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ABSTRACT 

The long wave-short wave resonance model arises physically when the 

phase velocity of a long wave matches the group velocity of a short wave. It is a 
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system of nonlinear evolution equations solvable by the Hirota bilinear method 

and also possesses a Lax pair formulation. ‘Rogue wave’ modes, algebraically 

localized entities in both space and time, are constructed from the breathers by a 

singular limit involving a ‘coalescence’ of wavenumbers in the long wave 

regime. In contrast with the extensively studied nonlinear Schrödinger case, the 

frequency of the breather cannot be real and must satisfy a cubic equation with 

complex coefficients. The same limiting procedure applied to the finite 

wavenumber regime will yield mixed exponential-algebraic solitary waves, 

similar to the classical ‘double pole’ solutions of other evolution systems. 
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1. Introduction 

Resonance often occurs in a nonlinear wave system when special criteria 

among wavenumbers and frequencies are met. Long wave-short wave resonant 

interaction is a classic example, where the phase velocity of a long wave 

matches the group velocity of a short wave. Significant interactions and energy 

transfer can then occur. A physically important example is the waveguide 

configuration for a two-layer fluid,1 – 5) where the short wave envelope on the 

surface and the long wave on the interface make up an intriguing dynamical 

system. 

Rogue or freak waves are unexpectedly large displacements of a sea surface 

from an otherwise calm sea state, and have received intensive study.6 – 12) The 

focusing nonlinear Schrödinger equation, which governs the evolution of a 

weakly nonlinear wave packet in deep water, has frequently been employed as a 

model. A particular localized mode, sometimes known as the ‘Peregrine 

breather’ in the literature, relaxes to a plane wave in the far field but possesses a 

single sharp maximum in amplitude for one localized value in space at one 

specific instance in time.13, 14)  This algebraic soliton thus serves as a plausible 

model for rogue waves. Elegant theoretical extensions to incorporate higher 

order nonlinearities have been performed, and the analytic structures of these 
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solutions have been elucidated.15, 16) Concurrently, similar entities in the optical 

context have been investigated and even demonstrated experimentally to some 

extent.17, 18)  

The objective here is to study ‘explode-decay’ type wave modes for the long 

wave-short wave resonant interaction model. This is valuable from the general 

perspective of nonlinear science, as new families of exact solutions will be 

obtained in this paper for this nonlinear evolution system. Furthermore, the time 

scale for such long-short wave resonance is ε4/3t, where t is the time scale of 

rapid oscillations in the packet and ε is a small, non-dimensional parameter 

measuring the strength of the wave amplitude. The corresponding time scale for 

the nonlinear Schrödinger (NLS) equation is ε2t and thus effects of long-short 

wave resonance can be observed sooner in an asymptotic sense. 

Theoretically, a relatively novel analytical technique will be employed. 

Many studies of rogue waves in the literature utilize the Darboux 

transformation.13, 15) Here the rogue wave modes will be derived from multi-

soliton or multi-breather obtainable from the Hirota bilinear transformation.19) 

Mathematically, this is accomplished by taking a singular limit for solitary 

modes with nearly identical wavenumbers, augmented by special phase factors, 

and thus an appropriate name might be a ‘coalescence of wavenumbers’.20, 21) 

Alternatively these results can also be derived in terms of a ‘double pole’ (or 
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‘multiple pole’) solution in the language of the inverse scattering transform,22, 23) 

where a double pole in the reflection coefficient also leads to these exponential-

algebraic modes. If these procedures are performed in the long wave regime 

(wavenumber tending to zero), one recovers these rogue waves / purely 

algebraic modes. 

The structure of the paper can now be explained. To illustrate our method, a 

special ‘coalescence of wavenumbers’ limit will be taken for the pulsating, or 

‘breather’, solution of the nonlinear Schrödinger equation to recover the 

Peregrine soliton in Section 2. In Section 3, we start by presenting the bilinear 

transform and Lax pair of the long-short interaction system, with a detuning 

parameter incorporated. A breather is then derived through the bilinear method. 

Although such a breather can also be obtained by a Bäcklund transformation 

and the dressing method,24) the bilinear method is conceptually simpler. 

