *attrs)
Buffers
void * rocl_bfget(int len)
rocl bfret(void *ptr)
rocl bftoret(void *ptr)
int rocl bfstat(void *ptr)
Communication
rocl_send(int ogid, int dgid, int tag, void *ptr, int len)
int rocl_recv(int dgid, int ogid, int tag, void #**ptr,
int *aogid, int *atag, int *alen, int timeout)

3 Directory Service

RoCL creates a fully dynamic system where communication entities may appear and
disappear, at any moment, during application execution. To support these features we
use the resource abstraction along with the facilities of a global distributed directory
service. The importance of such a service is emphasized in [2] and [7].

RoCL directory service is a global distributed system that provides efficient and
scalable access to the information about registered resources. This service enables the
development of more flexible distributed computing services and applications.

3.1 Attribute Lists

A resource is defined/registered by specifying an attribute list. The primitives used to
manipulate resource attribute lists are presented in table 2l

Attribute lists are used both for resource registering and querying. To successfully
register a resource, all its attributes have to be completely specified, i.e. each attribute
has to have a name and a value. For querying purposes, some attributes may be partially
defined, i.e. attribute values may be omitted (NVULL values) in order to inform the library
about the attributes we want to know for a specific resource.

RoCL: A Resource Oriented Communication Library 973

Table 2. RoCL primitives to handle attribute lists.

rocl_attrl_t * rocl new_attrl(int max_len)

int rocl_add_attr(rocl_attrl_t *attrs, char *name, void *val,
int len)

void * rocl_get._attr(rocl._attrl_t *attrs, char *name, int *len)

rocl kill_attrl(rocl_attrl_t *attrs)

An attribute list is stored in a contiguous memory region to avoid memory copies
when sending it to a server (see 3.2). In fact, an attribute list itself is used as a re-
quest/reply packet, requiring some space to be reserved at the attribute list head to allow
the attachment of control information.

3.2 Local Operation

RoCL resources are registered at each cluster node using a local server that obtains
a subset of global identifiers at start-up, thus minimizing inter-node communication
(figure 2)). The local resource database (DB in figure 2)) is maintained in main memory
and hashing techniques are used to accelerate query operations.

Directory
server

Resource entries
(id + attribute list)

_—— Resources

Store defined
context

ElEE

Communication
subsystems

Store

Fig. 2. Resource local registering.

A query received by a local server corresponds to a request packet that may contain:
the resource identifier, some completely specified attributes (with valid names and val-
ues) and some partially specified attributes (with NULL values). If the resource identifier
is present, the search mechanism is trivial; otherwise the completely specified attributes
are used to produce hash indexes. After finding the right resource, all partially specified
attributes are examined and each one will be completed if an attribute with a matching
name was previously registered for that resource. Because the library reserves space in
the attribute list to store expected values for incomplete attributes, request packets may
be used as reply packets avoiding memory allocation and copying.

3.3 Global Operation

If a particular query can not be satisfied at the local server, a global search is initiated.
In a global search, all servers running across the cluster receive the request but only the
one where the query succeeds is committed to reply.

974 A. Alves et al.

As a first approach to support global searches, we used UDP broadcast to spread
requests through the Fast Ethernet network. This approach benefits from the native
broadcasting support at protocol and hardware level.

Requests may also be delivered to servers by combining UDP broadcast and GM or
VIA spanning trees. The general operation will be as follows: 1) local servers periodically
announce their presence using UDP broadcast; 2) each server maintains a list with all
active servers; 3) spanning trees are used to reach all active servers. The use of spanning
trees results from the fact that Myrinet hardware does not support broadcasting and the
connection oriented model, adopted by VIA, is not compatible with multicasting.

3.4 Multiple-Answer Queries

Queries that don’t specify a resource identifier may result in multiple answers returned
by one or more servers. This happens because different resources may share some (or
even all) attribute names and values.

RoCL provides dedicated primitives, (see table[3)) to manage multiple answers to a
single query. This interface should not be used whenever we just want a single answer
or if it is known in advance that there will be a sole answer to a particular query.

