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The conventional definition of rogue waves in the ocean is that their heights, from crest to trough, are

more than about twice the significant wave height, which is the average wave height of the largest one-

third of nearby waves. When modeling deep water waves using the nonlinear Schrödinger equation, the

most likely candidate satisfying this criterion is the so-called Peregrine solution. It is localized in both

space and time, thus describing a unique wave event. Until now, experiments specifically designed for

observation of breather states in the evolution of deep water waves have never been made in this double

limit. In the present work, we present the first experimental results with observations of the Peregrine

soliton in a water wave tank.
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Today, there is widespread consensus on the existence of

rogue waves in the ocean [1–3]. A number of mechanisms

have been proposed to explain their unexpected emer-

gence. One of the essential elements in many of these

explanations is the idea that rogue waves could be related

to breather-type solutions of the underlying evolution

equations [4–6]. Such solutions could, in principle, de-

scribe a large wave that appears from nowhere and dis-

appears without a trace [7], a behavior that has been

reported for many known rogue wave events. One of the

most direct approaches to modeling the evolution of grav-

ity water waves is the use of the nonlinear Schrödinger

equation (NLS) [4,8,9], which is known to be good for

capturing weakly nonlinear evolution of narrow-band pro-

cesses. It is now already more than 30 years since the first

breather-type solution of the NLS was found by Ma [10].

This solitonlike solution breathes temporally but is spa-

tially localized. Taking the temporal period of this solution

to infinity, Peregrine, in 1983, gave a solution localized in

both space and time [11]. Akhmediev has found a family of

solutions [12,13] qualitatively different fromMa breathers.

These solutions breathe spatially but are localized in time.

Simply speaking, Akhmediev breathers are exact solutions

of the NLS that start from modulation instability of a plane

wave [13] (also known as a Benjamin-Feir [14–17] or

Bespalov-Talanov instability) and return to a plane wave

at the end of the evolution. Remarkably, the Peregrine

solution is also a limiting case of an Akhmediev breather

when the spatial period is taken to be infinite.

Surprisingly, to date, there does not seem to be any

published study focusing on direct experimental observa-

tion of any of the above described breather solutions in a

physical wave tank. Although a number of experimental

investigations have focused on the Benjamin-Feir instabil-

ity and focusing-defocusing issues (see, e.g., [18] for the

most recent work), none of these studies seems to have

focused on generating and studying breather solutions with

complete growth-decay cycles. The question of how well

breather solutions of the NLS would correspond to breather

solutions of physical surface gravity waves has thus gen-

erated discussions. But sound comparison between experi-

mental data and the NLS-based prediction is still lacking,

although such a comparison is generally considered to be

an important issue, since many authors have realized that

breather solutions might be closely related to rogue waves

in the ocean [4–7].

In the present study (i) we observe a Peregrine-type

breather solution experimentally in a water wave tank,

and (ii) we make a direct comparison of measured results

with the predictions of the analytical solutions of the NLS.

These comparisons bring us to the conclusion that our

experiment is the first observation of an isolated rogue

wave in a water wave tank.

Deep water waves can be described by the NLS, first

derived by Zakharov [16]:
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where t and x are time and longitudinal coordinates,

while k0 and !0 ¼ !ðk0Þ denote the wave number and

the frequency of the carrier wave, respectively. !0 and

k0 are linked by the dispersion relation of the linear deep

water wave theory, !0 ¼
ffiffiffiffiffiffiffiffi

gk0
p

, where g denotes the

gravitational acceleration. Accordingly, the group velo-

city is cg :¼ d!
dk
jk¼k0

¼ !0

2k0
. The surface elevation �ðx; tÞ

of the sea water is then given by �ðx; tÞ ¼
Refaðx; tÞ exp½iðk0x�!0tÞ�g.
A dimensionless form of the NLS [19],

iqT þ qXX þ 2jqj2q ¼ 0; (2)

is obtained from (1) by using the rescaled variables:
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t; X ¼ x� cgt ¼ x� !0

2k0
t;

q ¼
ffiffiffi

2
p

k20a:

Here, X is the coordinate in the frame moving with the

wave group velocity, and T is the time. Note that for a 2 R

the scaling transformation X ! aX, T ! a2T, q ! q
a

leaves the NLS (2) invariant. This implies that if qðX; TÞ
is a solution of (2), then so is aqðaX; a2TÞ. Initial value
problems involving the NLS can be solved by using the

inverse scattering transform [19]. On the other hand, there

are a number of exact solutions to the NLS that describe

various simpler physical situations. In particular, a number

of stationary solutions and nonstationary breather-type

solutions are known. Ma [10] found a breather solution of

(2), which is periodic in time and tends to the plane wave

solution as X ! �1:

qMðX;TÞ¼
cosð�T�2i’Þ�coshð’ÞcoshðpXÞ

cosð�TÞ�coshð’ÞcoshðpXÞ eð2iTÞ; (3)

� ¼ 2 sinhð2’Þ, p ¼ 2 sinhð’Þ and’ 2 R. Simply speak-

ing, Eq. (3) is a soliton on a background. A similar solution

for the NLS with an additional term has been found by

Kuznetsov [20]. Akhmediev [12,13] proved the existence

of a family of space-periodic solutions of (2) which ap-

proaches the plane wave as T ! �1:

qAðX;TÞ¼
coshð�T�2i’Þ�cosð’ÞcosðpXÞ

coshð�TÞ�cosð’ÞcosðpXÞ eð2iTÞ; (4)

where � ¼ 2 sinð2’Þ, p ¼ 2 sinð’Þ, and ’ 2 R. It is easy

to show that Eq. (4) is an exact solution of the NLS that

starts with modulation instability [13].

