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 24 

Abstract:  25 

Objective. Brain electromagnetic activity in patients with epilepsy is characterized by abnormal high-26 

amplitude transient events (spikes) and abnormal patterns of synchronization of brain rhythms that 27 

accompany epileptic seizures.  With the aim of improving methods for identifying epileptogenic 28 

sources in magnetoencephalographic (MEG) recordings of brain data, we applied methods 29 

previously used in the study of oceanic ‘rogue waves’ and other freak events in complex systems   30 

Approach. For data from 3 patients who were awaiting surgical treatment for epilepsy, we used a 31 

beamformer source model to produce volumetric maps showing areas with a high proportion of 32 

spikes that could be classified as ‘rogue waves’, and areas with high Hurst Exponent (HE). The HE 33 

describes the extent to which a system is exhibiting persistent behavior, may predict the likelihood 34 

of freak events.   These measures were compared with the more standard measure of kurtosis, 35 

which has been shown to be a reliable method for localizing interictal spikes. 36 

Main Results. There was partial concordance between the 3 different volumetric maps indicating 37 

that each measure provides different information about the underlying brain data.  The HE, when 38 

combined with a simple connectivity analysis based on phase slope index, was able to identify the 39 

probable epileptogenic zone in all 3 patients, despite very different patterns of abnormal activity.  40 

The differences between distributions of high HE and high kurtosis values indicates that while spikes 41 

are propagated through cortex from the epileptogenic zone, the persistent dynamical conditions 42 

under which the spikes are generated may not be propagated in a similar way.  Finally, the patterns 43 

of persistent activity, indicating a departure from ‘healthy criticality’ in brain networks may explain 44 

the wide range of social and cognitive impairments that are seen in epilepsy patients.   45 

Significance. The HE is a potentially useful addition to the clinician’s battery of measures which may 46 

be used convergently to guide surgical intervention. 47 

 48 

 49 

 50 

  51 
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Epilepsy affects up to 1% of people worldwide (Fiest et al., 2017) and is characterized by seizures, 52 

which are thought to occur because of a disruption to the balance of neuronal excitation and 53 

inhibition in the brain (Fisher et al., 2005).  These typically take the form of abnormal, strong and 54 

synchronised activity beginning within discrete populations of neurons but propagating through 55 

wide areas of brain tissue. Many cases of epilepsy respond successfully to pharmacological 56 

intervention, but for those which don’t, surgical resection of epileptogenic brain tissue can lead to a 57 

reduction or even eradication of seizures.  The work described here aims to improve methods for 58 

identifying epileptogenic sources in magnetoencephalographic (MEG) recordings of brain data, 59 

which could ultimately be used to guide surgical intervention.  60 

Recent developments in our understanding of the brain as a nonlinear dynamical system suggest 61 

that the healthy brain needs to operate near a state of criticality. In the brain, self-organized 62 

criticality depends on the balance of excitation and inhibition between nodes in neural networks, 63 

that - in healthy systems - are tuned to allow the occurrence of scale-free ‘avalanches’ through 64 

which information is propagated optimally (Plenz, 2012).  This ensures that the system maintains 65 

functionally-appropriate dynamic range, fidelity of information processing, and information capacity 66 

(Shew and Plenz, 2013).  Self-organized criticality is considered a hallmark of behavior in many other 67 

naturally-occurring complex systems, from solar flares to epidemics (Bak, Tang and Wiesenfeld, 68 

1987; Jensen, 1998).  It is this balance of neural excitation and inhibition that is disrupted in the 69 

pathophysiology of epilepsy. 70 

At the macroscopic level, for example on an electroencephalogram (EEG) or in MEG data, 71 

epileptiform discharges are typically observed as very frequent, very high-amplitude spike-and-wave 72 

complexes, initially within discrete populations of neurons and then propagating through brain 73 

networks (de Curtis and Avanzini, 2001).  Between seizures (interictally), many epileptic brains will 74 

display occasional abnormal discharges, typically but not always spikes, which may originate from 75 

the epileptogenic zone, or elsewhere. It has been suggested the spikes arise in the context of a 76 

deviation from the normally-observed power-law statistics that are associated with healthy 77 

criticality, even between seizures (Acharya et al., 2013; Song and Zhang, 2013; Yan et al., 2016). 78 

Large in amplitude and unpredictable, interictal spikes can be likened to the ‘rogue’ or ‘freak’ waves 79 

which emerge from nonlinear processes in many other dynamical systems  - such as on the ocean’s 80 

surface (Steele, Thorpe and Turekian, 2009) and in nonlinear optics (Onorato et al., 2013).   81 

The Hurst exponent (HE) has emerged as a useful metric for predicting the likelihood of freak events 82 

(Feder, 1988; Grech and Mazur, 2004; Gao et al., 2007; Resta, 2012; Eftaxias et al., 2013).  The 83 

rescaled range method for estimating the HE was originally developed in the 1950s for the study of 84 
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long-range dependence in water storage, in the River Nile (Anis and Lloyd, 1976; Nolte et al., 2008). 85 