Table 3. RoCL primitives to handle multiple-answer queries.

rocl handler_t * rocl_query_start(rocl_attrl_t *attrs)
int rocl_query next(rocl handler_t *handler, rocl_attrl t *attrs)
int rocl_query_stop(rocl handler_t *handler)

When using this interface, results are fetched from the local server, one at a time,
as if multiple independent single answer queries were in progress. Each request/reply
packet transports the data — an attribute list — corresponding to a single resource.

To support multiple answers, the local server maintains some control information
for each query that is in progress, in order to be able to decide to: look for an answer
in the local database, broadcast the query, store the answers returned by remote servers,
search the local database for the next result, return an answer obtained from a remote
server or request the next result from a remote server.

Each remote server may return only one result as a reply to a specific broadcast. The
local server stores the multiple answers received and sends a unicast request to a specific
remote server whenever a result previously returned by that server is used up.

4 Inter-resource Message Passing

RoCL applications address messages to resources previously located using the directory
service. Inter-resource message passing raises two main problems: message routing,
because there is not a direct mapping between resources and communication subsystem
addresses, and message dispatching, because resources are animated by threads and
multiple low-level communication ports must be multiplexed.

RoCL: A Resource Oriented Communication Library 975
4.1 Message Routing

Contexts are the only valid end-points known by the communication subsystems. There-
fore, resources must be mapped into contexts before message sending.

rocl_init () rocl_register ({<x,a>})
‘ T # Attributes
i @ —==|A| GM=... VIA=...
RoCL Subsystems T
S};artup Soocnsco =] <R | x=a Context=A
Communication Lo |
subsystems b ‘
@)- Context identifier ®)- Resource identifier

Fig. 3. Resource-context mapping.

The mapping between resources and contexts is handled as shown in figure Bl Con-
texts are registered at library initialization; they are managed as system resources. The
addresses (or ports) of the communication subsystems are used as context attributes.
The RoCL library uses the context global identifier, returned by the directory service, as
an automatic attribute for resources, i.e. all resources will be tagged with the identifier
assigned to the context where they belong.

This approach is quite inefficient because three steps will be required to send a
message to a particular resource: 1) the resource context must be obtained by querying
the directory system, 2) the context addresses must also be obtained and finally 3) the
message will be sent. The two first steps will require some messages (requests and
replies) to be exchanged and therefore communication latency will be unacceptable. To
overcome this problem, the library uses two dedicated caches to store the most recently
required mappings between resource identifiers and context identifiers and between
context identifiers and their communication subsystem addresses.

4.2 Message Dispatching

RoCL resources are animated by threads, meaning that RoCL must support concur-
rent/parallel access to communication facilities. Besides that, message reception is totally
asynchronous, meaning that message delivering must take into account that receivers
may not be waiting the messages sent to them.

RoCL is a fully connectionless communication system that uses a dispatching mech-
anism based on system threads and message queues. System threads, one per communi-
cation subsystem, wait for messages using polling and interrupt handling techniques and
store the received messages in a receiving queue. Resources access this queue to retrieve
messages according to some selection criteria (message tag, origin identifier, etc). RoCL
provides blocking and timed receivings, through the timeout parameter (see table [I):
a negative timeout indicates a blocking behavior.

976 A. Alves et al.

Sending primitives may directly access the communication subsystems but, when-
ever concurrent calls occur, messages are stored in a sending queue and the primitives
return immediately.

Because receiving and sending queues only handle message descriptors, containing
a pointer to the message data, no extra copies are introduced. A detailed explanation of
message dispatching and the way it is related to quite distinct user-level communication
protocols — GM and VIA — may be found in [1]].

S Applicability and Performance

Although RoCL was designed as an intermediate-level message-passing library to the
development of a new programming platform that is still under construction, it consti-
tutes per se a basic programming tool. So, it is already possible to present particular
applicability examples along with raw performance results.

5.1 TPVM over RoCL

Assuming a simplified view of TPVM [6] we will examine the design/implementation
of some of its basic functionality using RoCL primitives.

