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Abstract. Rogue waves can be categorized as unexpectedly large waves, which are
temporally and spatially localized. They have recently received much attention in
the water wave context, and also been found in nonlinear optical fibers. In this
paper, we examine the issue of whether rogue internal waves can be found in
the ocean. Because large-amplitude internal waves are commonly observed in the
coastal ocean, and are often modeled by weakly nonlinear long wave equations of
the Korteweg-de Vries type, we focus our attention on this shallow-water context.
Specifically, we examine the occurrence of rogue waves in the Gardner equation,
which is an extended version of the Korteweg-de Vries equation with quadratic
and cubic nonlinearity, and is commonly used for the modelling of internal solitary
waves in the ocean. Importantly, we choose that version of the Gardner equation
for which the coefficient of the cubic nonlinear term and the coefficient of the linear
dispersive term have the same sign, as this allows for modulational instability.
From numerical simulations of the evolution of a modulated narrow-band initial
wave field, we identify several scenarios where rogue waves occur.

1 Introduction

The term rogue waves is commonly identified with unexpectedly large water waves in the ocean,
which are spatially and temporally localized, see Kharif et al. (2009) for instance. Several mech-
anisms have been invoked including essentially linear processes such as directional focusing, or
topographic and current focusing, and nonlinear processes such as modulational instability
with the consequent nonlinear focusing of energy. Importantly the nonlinear processes are often
based on appropriate solutions of the nonlinear Schrodinger equation (NLS) of the focusing
kind, These, and other proposed mechanisms, can be realized in other physical systems, leading
to the speculation that rogue waves can occur there as well. For instance, phenomena that can
be categorized as rogue waves have recently been found in nonlinear optical fibers (Solli et al.,
2007; Yeom et al., 2007; Akhmediev et al., 2009).
In this article, we examine the issue of whether rogue waves can occur for the case of internal

waves in the ocean. In principle, all the physical mechanisms proposed for rogue water waves
can be applied to internal waves. However, although very large amplitude internal waves have
certainly been observed in the ocean, as far as we are aware their possible labeling as rogue
waves has not been made. Internal waves in the ocean can be loosely categorized as either
occurring in the deep ocean where they can propagate vertically, or occurring in the coastal
ocean where they have a specific vertical structure and the emphasis is on their horizontal
propagation. Here, we will examine the latter category. Huge internal waves in the ocean
are often observed in the various parts of the coastal oceans. Their amplitudes can reach
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Fig. 1. Temperature time-series in the South China Sea (from Duda et al., 2004). The contour interval
is 1 degree. The deepest blue color is the 15–16 degree range.

Fig. 2. Map showing sites where internal solitons have been reported, from http://www.

internalwaveatlas.com/

50–100 meters (Orr and Mignerey, 2003; Duda et al., 2004; Apel et al., 2007). A typical example
of solitary-like waves is demonstrated in Fig. 1 taken from Duda et al. (2004). The geographical
distribution of similar observed large-amplitude internal waves is shown in Fig. 2 (Apel et al.,
2007).
Physically, the existence of these large-amplitude internal waves is related to the enhanced

effect of gravity due to the very small difference in density of neighbouring layers (of order
10−2). These internal solitary-like waves are generated principally by the interaction of the
barotropic tide with bottom topography, often the continental shelf; other mechanisms may
include instability of ocean currents in zones with strong shear flow (such as an ocean gulf),
or directly by wind stress. Usually, these large-amplitude internal solitary-like waves are mod-
eled with nonlinear wave equations of the Korteweg-de Vries (KdV) type. These include the
well-known integrable KdV equation, the same equation modified with variable coefficients and
frictional terms, and extended equations which include higher order nonlinear terms, see the
reviews by Grimshaw (2001) and Holloway et al. (2001) for instance. In this context the ap-
pearance of very large-amplitude waves is usually regarded as a deterministic process, where
the large amplitudes are due to a combination of the initial conditions and the background
density stratification.
However, this does not exclude the possibility that internal rogue waves can occur in some

special circumstances. To explore this issue further requires a different approach, where it may
be necessary to invoke statistical methods. For the case of water waves, the weak wave turbu-
lence theory has been successfully used to model wave spectra. Analogous theories have been
developed for deep ocean internal waves, see Muller and Olbers (1975), Olbers (1976), McCo-
mas (1977), Pelinovsky and Raevsky (1977), Caillol and Zeitlin (2001) and Lvov et al. (2004)
for instance. But for the most part, these theories were developed for the deep ocean with an al-
most uniform density stratification, and hence are not relevant for application to internal waves
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Fig. 3. Wave group evolution with initial amplitude 0.23, 6 satellites; (a) t = 0 top left, (b) t = 50 top
right, (c) t = 250 bottom left, (d) t = 500 bottom right.