The HE reflects the change in autocorrelation in a time series over successive time-lags; a slow, 86 

power-law, decay in autocorrelation yields a HE value between 0.5 and 1 and indicates the presence 87 

of persistent statistics (e.g. a trend for growth for one time interval is more likely to be followed by a 88 

trend for growth in the following time interval). Higher HE is also associated with a higher likelihood 89 

of freak events. A HE value between 0 and 0.5 indicates the presence of antipersistence, 90 

characterized by wild fluctuations in the data.  A time series which is Gaussian noise, i.e. a random 91 

walk, will have a HE of 0.5.   92 

The HE has been applied to epilepsy previously, in the context of automatic detection of spike and 93 

seizure activity in EEG timeseries, using different methods, e.g. rescaled range analysis (Blythe et al., 94 

2014), detrended fluctuation analysis and wavelet-transform based techniques (Madan et al., 2018). 95 

It has also been applied recently in other brain disorders associated with disordered cognition, such 96 

as PTSD (Rahmani et al., 2018) and concussion (Munia et al., 2017). Here we extend the application 97 

of the HE in epilepsy work, by demonstrating how it can be used in source modelling of MEG data, 98 

creating a potential tool for clinicians planning surgery to treat pharmaco-resistent epilepsy. 99 

To aid in presurgical evaluation, a neuroimaging approach needs to be able to identify epileptiform 100 

activity, and to produce some kind of volumetric image that can be coregistered with anatomical 101 

images such as MR images and used in concert with clinical neuronavigation systems.  The 102 

traditional approach for localizing the source of epileptiform activity in MEG data has been manual 103 

identification and fitting of equivalent-current dipoles to individual or averaged spikes (e.g. Ochi and 104 

Otsubo, 2008). However beamformer-based methods which can effectively scan the whole brain 105 

volume for epileptic discharges are of increasing interest. The underlying beamformer source model 106 

(van Veen et al., 1997; Sekihara et al., 2002; Brookes et al., 2008) has the benefits of significantly 107 

improved SNR and of requiring no a priori assumptions about the number of sources, compared to 108 

traditional dipole-fitting methods (Adjamian et al. 2009; Hoogenboom et al. 2006).  The standard 109 

beamformer-based spike localisation method measures kurtosis: if a voxel’s data contains spikes, the 110 

distribution of its pooled timeseries will often be kurtotic because of the occurrence of rare-high-111 

amplitude discharges (Kirsch et al., 2006; Hall et al., 2018).  This is akin to the ‘heavy tailed’ 112 

distributions that are characteristic of systems exhibiting rogue waves (Onorato et al., 2013), where 113 

freak events are more common than predicted by a normal distribution.  But although the kurtosis 114 

measure identifies a heavy tail, it does not determine whether the system is exhibiting persistent 115 

behaviour.  Conversely, the HE can reflect the situation where the likelihood of freak events, such as 116 

spikes, is coupled with persistence and power-law behaviour, indicating a deviation from healthy 117 

criticality.   118 
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The aim of the present study was to determine whether the HE is able to identify beamformer voxels 119 

whose timeseries contain abnormal, epileptiform, brain activity; and how this might complement 120 

measures of kurtosis or simple rogue waves, both interictally and during the time surrounding a 121 

seizure. Connectivity analysis on putative epileptogenic networks derived from the HE maps are also 122 

explored in the context of clinical outcomes.  123 

 124 

Methods 125 

Case Studies 126 

The case studies are based on data from three patients with pharmaco-resistant epilepsy, who had 127 

been referred to the Aston Brain Centre for assessment using MEG as part of their clinical evaluation 128 

prior to resection surgery for treatment of seizures.   The patients’ details are shown in Table 1.  129 

The data described below are from the patients’ routine pre-surgical MEG recordings, which were 130 

analysed clinically using standard kurtosis beamformer methods and interpreted alongside evidence 131 

from corticography, EEG, and structural MR imaging.   All patients underwent surgery, and the 132 

outcomes described in Table 1 are from long term (> 5 year) clinical follow-ups done post-surgically. 133 

All work was conducted in accordance with the Declaration of Helsinki and with the approval of the 134 

local Ethics Committee.  135 

  136 

MEG Recordings 137 

MEG data were recorded using a 275-channel whole-head CTF MEG system (CTF Systems, Port 138 

Coquitlam, Canada) with synthetic third-order gradiometers (Vrba et al., 1999) sampled at 1200 Hz 139 

with an anti-aliasing filter of 600 Hz, and de-trended to correct for baseline drift.  Each MEG dataset 140 

was spatially co-registered with the individual’s T1-weighted structural MRI using a modification of 141 

the surface-matching method described by Adjamian et al. (Adjamian et al., 2004), and a multi-142 

sphere head model (Huang, Mosher and Leahy, 1999) was derived from each participant’s brain 143 

surface.  Data were band-pass filtered between 1 and 150 Hz and projected into source space using 144 

a scalar beamformer (Robinson and Vrba, 1999). Beamformers use the covariance matrix of the data 145 

to create a set of weights for each point in a grid of voxels across the volume of the brain, which can 146 

be used to produce volumetric images and to reconstruct spatially-filtered source timeseries.  147 