Furthermore, the present effort corrects and generalizes previous work by 

demonstrating that the frequency parameter must be complex and cannot be 

real.25) The first contribution here is to calculate the rogue wave 

(spatiotemporally localized) mode explicitly, by taking a ‘coalescence of 

wavenumbers’ in the long wave limit. In Section 4, this mechanism is 

generalized to the finite wavenumber regime and exact exponential-algebraic 

modes are then obtained accordingly. Such modes will correspond to a ‘double 
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pole’ solution arising from an inverse scattering mechanism. Conclusions are 

drawn in Section 5. 

 

2. The Rogue Wave Solution of the Nonlinear Schrödinger 

Equation 

A breather of the NLS equation, 

iAt +Axx + σA2A* = 0, 

where σ tunes the effect of nonlinear focusing in the system, can be obtained 

from the bilinear calculations,26) 

A = α exp(iσα2t)[1 + g1/f] ,  

(iDt + Dx
2)g1 . f + Dx

2 f . f = 0,     Dx
2f . f = σα2[g1g1* + f(g1 + g1*)] , 

f = exp(px) + exp(–px) + s exp(iωt + iζ) + s exp(– iωt – iζ),  

g1 = λ exp(iωt + iζ) + μ exp(– iωt – iζ),  
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The parameter ζ, originally arising from the flexibility in choosing the 

starting point in time, will now be exploited to take on arbitrary values. In 
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particular, on choosing exp(iζ) = –1 and taking the limit of p approaching zero, 

one obtains 
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the familiar Peregrine breather ‘rogue wave’ solution of the NLS equation. 

 

3. The Long Wave–Short Wave Resonance Model 

The nonlinear evolution systems of the short wave envelope (S) and the 

induced long wave (L) are derived by multiple scale asymptotic expansion of 

the underlying fluid dynamics equations. In scaled coordinates, the equations 

are given by 

iSt  – Sxx = LS,    Lt +ΔLx = – σ(SS*)x ,                                                            (1) 

where Δ is a detuning parameter measuring the deviation from exact resonance. 

The theoretical formulation will be treated by examining two aspects, namely, 

the Hirota bilinear transform and the Lax pair.  

 

3.1 The Hirota bilinear transform 

Using the dependent variable transformation (f real),  

S = g/f, L = 2(log f)xx,                                                                                   (2) 
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the Hirota bilinear form of eq. (1) is (C = constant) 2 – 5) 

(iDt – Dx
2) g . f = 0,       (DxDt + ΔDx

2 – C) f . f = – σgg*.                          (3) 

 

3.2 The Lax pair 

Integrable nonlinear systems can often be investigated by converting them 

into auxiliary linear systems, with the Lax pairs being classic examples. These 

pairs form the basis for a variety of methods, e.g. the Darboux scheme. They 

usually take the form: 

Rx = U·R, 

Rt = V·R. 

Both the compatibility condition and zero-curvature equation, related by 

Rxt = Rtx 

 Ut·R + U·Rt = Vx·R + V·Rx 

 Ut·R + U·V·R = Vx·R + V·U·R 

 Ut – Vx + [U,V] = 0, 

provide a representation of the nonlinear system through the matrices U and V. 

The NLS equation and its conjugate form, 

 iAt + Axx + σ|A|2A = 0, – iAt
* + Axx

* + σ|A*|2A* = 0, 

are encapsulated by 
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Likewise, the long wave-short wave resonance model can be written as, 

iSt – Sxx – LS = 0,     – iSt
* – Sxx

* – LS* = 0,     Lt = – σ(SS*)x, 

where for simplicity we have concentrated on the case Δ = 0. The above system 

can be generated from 
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Importantly, the spectral problem for the long wave-short wave resonance 

model is of the third order, whereas the corresponding problem for the NLS 

equation is of the second order. 

 

3.3 The breather solution for the long wave-short wave resonance model 

The breather solution can in principle be generated from either of these 

formulations. We shall adopt the Hirota approach, as the algebra is slightly 

simpler. The appropriate expansion is (p real, Ω complex) 
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f = 1 + exp(ipx – Ωt + ζ(1)) + exp(– ipx – Ω*t + ζ(2))  

   + M exp(– Ωt – Ω*t + ζ(1)  + ζ(2)), 

(ρ0 = constant = amplitude in the far field)  

g = ρ0[1 + a1exp(ipx – Ωt + ζ(1)) + a2exp(–ipx – Ω*t + ζ(2))  

    + Ma1a2exp(– Ωt – Ω*t + ζ(1) + ζ(2))].                                                         (4) 