PVM tasks (processes under UNIX) will create a RoCL context at start-up when
they start running. They also register themselves as task resources, using an attribute
(type, task), and their global resource identifiers are used as PVM task identifiers
(TIDs). A simplified PVM task spawning mechanism may be achieved as follows:

— the parent task uses rsh to execute a special process launcher passing to it the
conventional arguments required to start the spawned program along with its TID;

— the launcher registers a temporary resource using as attributes its process identifier
(PID) and the received parent task identifier ({ (type, tmp), (pid, ...), (ptid, ...} });

— the launcher starts the target program using the exec primitive;

— the spawned task, at start-up, queries the directory service, using its process identifier,
to find the temporary resource and to obtain the parent task identifier;

— the spawned task sends its global resource identifier to the parent/spawner process.

To remotely activate TPVM threads we will need a launcher thread, automatically
created when the PVM process/task starts, that will block waiting for messages that
request the activation of a specific TPVM thread. The launcher thread — the pod controller
— registers itself as a system thread resource using an attribute (type, systhread).

The tpvm_export primitive will correspond to a simple RoCL register operation. A
TPVM thread will be defined by using a name and the global resource identifier of its
pod controller — {{type, threaddef), (name, ...}, (systhread, ...) }.

The tpvm_spawn primitive will use the thread name to query the directory service
and find the global identifier of the pod controller. This global identifier is used to send a
request message to the launcher thread, which will create the desired thread. Instantiated
threads also register themselves using an attribute (type, thread) and send their global
identifiers to the spawners. A spawned thread obtains its parent identifier directly; the
request sent to the launcher thread carries the spawner global identifier.

RoCL: A Resource Oriented Communication Library 977

A host database may also be provided as a collection of RoCL resources. However,
since no PVM daemons are used, this database will only be useful to find out available
machines and select a particular target node for spawning operations.

5.2 Inter-resource Message-Passing Performance

RoCL message-passing performance is influenced by the communication subsystems
we support, the way we interface them and the capabilities of LINUX threads .

o
8
‘9 —e— GM —e— GM
O MVIA (SK98) . o MVIA (SK98)
———v—— MVIA (100 S~ MVIA e100;
—-—g—- UDP (SK98 y —-—v—-- UDP (SK98
— - UDPMrB — = — UDPMrB
——o—— UDP (e100) 7 w || — 08— UDP (e100)
—_ V > ©
2 g/ ¥] o0
E s |~ °
s % Q// £ ©° ©
£ ¥ Y o % o
= v = © o ©
g o ﬁ < 00O OO0
= g o~ S _a—m
e il A 5o e
S8 wppyp—y—eF 8" o - A S
e =] vy o0 g Ay v~ v
00000 OO o X s =-—a g% -V e
R s A T
= — O LO—-pg -O0-g T
« oo T
o T—g
= T T T T T T T T T T T T T T T A T T T T T T T T T T T T T T T
=)
R R U I S S R NV R 00) R g R P o
NP S S S NS RS
Message Size (bytes) Message size (bytes)

Fig. 4. RoCL performance.

Figure Blleft presents round-trip times relating to three networking technologies
— Myrinet (LANai 9), Gigabit Ethernet (SysKonnect 9821) and Fast Ethernet (Intel
EtherExpress PRO/100) — exploited through GM, MVIA and UDP Bl. Performance tests
were performed on dual Pentium III 733MHz workstations running RedHat 9.0. Myrinet
and Gigabit adapters were attached to 64bits/66 MHz PCI slots.

RoCL over GM allows to achieve a 30us round-trip time for 1 byte messages, which
corresponds to an overhead of 10us when compared to GM node-to-node performance.
MVIA for SysKonnect, as expected, outperforms all communication subsystem alterna-
tives but GM. Surprisingly, for small messages, SysKonnect hardware produces better
results than Myrinet, when using UDP.

In order to evaluate message-passing alternatives, it is mandatory to also analyze
the impact of communication on computation and vice-versa. To evaluate this inter-
dependence we had calculated the execution rate of a particular computation cycle,
using one thread per processor, without performing any communication task, and then
we run both the original round-trip and the computation benchmarks concurrently.

The impact on computation may be expressed by the ratio Fxcg/Exg, where
FExcg stands for the execution rate obtained when we run, concurrently, the round-
trip benchmark using one of the communication subsystem alternatives and E'xq stands

! Currently RoCL is only supported under LINUX.
2 GM runs on Myrinet, MVIA runs on SysKonnect and Intel and UDP runs on each of them.