Covariance matrices were regularized using a regularization value of mu = 0.1.  Voxels were placed 148 

on a regular 10-mm grid spanning the entire brain and source orientation at each voxel was based 149 
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on a nonlinear search for maximum projected signal-to-noise ratio.  Volumetric images that could be 150 

overlaid on the individual’s MRI were then constructed based on statistics applied to each voxel 151 

timeseries; i.e. the estimate of HE, a measure of percent rogue waves, or kurtosis; as described 152 

below.  Concordance between images was then calculated by thresholding each image and 153 

computing the percentage overlap of voxels which survived thresholding.  Because each image type 154 

had markedly different distributions of voxel values, it was not possible to identify absolute 155 

thresholds that showed consistent amounts of activation across the HE, kurtosis and rogue waves 156 

images.  Therefore each image was thresholded so that the 2.5% of voxels with the highest values 157 

were retained, which amounted to 819 voxels in each case. Overlaps between the independent 158 

images for the 3 patients were also computed for comparison.  For the figures, the images were 159 

masked and overlaid onto the original high-resolution MRI using SPM 12b. 160 

 161 

Estimation of the Hurst Exponent 162 

We used the rescaled range analysis of Hurst (Resta, 2012), corrected for small sample bias (Anis and 163 

Lloyd, 1976; Peters, 1994; Weron, 2002), applied to the squared timeseries for each voxel.  For a 164 

timeseries Xi (i=1,2…N), the mean value µN and the cumulative deviate series  (ΓN,k) were calculated 165 

as follows: 166 

 167 

          

( ) ,...2,1,,
1

1

,

1

∑∑
==

=−=Γ=
k

i

NikN

N

i

iN
NkXX

N
µµ

                                          (1) 168 

 169 

Next, the range RN and the standard deviation SN were calculated: 170 

  171 

( ) ./1,minmax
1

2

,, ∑
=

−=Γ−Γ=
N

i

NiNkNkNN
XNSR µ

                                 (2)  172 

 173 

The rescaled range is found as RN/SN. As a next step, time series of N points were divided in two N/2-174 

point time series and the rescaled range RN/2/SN/2 was calculated for both time series and further 175 

averaged. The process was repeated for partial series which comprised n=N/4, N/8 … points.  176 
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 177 

The Hurst exponent HE was estimated by fitting power law of averaged Rn/Sn for n→∞, e.g., 178 

 179 

( ) HE

nn
CnSRE = .                                                                            (3) 180 

 181 

Here E(x) is the expected value and C is a constant. 182 

Rogue waves analysis 183 

To calculate the percentage of rogue waves, we used the same pragmatic approach used in 184 

classifying oceanic rogue waves, i.e. whenever the wave height H exceeded twice the significant 185 

wave height Hs. Traditionally, the significant wave height was defined as the average of the one-third 186 

largest waves and denoted H1/3. Nowadays, it is defined as four times the standard deviation of the 187 

surface elevation and denoted Hs (Steele, Thorpe and Turekian, 2009). 188 

Kurtosis analysis 189 

Kurtosis (k) was estimated as follows: 190 

𝑘𝑘 = 𝐸𝐸(𝑥𝑥 − 𝜇𝜇)4𝜎𝜎4 − 3 191 

(4) 192 

Where E is the expected value of x, μ is the mean and σ is the standard deviation.  193 

Connectivity analysis  194 

Connectivity between timeseries for voxels with peak HE values was assessed using the Phase Slope 195 

Index (PSI) (Nolte et al., 2008), using the Matlab function adapted by Cohen, 2014 (Cohen, 2014).   196 

PSI determines whether the slope of the phase lag across frequencies between timeseries is 197 

consistently positive or negative, with positive values between areas A and B indicating that the 198 

activity in area A is driving the activity in area B, either directly or indirectly.  Its non-parametric 199 

approach makes PSI particularly appropriate for data, such as these, that do not meet the 200 

requirements of the typical vector autoregressive (VAR) model underpinning other methods for 201 

estimating directional connectivity, such as Granger causality. (VAR models typically expect the 202 

autocorrelation of the data to decay exponentially (Barnett and Seth, 2014), whereas our analysis 203 

based on the Hurst Exponent illustrates that this decay actually approaches a power-law function).   204 
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PSI values are expressed as standard deviations against a randomised population distribution for the 205 

null hypothesis, derived from 1000 permutations.   For our data, PSI was computed over a broad 206 

frequency band of 1-150 Hz (the same band as used for the HE analysis); and for a classically-defined 207 

EEG ‘theta-to-beta’ band (4-30 Hz).  For patients 1 and 2, similar effects were found in both 208 

frequency bands so the broad band results are reported.  For patient 3, pre-seizure effects were 209 

predominantly constrained to the lower 4-30 Hz band, so only these values are reported.  In the 210 

figures, PSI values exceeding 1.96 standard deviations are shown, to indicate directional influences 211 

exceeding the 95% confidence interval on the assumption of a normal distribution for a 1-tailed test.  212 