The major distinction from the corresponding case of the NLS equation is the 

presence of a complex frequency Ω. ζ(1), ζ(2) are arbitrary phase factors. Using 

the bilinear equations (3), the parameters, a1, a2 are given by 

a1 = – (p2 + iΩ)/(p2 – iΩ),         a2 = – (p2 + iΩ*)/(p2 – iΩ*),                         (5) 

and thus the relations a1* = 1/a2, a2 * = 1/a1 follow. The dispersion relation is 

(Ω – Δpi)(Ω2 + p4) = 2iσρ0
2p3,                                                                        (6) 

and hence for small p, the asymptotic expansion for Ω is 

Ω = p[Ω0 + Ω2p
2 + O(p4)],     

where the leading order frequency Ω0 satisfies 

(Ω0 – Δi)Ω0
2 = 2iσρ0

2.                                                                                                                              (7) 

The coefficient M is given by 

M = 1 + 4p4/[(Ω + Ω*)2]. 
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To obtain a rogue wave mode, we perform a long wave limit expansion 

similar to that done in Section 2. On choosing exp(ζ(1)) = exp(ζ(2)) = –1, we 

obtain rogue wave modes where the short wave component is 
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while the long wave component is given by 
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Ω0 is given by eq. (7). The denominators in eqs. (8, 9) are clearly nonsingular. 

This set of solutions constitutes purely algebraic modes exhibiting ‘explode-

decay’ behavior (Figs. 1, 2). 

 

4.  The Double Pole Solution 

Theoretically this ‘coalescence of wavenumbers’ approach can also be 

applied to the case where the pre-existing wave is of a finite wavelength. The 

nonlinear Schrödinger equation   
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iAt + Axx + |A|2A = 0  

provides an instructive perspective. In addition to a purely algebraic / rogue 

wave mode described in Section 2, there exists another exact, mixed 

exponential-algebraic mode given by  
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This solution was investigated in the 1960s and 1970s using various methods, 

e.g. in terms of merging eigenvalues in the inverse scattering transform and also 

by the dressing methods (reference [20] and works cited therein). Physically 

this and related solutions can be interpreted as weakly bounded groups of 

solitons. For the present discussion, such exponential-algebraic modes can be 

derived by a coalescence of nearly identical wavenumbers at a finite 

wavenumber in a multi-soliton expression, rather than the long wave (zero 

wavenumber) limit of a breather in Section 2.20) Physically, another difference 

between the exponential-algebraic and the rogue wave modes for the present 

system is that the former actually decays in the far field (x or t going to infinity), 

while the latter goes to a constant state. 

For system (1), a straightforward calculation starting from a localized 2-

soliton expression will yield a singularity, as a few coefficients in the Hirota 
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expansion become indefinitely large in the ‘coalescence of wavenumbers’ 

process. An analytical way to avoid this singularity, and to gain a more 

physically realistic picture, can be obtained by incorporating another horizontal 

spatial dimension (y). To simplify the algebraic complexity, we shall now 

ignore the effect of detuning and restrict our attention to a 2-soliton of the long 

wave-short wave model, where the governing equations and an exact expression 

are known from earlier works,3) (F real) 

iSt + iSy – Sxx – LS = 0,     Lt = – σ(SS*)x ,                                                    (10) 

S = G/F ,      L = 2(log F)xx , 

G = exp(η1) + exp(η2)  

+ a(1, 2, 1*) exp(η1 + η2 + η1*) + a(1, 2, 2*) exp(η1 + η2 + η2*), 

F = 1 + a(1, 1*)exp(η1 + η1*) + a(1, 2*)exp(η1 + η2*) + a(2, 1*)exp(η2 + η1*)  

+ a(2, 2*)exp(η2 + η2*) + a(1, 2, 1*, 2*) exp(η1 + η2 + η1* + η2*), 

ηn = pnx + qny – Ωnt + ηn
(0), Ωn = ipn

2 + qn, n = 1, 2, 

a(i, j*) = [(pi + pj*)(Ωi + Ωj*)]–1, a(i, j) = (pi – pj)(Ωi – Ωj),  

a(i*, j*) = [a(i, j)]*, a(i, j, k*) = a(i, j) a(i, k*) a(j, k*), 

a(i, j, k*, l*) = a(i, j) a(i, k*) a(i, l*) a(j, k*) a(j, l*) a(k*, l*). 