978 A. Alves et al.

for the execution rate obtained without background communication. Similarly, the ra-
tio Rtcs,/Rtcs, where Rteog and Rtcg, stand for the round-trip times obtained for
a given communication subsystem, respectively, with or without computations taking
place concurrently, express the impact on communication. To easily compare round-trip
ratios from different communication subsystems, we use the ratio Rt s, / Rtcs, where
Rta i, stands for the round-trip times obtained using GM (the best round-trip times we
may achieve with RoCL).

These two ratios express the performance sustainability of computation and com-
munication, when they use the same CPU(s). As we consider that both communication
and computation performances are equally fundamental to determine the success of high
performance computing, we use an overall ratio, for each communication subsystem,
calculated as a geometric average.

Figure @}right presents the overall performance sustainability we can expect to
achieve in RoCL applications. It is important to note that the RoCL impact on compu-
tation is in accordance to the selected hardware and communication subsystem: FastE-
hternet adapters perform badly and require higher CPU intervention as message size
increases; UDP, a complex protocol, requires more CPU cycles than MVIA and GM and
so the overall performance drops.

6 Conclusions

RoCL introduces a new communication paradigm to facilitate the design and imple-
mentation of high-level execution environments. In this paper, the key concepts related
to inter-resource message-passing and the operation of a low-level distributed directory
service — a very important component of RoCL — were presented.

The case study “TPVM over RoCL" shows that the abstractions provided by RoCL
allow the rapid design and implementation of a great variety of high-level applications.

Performance values indicate that RoCL exploits efficiently the low-level communi-
cation subsystems and that multi-threaded dispatching mechanisms are now feasible.

Scalability evaluation of the directory service is still undergoing. Due to the limited
number of cluster nodes available for testing, we intend to use simulation techniques.

References

1. A.Alves, A. Pina, J. Exposto, and J. Rufino. ToCL: a thread oriented communication library
to interface VIA and GM low-level protocols. to appear ICCS *03, 2003.

2. M. Beck, J. Dongarra, G. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore,
T. Moore, P. Papadopoulous, S. Scott, and V. Sunderam. HARNESS: A next generation
distributed virtual machine. Future Generation Computer Systems, 15(5-6):571-582, 1999.

3. L.Bougé, J.-F. Méhaut, and R. Namyst. Madeleine: An Efficient and Portable Communication
Interface for RPC-Based Multithreaded Environments. In PACT ’98, 1998.

4. Compaq Computer Corp., Intel Corporation & Microsoft Corporation. Virtual Interface Ar-
chitecture Specification. http://www.vidf.org/info/04standards.html, 1997.

5. R.Espenicaand P. Medeiros. Porting PVM to the VIA architecture using a fast communication
library. In PVM/MPI *02, 2002.

11.

12.

RoCL: A Resource Oriented Communication Library 979

J. Ferrari and V. Sunderam. TPVM: Distributed Concurrent Computing with Lightweight
Processes. In HPDC ’95, 1995.

S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A Directory
Service for Configuring High-Perf. Distributed Computations. In HPDC "97, 1997.

J.-S. Kim, K. Kim, and S.-I. Jung. SOVIA: A User-level Sockets Layer Over Virtual Interface
Architecture. In CLUSTER °01, 2001.

Myricom. The GM Message Passing System. http://www.myricom.com, 2000.

R. Namyst and J. Méhaut. PM?: Parallel Multithreaded Machine. A computing environment
for distributed architectures. In ParCo’95, 1995.

National Energy Research Scientific Computing Center. M-VIA: A High Performance Mod-
ular VIA for Linux. http://www.nersc.gov/research/FTG/via, 2002.

A. Pina, V. Oliveira, C. Moreira, and A. Alves. pCoR - a Prototype for Resource Oriented
Computing. In HPC ’02, 2002.

	Introduction
	Inter-node Communication
	Execution Environment

	Resource Oriented Communication
	General Concepts
	Basic Interface

	Directory Service
	Attribute Lists
	Local Operation
	Global Operation
	Multiple-Answer Queries

	Inter-resource Message Passing
	Message Routing
	Message Dispatching

	Applicability and Performance
	TPVM over RoCL
	Inter-resource Message-Passing Performance

	Conclusions