Tables show all PSI values for each patient.  213 

 214 

  215 
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Results 216 

Volumetric images mapping the HE and percent rogue waves for each patient were compared with 217 

the images showing the cortical distribution of kurtosis values, an accepted measure of interictal 218 

spiking activity (Kirsch et al., 2006; Hall et al., 2018) .  Figure 1 shows an example slice for each 219 

patient, from images that were thresholded to include only the highest 2.5% of values.  In all cases, 220 

the images show a wide, bilateral, network of areas with putative epileptiform activity.  Clearly, 221 

although spike activity may propagate through such wide networks, further analysis and clinical 222 

interpretation are required to determine which part of the network corresponds to the 223 

epileptogenic zone.  This may be done through convergent analyses, and examination of source 224 

timeseries including connectivity estimation.  225 

The images in Figure 1 overlap, but not completely - indicating that the measures are not 226 

interchangeable.  Table 2 shows the percentage overlap between the 3 different image types for the 227 

patients, and, for reference, the concordance between the independent images across the three 228 

patients.  In the case of the rogue waves and kurtosis images for Patient 1, the concordance 229 

between images is high (77%).  But in all other cases, the overlap is comparable to the comparison 230 

across patients, ranging between 16% and 48% (Table 2).  The measures are clearly reflecting 231 

different aspects of the data, and it is important to determine whether the potentially epileptogenic 232 

sources are reflected only in the overlapping zones, or whether the HE measure provides new, 233 

clinically relevant information, for each patient.  234 

Figure 2 shows further data for Patient 1.  The maximum cortical HE value was 0.82, with HE values 235 

showing a clear topographical pattern with several local peaks.  One peak occurred in the left 236 

temporal cortex, where the three images overlapped (Fig. 2a).  Figure 2b shows the timeseries from 237 

this location, with the 21 spikes meeting criteria for rogue waves identified on the plot. Fig. 2c shows 238 

the probability density function for the squared timeseries upon which the HE and rogue waves 239 

measures were computed, with the extreme values in the tail that form the basis of the concordant 240 

kurtosis and rog ue waves images at this location.  Figures 2d and 2e show the spikes occurring just 241 

after 30 seconds in more detail, in both the time (2d) and frequency (2e) domains (See also SI Movie 242 

1 for an animated spectrogram illustrating the spectral power changes associated with the rogue 243 

waves).   244 

Importantly, though, spikes are not seen at all locations with high HE values.  Figure 2f shows the 245 

data around 30 seconds again, with timeseries from the top four peaks in the HE image and one 246 

from a control voxel with lower HE. While a clear spike is also seen in the left frontal source, 247 

simultaneously with the temporal source but with opposite polarity; the right occipital and parietal 248 
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sources identified by the HE map do not show a spike at this time.  There, the high H values are not 249 

always accompanied by rogue waves, and this dissociation can explain the relatively low 250 

concordance between the images based on HE and those based on extreme values, i.e. kurtosis and 251 

rogue waves.   252 

A measure of phase slope index (Nolte et al., 2008; Cohen, 2014) across a broad frequency range of 253 

1-150 Hz was used to estimate the presence of significant directed communication between the 254 

nodes in this network (Fig 2g). The left temporal source is a clear driver of activity in the left frontal, 255 

right parietal and right occipital areas that also show strong persistent statistics (and is not a 256 

significant driver of activity in the control region that did not show a peak in the H map). PSI values 257 

are given in Table 3.   258 

This network analysis of regions identified by our H measure was confirmed during the subsequent 259 

pre-operative evaluation for this patient, which identified a location in the left temporal lobe as the 260 

epileptogenic zone.  Its surgical removal resulted in complete freedom from seizures.  Thus, for this 261 

patient, the HE, rogue waves, and kurtosis images were all able to indicate the epileptogenic source, 262 

which lay in the region with high concordance between measures. 263 

Data for the second patient are shown in Figure 3.  HE values across the cortex were higher overall 264 

than in Patient 1, with much of the cortex showing HE values above 0.75; the thresholded image 265 

contains values between 0.8 and 0.85.  The overlap between the HE image and the kurtosis and 266 

rogue waves images is low (Table 2), with a left ventrolateral frontal area being the main area of 267 

concordance between HE and kurtosis (e.g. as shown in Fig. 3a).  Clusters of high amplitude spikes 268 

can be seen at this location in Fig. 3b, and the probability density function in 3c shows a clear ‘heavy 269 

tail’ corresponding to the presence of high-amplitude events here.  (See also SI Movie 2 for an 270 

animated spectrogram showing bursts of spectral power associated with the rogue waves).   This 271 

patient had a neuroanatomical abnormality in the right parietal lobe (Fig. 3d), the area surrounding 272 

which was a clinically-likely epileptogenic source.  However the only measure to show activation that 273 

survived thresholding in this region was the measure of rogue waves (Fig. 3d).   274 