On using p1 = p + iε,  p2 = p – iε, q1 = q + imε, q2 = q – imε, exp(η1
(0)) = i/ε, 

exp(η2
(0)) = –i/ε, and by letting ε → 0 we obtain  
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and these solutions also provide an analytical perspective for the failure of a 

calculation using only one spatial dimension. The solution is singular as the 

spanwise wavenumber (q) tends to zero. 

 System (10, 11) will be termed a ‘double pole’ solution, a terminology 

borrowed from the inverse scattering transformation (IST) mechanism. In IST, 

the unknown wave profile is usually determined by studying the reflection and 
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transmission properties of incident waves. In conventional calculations of 

solitons using the Gel’fand-Levitan integral equations, the poles of the 

reflection coefficient are usually of the first order.  

 When the pole is of a higher order, special exact solutions are obtained. 23, 27, 

28) A ‘double pole’ solution usually arises from a singular limit of two solitons 

with opposite signs of amplitudes, and analytically displays both exponential 

and positive definite polynomial functions. For the classical nonlinear 

Schrödinger equation, such double pole solution can also be obtained from the 

multi-soliton expression by a ‘coalescence of wavenumbers’ approach, i.e. a 

singular limit of two nearly equal wavenumbers.20) Consequently, even though 

the merging of poles formulations have not yet been fully worked out for eq. 

(1), we shall still loosely term such expressions as the ‘double pole’ solution.   

 The dynamics of this double pole solution is illustrated in Fig. 3 for some 

typical parameter values. The taller soliton catches up with the shorter one, and 

they exchange identity without actual merging. The analytic structure of |S| 

resembles an ordinary 2-soliton and a heuristic explanation can be offered. The 

long-short system, just like the NLS equation, admits a 2-soliton breather,29) 

where two solitary pulses with nearly equal frequencies pulsate periodically. 

This ‘coalescence of wavenumbers’ destroys this beating behavior and the 

oscillatory character of the amplitudes disappears, as confirmed in Fig. 3. The 
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analytical structure of eq. (11) is similar to those double pole solutions of the 

NLS and the modified Korteweg-de Vries equations, but details of the inverse 

scattering mechanism applied to eq. (10) and a comparison with the present 

result will be left for future investigations. 

 

5. Conclusions 

The long wave-short wave resonance model arises as a simplified model of 

certain circumstances in the dynamics of the upper ocean, as well as other 

physical contexts. Theoretically it admits both the Hirota bilinear transform and 

Lax pair formulations. In this paper, both purely algebraic and exponential-

algebraic modes are derived. The critical difference between the nonlinear 

Schrödinger equation and the present long-short wave system is the nature of 

the dispersion relation, namely, the breather solution of the latter must have a 

complex frequency solvable from a cubic polynomial. Purely algebraic modes 

are obtained from a singular limit in the long wave regime. The exponential-

algebraic modes are derived from a similar procedure applied in the realm of 

finite wavenumber. 

There are many directions for future works from both the theoretical and 

practical perspectives. A higher order breather solution can be constructed, and 

from there analytic structures of multiple rogue wave modes can be studied. 
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The effects of the detuning parameter on the evolution and stability of wave 

trains can be investigated numerically, and will provide useful insight into the 

dynamics of the upper ocean. Furthermore, a breather periodic in time and 

spatially localized in space can be calculated, similar to the situation for the 

NLS equation, but technical details remain to be worked out. Finally, this whole 

mechanism can in principle be applied to other integrable nonlinear evolution 

equations, generating exact solutions and information for further research in 

nonlinear evolution equations.   
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Figures Captions 

(1) Fig. 1: Intensity of the short wave envelope |S|2 (eq. (8)) of the rogue 

wave mode versus x and t: Δ = 0.1, σ = 1, ρ0 = 1, (a) three dimensional view; (b) 

top view. 

(2) Fig. 2: The long wave L (eq. (9)) of the rogue wave mode versus x and 

t: Δ = 0.1, σ = 1, ρ0 = 1, (a) three dimensional view; (b) top view. 

(3) Fig. 3: The interaction of solitary pulses in a ‘double pole’ solution 

(eq. (11)), |S|2 = |G/F|2, p = 1, q = 0.1, m = 1: (a) t = –20 (just before the 

interaction), (b) t = 0 (just after the interaction). 
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Fig. 1(a) 
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Fig. 1(b) 
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Fig. 2(a) 
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Fig. 2(b) 
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Fig. 3(a) 

 

 

 



 

 26

 

 

Fig. 3(b) 

 