in the shallow coastal ocean. In this latter case, our concern is with the internal waves which
ride on strong pycnoclines, and hence a modal approach is needed. In the simplest case of a
two-layer model of the density stratification, the kinematic properties of linear interfacial waves
are similar to the properties of the surface gravity waves, but there are significant differences in
their nonlinear properties. In the more general case of a multi-layer or continuously stratified
ocean, internal waves are described by many modes. We infer that the physical mechanisms
for the formation of internal rogue waves may have some specific features when compared with
surface rogue waves. Although a full statistical theory for internal waves in the coastal ocean is
not available, a viable alternative is to use one of the model equations of the KdV-type, which
are commonly used to study internal solitary waves. Thus, Pelinovsky and Sergeeva (2006)
examined numerically the evolution of a random wave field in the KdV equation. It is well-
known that the description of wave packets in the KdV equation by an asymptotic reduc-
tion to a NLS equation leads to the defocusing case and hence modulational stability. Hence
the formation of rogue waves directly by modulational instability is not expected in the KdV
model. However, Pelinovsky and Sergeeva (2006) found that the evolution of an initial Gaussian
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Fig. 4. Wave group evolution with initial amplitude 0.6, 6 satellites; (a) t = 0 top left, (b) t = 50 top
right, (c) t = 400 bottom lefft, (d) = 500 bottom right.

spectrum does not satisfy Gaussian statistics, and indeed nonlinear energy focusing can still
occur leading to the occurrence of some large waves.
Here we examine the possibility of rogue wave formation within the context of the Gardner

equation, which is an extension of the KdV equation which contains both quadratic and cubic
nonlinear terms. This model is commonly used to describe internal solitary waves in the coastal
oceans. There are two versions of the Gardner equation, depending on the relative signs of
the coefficients of the cubic nonlinear term and the linear dispersive term (see below). When
these have the opposite sign, an asymptotic reduction leads to the defocusing NLS equation,
and hence we expect that random wave fields would evolve in a manner qualitatively similar
the KdV case. But when the coefficients have the same sign, wave packets with a sufficiently
large carrier wavenumber are described by the focusing NLS equation, see Grimshaw et al.
(2001), implying the possibility for the enhanced formation of rogue waves by modulational
instability. Hence, this is the case of interest in this study, and we note that this version of the
Gardner equation can arise in many parts of the coastal oceans, see Grimshaw et al. (2007).
Further the Gardner equation has no direct analogy in the theory of the nonlinear surface waves.
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Fig. 5. Variations of the maximum amplitude with time for an initial maximum amplitude of 0.6, 6
satellites.

In Sect. 2 we give a brief description of the Gardner equation, and then in Sect. 3 we present our
numerical results for the evolution of an initial narrow-band modulated wave field. We conclude
in Sect. 4 with a discussion.

2 Gardner equation

The Gardner equation for the description of long nonlinear internal waves is

ηt + αηηx + βη
2ηx + δηxxx = 0 . (1)

Here η(x, t) is the amplitude of a linear long wave mode with phase speed c0, and equation
(1) has been written in a reference frame moving with speed c0. The coefficients α, β, δ are
determined by the background density stratification and the background horizontal current, see
Grimshaw (2001), Holloway et al. (2001) or Grimshaw et al. (2007). Without loss of generality,
we choose c0 > 0 and then it can be shown that the dispersive coefficient δ > 0. However, the
nonlinear coefficients α, β can take either sign, and as above, we are concerned here with the
case when β > 0. Without loss of generality, the Gardner equation (1) can then be transformed
to the dimensionless form,

ut + uux + u
2ux + uxxx = 0 . (2)

In the remainder of this paper, our analysis and numerical solutions are based on equation (2).
Our interest here is in wave groups, and hence for a weakly nonlinear waves, we seek an

asymptotic reduction to a nonlinear Schrodinger equation. Thus we introduce an asymptotic
expansion of the form

u = ǫA(X, τ) exp(ikx− iω(k)t) + · · ·+ c. c. , X = ǫ(x− cgt), τ = ǫ
2t . (3)

Here c. c. denotes the complex conjugate, · · · denotes terms of O(ǫ2) which include second
harmonic and mean flow terms, and we have included the leading-order result that the wave
envelope A(X,T ) will propagate with the group velocity cg = ∂ω/∂k, where ω = ω(k) is the
linear dispersion relation. For the Gardner equation (2), ω(k) = −k3 and so cg = −3k

2.
A straight-forward but lengthy asymptotic analysis then yields the nonlinear Schrodinger
equation (see Grimshaw et al., 2001)

iAτ = λAXX + µ|A|
2A , λ = 3k, µ = 1−

1

6k2
. (4)
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Fig. 6. Wave group evolution with initial amplitude 0.5, 20 satellites; (a) t = 0 top left, (b) t = 200
top right, (c) t = 400 bottom left, (d) t = 500 bottom right.