The right parietal area adjacent to the lesion, along with the left ventrolateral frontal area of overlap 275 

and the two other highest peaks in the HE image were selected for further analysis, alongside a 276 

control region with low HE. Figure 3e shows the timeseries for each location around the largest spike 277 

complex occurring just after 50 seconds.  Spikes originating in the right parietal and left ventrolateral 278 

frontal sources are of substantially higher amplitude than those at the left frontal location, and very 279 

little abnormal activity is observable by eye at the occipital location despite its relatively high HE 280 

values above 0.8; the control region also contains spikes.  There is also evidence of spike activity 281 
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propagating through into the control timeseries where the HE was relatively low, although still 282 

exceeding 0.75.  283 

Timeseries from all five loci were entered into a connectivity analysis. Phase-slope analysis identified 284 

two regions which were significant, independent drivers of activity in the other areas in this patient: 285 

the right parietal region and the left ventrolateral frontal region (Fig 3f; Table 4).  Although both 286 

were shown to drive activity in the frontal and occipital areas identified from the HE image, and the 287 

control area, there was no significant directed connectivity between these two areas.   288 

This patient subsequently underwent surgery to resect tissue from the right parietal area of 289 

anatomical abnormality.  However this had limited success and resulted only in a reduction in 290 

seizure frequency for the patient.  Thus the left ventrolateral frontal region reflected by the 291 

overlapping HE and kurtosis measures is the likely driver of this patient’s remaining seizures.  292 

Figure 4 shows data from a third patient who had a seizure during the MEG recording.  In Figure 4a, 293 

the maps showing HE, kurtosis, and percent rogue waves are compared for an example slice, for the 294 

7 seconds of data before the onset of the seizure.  The HE image gives a markedly different 295 

topography of abnormal activity compared to the kurtosis and rogue waves images (15.6% and 296 

29.6% overlap respectively). The kurtosis and rogue waves images are more similar (48.1% overlap).  297 

Figure 4b shows the timeseries of the whole recording, reconstructed from the right frontal source 298 

visible in the HE map in 4a (the location that was later determined to be the epileptogenic source). 299 

Note the absence of spikes in the pre-seizure data at this location, despite the extremely high HE 300 

values. Figure 4c shows a spectrogram of data for this pre-ictal time period, illustrating that 301 

abnormal activity is restricted to somewhat lower frequencies than typically characterized by spikes 302 

(for example, compare Fig. 4c with Fig. 2e).    During the seizure, very large strongly synchronous 303 

activity is seen (Fig. 4b) and the maximum HE value in the image shown in Figure 4d from the data 304 

during the seizure has dropped from 1 to 0.88. Following the seizure, the maximum HE value 305 

remains lower (0.86; Figure 4e).  During and after the seizure the topographic patterns of HE values 306 

change substantially compared to the map from before the seizure.  (See also SI Movie 3 which 307 

shows spectral power before, during, and after the seizure). 308 

There were three local peaks in the thresholded pre-seizure HE image, for which a slice is shown in 309 

Figure 4a; in the right frontal; left temporal, and right superior parietal cortex.  Timeseries for the 310 

data before the seizure for each of these loci were entered into a connectivity analysis. The broad 311 

band phase-slope analysis (as used for Patients 1 and 2) did not reveal significant connectivity within 312 

this patient’s pre-seizure data; however an analysis restricted to the classical theta, alpha and beta 313 

frequency bands did reveal significant driving influences from the source in the right frontal lobe to 314 
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the left temporal and right superior parietal other sites (Figure 4e and Table 5) The right frontal 315 

source was confirmed post-surgically to be the epileptogenic zone in this patient.  316 

  317 
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Discussion 318 

The aim of these three case studies was to determine whether the Hurst exponent is able to identify 319 

beamformer voxels whose timeseries contain abnormal, epileptiform brain activity; and to 320 

determine how this analysis might complement the more traditional measure of kurtosis, both 321 

interictally and during the time surrounding a seizure.  Taken together, the results suggest that the 322 

HE can provide significant additional information to the clinical analysis of pre-surgical MEG data.  323 

However it is also clear that the HE measure is providing different, complementary, information to 324 

the more standard analytical approaches such as kurtosis. 325 

Peaks in HE images predicted surgically-confirmed epileptogenic sources in Patients 1 and 3, when 326 

entered into a connectivity analysis. In Patient 2, the HE image and connectivity analysis identified a 327 

likely additional epileptogenic source that may explain unexpected additional seizures post-surgicaly.  328 

In both Patients 1 and 2, this putative epileptogenic zone fell in an area where high HE values co-329 

occurred with spikes, and was thus also identified through the kurtosis image.  This observation is 330 

consistent with our original hypothesis that the HE measure is a good predictor of the likelihood of 331 

‘freak events’, i.e. spikes (Feder, 1988; Grech and Mazur, 2004; Gao et al., 2007; Resta, 2012; 332 