The Peregrine breather [11] can be understood as a

limiting case of the solutions (3) and (4) when ’ ! 0,
i.e., when the period of either solution becomes infinite:

qPðX; TÞ ¼ lim
’!0

qAðX; TÞ ¼ lim
’!0

qMðX; TÞ

¼
�

1� 4ð1þ 4iTÞ
1þ 4X2 þ 16T2

�

eð2iTÞ: (5)

A remarkable feature of this solution is that it is localized

in both space and time, and, as such, it describes unique

wave events. Namely, it breathes only once and describes a

single wave that appears from nowhere and disappears

without a trace. Figure 1 shows this solution, demonstrat-

ing clearly its spatial and temporal localization. Since the

Peregrine breather is the simplest solution of the NLS

which is localized in both space and time (the whole

hierarchy is much more complicated [7]), it has been

conjectured to sort of form a prototype for rogue waves,

in general, and also in the ocean [5,6]. However, there has

been no observational or experimental confirmation of this.

Observations of rogue waves in the ocean are rare and

therefore typically incomplete, and experiments in the

open ocean are dangerous and virtually impossible.

Experiments in water wave tanks, until now, do not seem

to have been conducted, either. Recent experiments in fiber

optics [21] are impressive but cannot be automatically

assumed to describe water waves.

We have performed the experiments in a 15 m�
1:6 m� 1:5 m water wave tank with 1 m water depth.

The tank is depicted schematically in Fig. 2. A single-

flap paddle activated by a hydraulic cylinder is located at

one end of the tank. To avoid wave reflections from the

opposite end of the tank, there is a wave-absorbing beach

there. The surface elevation of water at a given point is

measured by a capacitance wave gauge with a sensitivity of

1:06 V=cm and a sampling frequency of 500 Hz.

In order to describe experimental results, the Peregrine

breather solution has to be written in dimensional units.

With that aim, we apply the transformation [4]

aX !
ffiffiffi

2
p

k20a0ðx� cgtÞ; a2T ! � k20a
2
0!0

4
t: (6)

Thus, the solution becomes

FIG. 1 (color online). Peregrine breather solution (5). The

maximum amplitude, which occurs at X ¼ 0, T ¼ 0, is a factor

of 3 higher than the background carrier wave. Note also the

sharp drops in the amplitude (troughs) on either side of the

maximum.

FIG. 2 (color online). Schematic illustration of the water

wave tank.
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Before starting the first experiments, we expected that

the main experimental difficulty would be in determining

the flap kinematics. Ideally, the water motion created

by the flap should correspond to the initial conditions given

by the Peregrine breather solution at the starting side

of the tank. As a first step, the flap displacement was

chosen to be proportional to the surface height of the

breather solution to be generated. Surprisingly, the result-

ing wave dynamics, described below, was so close to the

analytical predictions that we concluded that the excitation

arrangement turned out to be perfectly sufficient for the

present study. All experiments described below were there-

fore performed with a flap motion which was directly

proportional to the surface elevation given by (7) at the

side where we define the initial conditions.

An important point is that the Peregrine soliton is lo-

cated on a background wave which provides energy for its

growth. The choice for the parameters of this wave is

dictated by the size of the tank. In all tests, the dimensional

far-field amplitude of the background was selected to be

a0 ¼ 0:01 m. The wavelength of the carrier has been set to

� ¼ 0:54 m, corresponding to a wave number of about

k0 ¼ 11:63 m�1 and an angular frequency of about

!0 ¼ 10:7 s�1. These values have been chosen in order

to ensure that the wavelength is large enough to ignore

effects of surface tension but still small enough to have

sufficient tank length to develop the wave evolution de-

scribed by Eq. (7). The wavelength also has to be small

enough for the whole arrangement to be sufficiently close

to the deep water limit.

Once the dimensional Peregrine breather solution is

defined and the background wave parameters are specified,

the theoretical spatiotemporal surface-height distribution

in dimensional units is given by

�ðx; tÞ ¼ RefqPðx; tÞ exp½iðk0x�!0tÞ�g: (8)

This formula is used both to determine the initial condi-

tions for the wave maker’s paddle motion and for compar-

ing measured surface-height time series with theoretical

predictions. The position where the rogue wave develops

its maximum amplitude depends on the initial conditions at

the wave maker. In order to demonstrate the evolution of a

nearly periodic Stokes wave towards the most extreme

wave state, we have initially chosen the position of the

maximum as far in the direction of wave propagation in the

channel as feasible. Figure 3 shows the results.