It now follows immediately that the wave packet (3) is modulationally unstable whenever
the nonlinear Schrodinger equation is of the focusing kind, that is whenever λµ > 0. Hence we
infer that for the Gardner equation (2) there is modulational instability when the carrier wave
number satisfies the following condition (see Grimshaw et al., 2001)

k >

√

1

6
≈ 0.41. (5)

Further whenever condition (5) holds, modulational instability occurs with a modulation
wavenumber K such that K2 < 2µ|A0|

2/λ with a maximum growth rate of |λA0|
2 when

K2 = µ|A0|
2/λ, where A0 is the amplitude of the modulated plane wave. Numerical simu-

lations by Grimshaw et al. (2001) demonstrated that the outcome of modulational instability is
the generation of envelope solitary waves and breathers, which for small amplitude waves can be
described by the nonlinear Schrodinger equation (4), and for larger amplitudes are associated
with the breather solutions of the full Gardner equation (2). Such breathers can be obtained in
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Fig. 7. Wave group evolution with initial amplitude 1.2, 20 satellites; (a) t = 0 top left, (b) t = 150
top right, (c) t = 400 bottom left, (d) t = 500 bottom right.

the full nonlinear Euler equation, see Lamb et al. (2007). In this paper we revisit this issue of
modulational instability for the Gardner equation (2) and focus specifically on criteria which
can lead to rogue wave formation.

3 Dynamics of modulated initial narrow-band wave field

The Gardner equation is solved by a finite-difference scheme which is described in Holloway
et al. (1997, 1999), where the Courant criterion is satisfied by choosing the time step ∆t as

∆t < 0.38(∆x)3, (6)

where ∆x is the spatial step. Then Eq. (2) is solved with the periodic boundary condition

u(x+ L, t) = u(x, t) , (7)
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Fig. 8. Zoom of Fig. 7(b).

Fig. 9. Variations of the maximum amplitude with time for an initial maximum amplitude of 1.2, 20
satellites.

where L is the spatial domain length, and with the initial condition

u(x, 0) = u0(x) . (8)

The mass and momentum conservation laws of the Gardner equation (2) are controlled in our
numerical simulations.
We take the initial wave as a narrow-band Gaussian spectrum in the form

u(x, 0) =

N/2
∑

i=−N/2

ai cos (kix+ φi) , (9)

where ai = (2Si)
1/2 , Si = exp(−ki − k0)

2/∆K2). (10)
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Fig. 10. Amplification factor K0 versus the initial maximum amplitude A. The black line is for six
satellites and the red line is for twenty satellites.

∆K = 0.1 is the width of the spectrum, and φi are arbitrary phases chosen by a random number
generator. The carrier wave number k0 = 2 in our numerical experiments. We take 6 (N = 6)
and 20 (N = 20) satellite harmonics symmetrically placed about the carrier wave number k0,
with a step of 0.02 between neighbours. The total computational time is 500. Note that from
the discussion of the modulational instability in Sect. 2, we infer that a suitable nonlinear time
scale is proportional to 1/λ|A0|

2. With λ = 3k0 = 6 and with amplitudes 2A0 = 2A(X, 0), see
(3), typically greater than 0.1, our computational time is much greater than the time scale for
modulational instability.

3.1 Six satellites

The initial wave field contains three modulated groups, see Fig. 3(a) (Amax = 0.23). The non-
linear evolution of the wave field is displayed in Fig. 3. In the first stage the amplitude of central
group grows (approximately by a factor 1.3), its shape is symmetric and it looks like a breather
(Fig. 3(b)). Then the amplitudes of all the groups become comparable, they merge and their
shapes become asymmetrical (Figs. 3(c), (d)). Qualitatively, the wave dynamics is similar to
the evolution of wave packets in the framework of the modified Korteweg-de Vries equation and
the nonlinear Schrodinger equation (Grimshaw et al., 2001, 2005). Due to the weak initial wave
amplitude there is no the rogue waves formation.
With an increase in the initial wave amplitude (Amax = 0.6), the amplification can be more