Eftaxias et al., 2013).  333 

Importantly, the HE measure is providing a different kind of information to standard measures such 334 

as kurtosis.  For example in each patient there were other regions of cortex which showed high 335 

kurtosis values but where HE values fell below threshold, as illustrated by the low percentage of 336 

overlap between images - but these regions did not coincide with the epileptogenic zone.  Thus 337 

those areas, despite the presence of spikes, were not among those with the greatest tendency 338 

towards persistent or super-critical activity. Similarly there were areas, i.e., in the non-overlapping 339 

parts of the images, where high HE values did not coincide with high values of kurtosis. In our 340 

patients these areas did not represent the epileptogenic zone, Further, in Patient 3, the pre-seizure 341 

activity in the epileptogenic zone itself did not contain large spikes (or elsewhere; compare the max 342 

kurtosis value of 7.5 in this patient with 23.0 in Patient 2) but had a high HE value.    It is possible 343 

that, while spikes are propagated through cortex from the epileptogenic zone, the persistent 344 

dynamical conditions under which the spikes are generated are not propagated in a similar way, 345 

resulting in the markedly different topographical maps that we found.  346 

These findings, that areas of high HE form part of a wider network characterized by persistent 347 

statistics, echo some reported previously for recordings taken from the cortical surface of patients 348 

with epilepsy (ECoG data; (Yan et al., 2016)), where increased HE values were seen just before the 349 

onset of a seizure, with persistent dynamics observed beyond the epileptogenic area.  Our data, 350 
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which includes coverage of the whole cortex rather than a limited number of electrode sites and 351 

thus allowing whole-brain network analysis, shows that the pattern of persistent dynamics both 352 

interictally and just preceding a seizure forms part of a complex network through which the 353 

anomalous spikes are propagated. 354 

The fact that the HE map was able to identify the epileptogenic zone in Patient 3, despite the 355 

absence of large spikes in this area, indicates that the HE might be particularly useful for the 356 

approximately 30% of patients who are referred for pre-surgical MEG evaluation but do not show 357 

interictal spikes per se.  The typical methods used for localizing epileptiform activity, i.e. dipole 358 

modelling and kurtosis, are optimized for brief signals with high amplitude.  Yet the kind of 359 

persistent behavior that is identified in timeseries by the Hurst exponent may be present in some 360 

patients’ interictal data even in the absence of extremely large transients, meaning that the HE 361 

would still be able to identify epileptogenic sources. Methods which can help localize slower and 362 

lower-amplitude abnormalities are a potentially powerful addition to the clinician’s toolbox. 363 

The timeseries plots in Figures 2b and 3b confirm that epileptiform spikes meet the standard 364 

oceanographic criteria for ‘rogue waves’ (Steele, Thorpe and Turekian, 2009).  However the measure 365 

of percent rogue waves also appears to have a different sensitivity profile than the traditional metric 366 

of kurtosis, as the overlap between volumetric images is only partial.  This is more surprising than 367 

the dissociation between HE and kurtosis, as both aim to identify spikes based on distributional 368 

statistics.  The difference presumably occurs because of the rogue waves measure’s different 369 

arithmetic relationship to the standard deviation of the sample points in the timeseries, as the 370 

number of spikes increases. Although the kurtosis measure is a reliable indicator of spiking activity 371 

(Kirsch et al., 2006; Hall et al., 2018), it can fail in situations where very large numbers of spikes 372 

result in a distribution that is not kurtotic because the high values are no longer ‘extreme’.  373 

Concordance between these measures is lowest for Patient 2, who showed particularly strong and 374 

regular spiking activity.  In fact, here the percent rogue waves map was the only one of our 375 

thresholded images to identify the parietal zone that was clinically selected for this patient’s original, 376 

but only partially successful surgery. This new approach therefore also has potential as an additional 377 

tool for localization of spikes in cases where kurtosis fails and is worthy of further study in a clinical 378 

trial which does not have the limited sample size of the current set of case-studies. 379 

It is also noteworthy that for Patient 2, the parietal epileptogenic zone that was revealed by the 380 

rogue waves analysis had low HE (whereas their presumed secondary epileptogenic zone had high 381 

HE), illustrating that not all epileptogenic zones might be identified on the basis of the Hurst 382 

exponent. The general observation that the different measures all have different sensitivity profiles 383 
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in the face of varying data properties underlines the potential value of approaches which use 384 

information from more than one analysis method to triangulate upon the epileptogenic source.  This 385 

idea is also reflected in work that has used the Hurst exponent alongside several other 386 

complementary measures in automatic classifiers for the detection of epileptic activity (e.g. Acharya 387 

et al., 2013) 388 

Our connectivity analysis based on phase-slope index, a non-parametric index of directed 389 

connectivity (Nolte et al., 2008; Cohen, 2014), offers a final potential tool for clinical application.  390 

The observation that epileptiform timeseries show strongly persistent activity, as indexed by the HE, 391 

means that the typical vector autoregressive models used to underpin Grainger causality, for 392 

example, are not suitable for epilepsy data. The phase-slope index is a simple alternative that works 393 

well in timeseries characterized by broad-band bursts of power associated with epileptiform data.  394 