than twice and reaches 2.6 (Fig. 4). The wave packet of maximal amplitude is narrower, and
contains only 5–7 individual waves. Rogue waves are formed several times as is illustrated in
Figs. 4(b), (d). A more detailed analysis of the maximal wave amplitude variation versus time
is shown in Fig. 5. First, the maximum amplitude begins from the initial value 0.6 and never re-
turns to this value. The oscillations in amplitude are largest for small times (reaching 1.55) and
tend to quasi-periodic variations about a mean value (approximately 1) with a deviation of 0.2.
The maximum amplification factor here is about 2.6. The following maximum of 1.38 after this
is reached at about the time moment 50 (the wave field for this time is displayed on Fig. 4(b))
and amplification factor here is only 2.3. The third maximum in the wave amplitude (1.3) is
reached at about the time moment 85, and the amplification factor here is about 2. Thus,
three rogue waves can be selected here. In fact, all waves with amplitudes exceeding 1 could be
considered as rogue waves if their amplitudes are compared with the mean wave amplitude.
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Fig. 11. Third (top panel) and fourth (bottom panel) moments of the wave field with Amax = 0.6 (six
satellites).

Qualitatively, the wave dynamics is similar to that in the modified Korteweg-de Vries equa-
tion and nonlinear Schrodinger equation (Grimshaw et al., 2001, 2005). There is no visible
asymmetry with respect to the horizontal axis, as can be expected in the framework of the
Gardner equation. Also, the periodicity in the maximal wave amplitude (Fig. 5) can be related
with recurrence phenomenon in the nonlinear Schrodinger equation.

3.2 Twenty satellites

Twenty satellites just fulfills the condition for a narrow initial spectrum. The evolution of
the wave field with Amax = 0.5 is displayed in Fig. 6. Now, the initial wave field consists
to eight modulated groups of different amplitudes and each group contains 9–15 individual
waves. Breather-like groups with some larger amplitudes than the initial one form with time
(Figs. 6(c), (d)). The maximum amplification factor here is 1.3. Qualitatively, the wave dynamics
are the same as in models based on the nonlinear Schrodinger equation.
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Fig. 12. Fourth moment (red and dash) and maximum amplitude (black and solid) (multiplied by 7)
for the wave field with Amax = 0.6 (six satellites).

An increase of the initial amplitude leads to more complicated wave dynamics. The wave
field with Amax = 1.2 is shown on Fig. 7 for various times. The breathers formed here are
narrower than in the previous case (3–5 individual waves). The largest waves here are two
individual waves, and are not a wave group (Fig. 8).
The maximum amplitude versus time for this case is shown in Fig. 9. The curve looks more

chaotic and large amplitude waves appear many times. The biggest maximum here (3.24) is not
the first one and it is reached at time 220 (the maximum amplification factor is about 2.74).
Amplitudes more than 2.4 (twice more than the initial largest one of amplitude 1.2) are reached
about 14 times over the computational time.

3.3 Comparison for different satellite numbers

A comparison of the computed values of the amplification factor K0 (the ratio of the maximum
wave amplitude over the computational time to the maximum initial amplitude) for various
numbers of satellites is given in Fig. 10. We see that an increase in the spectral width leads to
a reduction in the amplification factor. Indeed this conclusion is known for modulational insta-
bility in the framework of nonlinear Schrodinger equation (Alber, 1978) and is here confirmed
in the framework of the Gardner equation.
Additionally, several integrals of the wave field are computed. As indicated above, the

mass (M1 =
∫

udx) and momentum (M2 =
∫

u2dx) integrals are conserved for the Gardner
equation (2). The third and fourth integrals (moments)

M3(t) =

∫

u3dx

(
∫

u2dx)3/2
, M4(t) =

∫

u4dx

(
∫

u2dx)2
, (11)

characterize in statistical theory (after averaging an ensemble of realizations) the skewness
and kurtosis (deviation from a Gaussian distribution where M3 = 0, M4 = 3). Here they are
computed for only one realization of the wave field and hence vary in time. Although the wave
field modeled here by a finite number of harmonics can not be strictly Gaussian (since the
conditions for the central limit theorem are not satisfied), nevertheless the variation of these
moments with time can demonstrate a tendency in nonlinear wave interactions. In particular,
the behavior for six satellites is illustrated on Fig. 11. The third moment (skewness) is mainly
negative which implies that waves of negative polarity dominate in the wave field. It starts from
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Fig. 13. Third (top panel) and fourth (bottom panel) moments of the wave field with Amax = 1.2
(twenty satellites).

a value close to zero (−0.02) and reaches a minimum value −0.12 after a short time. Then it
oscillates around a mean value of about −0.02. The fourth moment (kurtosis) is positive and
starts from 4 to reach a first maximum of 14. Then it reaches its second and third maximum
of 11.7 and 11.4 after which it oscillates around a mean value 6.7. As is well-known a Gaussian
wave field has a kurtosis of 3, and thus the probability of the appearance of large-amplitude
waves (rogue waves) is higher then for a linear wave field. It is interesting to point out that the
behavior of the fourth moment is well correlated with the behavior of the maximum amplitude
(Fig. 12) confirming the contribution of large-amplitude waves to the kurtosis.
In the case of twenty satellites the time evolution of the third and the fourth moments is

shown in Fig. 13. The first minimum in the third moment is reached at a time 5 and equals
−0.18. After that the third moment oscillates around −0.025 and is mainly negative. The
second minimum −0.15 is reached at a time 415. Increasing the number of satellites leads to
a decrease of the deviation of the skewness from the mean value as is expected in statistical
averaging. The fourth moment (kurtosis) exceeds 3 and reaches a first maximum of 7.3 at time 5,
after which it oscillates with an amplitude less than 1 around the mean value 4.8 to a time
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Fig. 14. Fourth moment (red and dash) and maximum amplitude (black and solid) (multiplied by 2.5)
for the wave field with Amax = 1.2 (twenty satellites).

230. Beyond this time we see four maximum lying between 6.8 and 7.5. Again the kurtosis
on average correlates with the maximum wave amplitude (Fig. 14), but the oscillations in the
maximum amplitude are more frequent than in the fourth moment.

4 Discussion

In this paper we have reported numerical simulations of the Gardner equation (2) when the
initial condition is a modulated narrow-band wave field. Our initial conditions are chosen to
lie in the regime of modulational instability for a plane wave, and hence it is no surprise that
we find the emergence of rogue waves. More explicitly, we see the occurrence of spatially and
temporally localized large waves, typically more than twice the background waves.
In the Introduction we motivated this study by the fact that the Gardner equation is com-

monly used to model internal waves in the coastal ocean. Hence we can infer that the results
reported here suggest that under certain conditions rogue internal waves can arise in the coastal
ocean. The first condition is that the background density stratification should be such that the
relevant Gardner equation is that which has a positive coefficient of the cubic nonlinear term.
This excludes the commonly-used two layer density stratification models, but does arise when
the density stratification is modeled by three layers with a deep middle layer. Further the case
of a positive cubic coefficient is relatively commonly found in the coastal oceans. Moreover,
for the case of the Gardner equation with a negative coefficient of the cubic nonlinear term,
when modulational instability is not allowed, we would expect that the evolution from an initial
condition of a modulated narrow-band wave field would be similar to that reported for the KdV
equation, where nonlinear energy focussing can still lead to the occurrence of large waves, see
Pelinovsky and Sergeeva (2006).
Within the context of this present study, another condition for the occurrence of rogue inter-

nal waves is the initial presence of a narrow-band internal wave field. In most scenarios for the
generation of internal solitary waves in the coastal ocean, the observed waves have instead the
structure of a deterministic amplitude-ordered wavetrain, sometimes described as an internal
undular bore. Our present results do not directly address the issue of whether rogue internal
waves could eventually emerge from such an internal undular bore. But we can suggest that
based on the results described here, this is certainly a possibility, especially if the amplitude
ordering of the wavetrain was broken, say by the action of variable topography or the effects
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of the earth’s rotation, see for instance, Helfrich and Grimshaw (2007), Grimshaw and Helfrich
(2008), Sanchez-Garrido and Vlasenko (2009) and Vlasenko et al. (2009).
Finally, as mentioned in the Introduction, there are several other mechanisms that have

been proposed for rogue waves. Importantly, in the context of internal waves these include the
essentially linear mechanisms of focussing of wave energy by topography or currents. Given the
environmental variability of the coastal ocean, these are also likely to be important factors for
the possible presence of rogue internal waves, and we emphasize that we have not considered
them at all in this paper. Nevertheless, although the numerical simulations of the Gardner
equation that we have reported here have a limited context, they do provide evidence that
internal rogue waves in the coastal ocean are a real possibility.

Grants RFBR (08-05-00069, 09-05-91850, 09-05-00204, 09-05-90408) are acknowledged.
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