The results described here present the first whole-brain analysis of epilepsy data based on the Hurst 395 

Exponent and demonstrate the potential for such nonlinear dynamical approaches as an additional 396 

tool for clinicians undertaking pre-surgical investigations, as well as the possibilities for the rogue 397 

waves and phase-slope analyses which are based on the same source model.  However this is not a 398 

clinical trial and therefore the next appropriate step is for a clinical trial to be conducted, with a 399 

larger population of patients and a systematic evaluation of the efficacy of these measures in 400 

comparison with existing clinical protocols. 401 

Overall, our findings demonstrate the clear presence of persistent statistics, indicating a departure 402 

from healthy self-organized criticality, in epileptic brains both well between seizures and just before 403 

the onset of a seizure.  The complex topographic distributions of high Hurst exponents in these 404 

patients and associated connectivity patterns indicate that this super-critical state can be 405 

propagated, as can the spikes themselves, through a range of cortical areas form the origin of the 406 

abnormal, persistent activity.  If a state of near-criticality is required for efficient information 407 

processing then the high Hurst exponent value seen in our patients may explain the wide range of 408 

cognitive impairments and neurodevelopmental disorder seen in patients with epilepsy, especially 409 

children.  410 

Our findings, apart from the interest for bio-medicine, can provide a base for developing new Hurst 411 

R/S analysis-based predictors of the emergence and localization of the rogue/freak waves in 412 

different complex networks (Internet, power grids, financial and logistic systems, and other 413 

applications.)  414 

 415 
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Figure 1 522 

 523 

  524 

Figure 1 525 

An example slice from Patient 1 (top) and Patient 2 (centre) and Patient 3 (bottom), showing the 526 

activity maps based on the HE, kurtosis, and percent rogue waves. The images are thresholded so 527 

that only activity in the highest ranked 2.5% of voxels is shown. Images for Patient 3 are based on 528 

the pre-seizure activity only; see Figure 4 for details.  529 

 530 

  531 
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Figure 2 532 

 533 

 534 

Figure 2 535 

Data for Patient 1.  Figure 2a shows the area of overlap between the thresholded HE and kurtosis 536 

maps for this patient, in one example slice.  Fig. 2b shows the full data timeseries reconstructed at a 537 

voxel in the left temporal area of overlap seen in 2a.  Spikes which meet criteria for rogue waves are 538 

identified with a red asterisk. Fig. 2c shows the probability density function of values in this 539 

timeseries, squared as for the calculation of HE values. Fig. 2d shows a zoomed image of the 540 

timeseries for a single spike at this same location, occurring just after 30 seconds and Fig. 2e a 541 

spectrogram of the same data. The same spike is shown again in Fig. 2f, with the equivalent 542 

timeseries for four other locations in different colours: three other peaks in the HE image, and a 543 

control location with low HE. The pattern of directed connectivity between the five areas, based on 544 

phase slope index, is illustrated on an outline of the downsampled brain in Figure 2g.  The five 545 

locations are indicated, with the control area shown in green.  Lines with arrows represent the 546 

direction of connectivity, and the filled circle indicates the left temporal site which corresponds to 547 

the driving source.   548 

 549 

 550 
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Figure 3 552 

 553 

Figure 3 554 

Data for Patient 2.  Figure 3a shows the area of overlap between the thresholded HE and kurtosis 555 

maps for this patient, in one example slice.  Figure 3b shows the full data timeseries reconstructed at 556 

a voxel in the left ventrolateral frontal area of overlap seen in 3a.  Spikes which meet criteria for 557 

rogue waves are identified with a red asterisk. Figure 3c shows the probability density function of 558 

values in this timeseries, squared as for the calculation of HE values.  Figure 3d shows a slice from 559 

the volumetric image showing percent rogue waves. The white box highlights the neuroanatomical 560 

lesion which was chosen for resection, alongside an area of high percent rogue waves. Figure 3e 561 

shows a zoomed image of the timeseries for all voxels of interest at 101-103 seconds, a time when 562 

spiking activity was observed in the left ventrolateral frontal voxel. Figure 3f shows two connectivity 563 

maps, illustrating the patterns and directions of connectivity between from the two sources that 564 

were shown by the PLI analysis to be driving activity at the other voxels: the right parietal and left 565 

ventrolateral frontal sources.  In each case the driving sources are represented by black filled circles, 566 

and control sources are shown in green.  567 

 568 

 569 

570 
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Figure 4 571 

 572 

 573 

Figure 4 574 

Data for Patient 3, who had a seizure during the recording.  Figure 4a shows the same slice from the 575 

thresholded volumetric images for each of HE, kurtosis, and percent rogue waves, for the period 576 

before the seizure. Figure 4b shows the timeseries from the source with peak HE values in the 577 

frontal lobe, for the entire recording, with the periods before, during and after the seizure identified 578 

with red bars.  Figure 4c is a spectrogram of the pre-seizure activity. Figure 4d and 4e show the same 579 

slice from the volumetric HE images during (4d) and after (4e) the seizure. 580 

 581 
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Table 1.  A summary of the 3 patient case-studies. 583 

 584 

Patient Sex Age at 

MEG 

recording 

Diagnosis Epileptogenic 

zone and how 

determined 

Surgery and 

outcome 

Clinically 

ascertained 

epileptogenic 

zone location 

1 Female 16 years Focal 

epilepsy 

Corticography 

identified a left 

temporal 

epileptogenic 

zone  

Surgical resection 

of the left 

temporal 

epileptogenic zone 

resulted in 

eradication of 

seizures 

Source in left 

temporal lobe 

2 

 
 

Male 8 years Right parietal 

Glioma  

Corticography 

showed interictal 
discharges in the 

frontal as well as 

parietal lobe. 

Right parietal 

resection resulted 
in a reduction in 

seizure frequency 

but not eradication 

of seizures 

suggesting that the 

frontal source was 

also epileptogenic 

Sources in 

right parietal 
and left 

frontal lobes 

3 

 

 

Female  32 years Focal 

epilepsy 

Corticography 

identified a right 

frontal source. 

Right frontal 

source confirmed 

post surgically to 

be the 

epileptogenic 
source 

Source in 

right frontal 

lobe 

 585 
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Table 2.  Percent overlap between the thresholded volumetric images for the kurtosis, rogue waves, 587 

and HE measures, and the mean and range of percent overlap values for the 6 possible comparisons 588 

between independent images across the three particpants. Data for Patient 3 are based on the pre-589 

seizure activity only; see Figure 4 for details.  590 

 591 

Concordance Patient 1 Patient 2 Patient 3 Reference: 

concordance 

between patients 

HE – Kurtosis 42% 33% 16% 29% (15%-39% )  

Rogue waves – 

Kurtosis 

77% 19% 48%   

27% (13%-43%) 

HE- Rogue waves 44% 36% 30% 24% (10%-32%) 

 592 

 593 

Table 3. 594 

PSI values for Patient 1 in 1-150 Hz frequency band, for each pair of locations identified from peaks 595 

in the cortical H maps and shown Figure 1b.  Significant PSI values, i.e. those exceeding 1.96 596 

standard deviations, are in bold, with positive values and sources representing a ‘driving’ 597 

relationship further highlighted in yellow.  598 

 599 

 L. Temporal L. Frontal R. Occipital R. Parietal Control 

L. Temporal 0 3.91 2.31 3.72 2.31 

L. Frontal -3.91 0 -1.86 -1.42 -1.69 

R. Occipital -2.31 1.86 0 1.21 -0.19 

R. Parietal -3.72 1.41 -1.21 0 -0.41 

Control -2.31 1.69 0.19 0.41 0 

  600 
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Table 4. 601 

PSI values for Patient 2 in 1-150 Hz frequency band, for each pair of locations identified from peaks 602 

in the cortical H maps and shown Figure 1k.  Significant PSI values, i.e. those exceeding 1.96 standard 603 

deviations, are in bold, with positive values and sources representing a ‘driving’ relationship further 604 

highlighted in yellow.  605 

 606 

 L. Frontal R. Parietal L. VL Frontal R. Occipital Control 

L. Frontal 0 -5.03 -2.96 0.35 0.96 

R. Parietal 5.03 0 0.54 5.23 7.18 

L. Ventrolateral Frontal 2.96 -0.54 0 3.50 4.16 

R. Occipital -0.35 -5.23  0 1.73 

Control -0.96 -7.18 -4.16 -1.73 0 

 607 
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Table 5 609 

PSI values for Patient 3 in the 4-30 Hz frequency band, for each pair of locations identified from 610 

peaks in the pre-seizure cortical H maps and shown Figure 2c.  Significant PSI values, i.e. those 611 

exceeding 1.96 standard deviations, are in bold, with positive values and sources representing a 612 

‘driving’ relationship further highlighted in yellow.  613 

 614 

 R. Frontal R. Parietal L. Temporal 

R. Frontal 0 2.67 3.57 

R. Parietal -2.67 0 1.28 

L. Temporal -3.57 -1.28 0 

 615 
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Supporting Information: Movie Legends 617 

SI Movie 1 618 

Spectrogram animation of the data for Patient 1 from the whole recording period, reconstructed 619 

from the source in the left temporal lobe in Figure 1b (the same data for which the timeseries is 620 

shown in Fig 1d). This source had the highest H value and was identified as the driving epileptogenic 621 

source. 622 

 623 

SI Movie 2 624 

Spectrogram animation of the data for Patient 2, for the whole recording period, reconstructed from 625 

the source in the left frontal lobe that was identified as one of the driving epileptogenic sources. 626 

Timeseries for these data are also shown in Fig 1m.  627 

 628 

SI Movie 3 629 

Spectrogram animation of the data for Patient 3, reconstructed from the beamformer weights for 630 

the pre-seizure period in the right frontal epileptogenic source, but for the whole timeseries so 631 

changes during and after the seizure can also be seen. 632 

 633 

 634 

 635 

 636 
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