We arranged a carrier wave yielding the maximum

breather amplitude about 9 m along the tank. Water

surface-height data have been collected at ten positions,

with equal separations of 1 m, along the direction of wave

propagation. The measurements show that the wave is

essentially sinusoidal when close to the flap. This can be

seen clearly from the wave profile measured at 10 cm next

to the mean flap position. The flap motion produces a

periodic wave with about 1 cm amplitude, with a brief

increase of modulation above that level to about 1.4 cm in

the middle of the packet. Measurements at further dis-

tances from the wave maker show, surprisingly well, the

process of amplitude growth of this perturbation which

remains strongly localized and moves along with group

velocity.

The top curve in Fig. 3 is measured at the position where

we expect the growing rogue wave to have its maximum

amplitude. A closer look at this last time series at

x ¼ 9:1 m also shows that the almost perfect periodicity

of the background wave packet is slightly disturbed.

Namely, reflected waves from the absorbing beach at the

end of the tank can already be seen at the end of the wave

packet. However, they arrive at the position where the

measurements are taken only after the breather has already

passed. Interference with the waves reflected from the

absorbing beach makes it difficult in the present wave
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FIG. 3 (color online). Temporal evolution of the water surface

height at various distances from the wave maker.
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FIG. 4 (color online). Peregrine soliton measured at the grow-

ing, as well as decaying, stages of its evolution.

PRL 106, 204502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

204502-3



tank to visualize the decay of the localized solution with

the same quality as its growth. To overcome this limitation

of our apparatus, we programed the motion of the wave

maker to create initial conditions that bring the extreme

state closer to the starting point of the wave propagation.

The results of these measurements are shown in Fig. 4.

Here we have chosen the position of the maximum ampli-

tude to be about 6.3 m from the wave maker. This choice

gives us a chance to watch the decaying stage of the rogue

wave. Indeed, the measurements taken at 9.3 m further

down the tank show that the amplitude of the perturbation

decreases.

Our experimental observation of the localization of the

wave energy in both space and time is a confirmation of the

existence of Peregrine solitons on the water surface, thus

confirming the existence of rogue waves ‘‘that appear from

nowhere.’’ The theoretical prediction from the Peregrine

solution suggests that the carrier wave surface elevation

should be amplified by a factor of 3. The measurements

come very close to this value. Figure 5 represents a surface-

height measurement at a position close to the presumed

maximum envelope amplitude. While the carrier wave has

an amplitude of about one centimeter, the surface height

of the ‘‘maximum wave’’ of the breather almost exactly

reaches a value of three centimeters.

By comparing the measured time series (solid line) with

the curve predicted by the Peregrine solution (dashed line),

the agreement can be considered to be reasonable. First, the

periodic wave state reveals a deep trough right next to the

breather’s maximum wave on either side of the wave crest.

The wave height from crest to trough here is almost

2.5 times larger than the average wave height around the

perturbation. This measure by itself satisfies the definition

of a rogue wave, for which the wave height should exceed

at least 2.2 times the significant wave height [22]. Second,

the return from the state of the extreme wave back to the

state of a periodic wave in the experiment is almost

symmetric in time, just as in theory. We attribute this

correspondence to the narrowness of the frequency spec-

trum in this particular problem. The spectrum of the

Peregrine soliton consists of the delta function defined by

the background monochromatic wave plus a small devia-

tion from it in the form of a triangular spectrum. We

confirmed, experimentally, that the whole spectrum re-

mains narrow as required for the NLS to be valid.

Nevertheless, some asymmetry in the surface elevation

can be noticed and will be the subject of future studies

taking into account extended modeling approaches.

A. C. and N. P. H. thank M.-A. Pick for support with the

experimental setup and C. Weiß and O. Mahrenholtz for

discussions concerning the experiments. N.A. and N. P. H.

acknowledge the support of the VolkswagenStiftung. N.A.

acknowledges partial support of the Australian Research

Council (Discovery Project No. DP110102068). N.A. is

supported by a Alexander von Humboldt Award.

*amin.chabchoub@tuhh.de

[1] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves

in the Ocean (Springer, New York, 2009).

[2] C. Garrett and J. Gemmrich, Phys. Today 62, No. 16, 57

(2009).

[3] P. Müller, C. Garrett, and A. Osborne, Oceanography 18,

66 (2005).

[4] A. Osborne, Nonlinear Ocean Waves and the Inverse

Scattering Transform (Elsevier, New York, 2010).

[5] K. B. Dysthe and K. Trulsen, Phys. Scr. T82, 48 (1999).

[6] V. I. Shrira and V.V. Geogjaev, J. Eng. Math. 67, 11

(2009).

[7] N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A

373, 675 (2009).

[8] H. C. Yuen and B.M. Lake, Phys. Fluids 18, 956 (1975).

[9] B.M. Lake et al., J. Fluid Mech. 83, 49 (1977).

[10] Y. C. Ma, Stud. Appl. Math. 60, 43 (1979).

[11] D. H. Peregrine, J. Aust. Math. Soc. Series B, Appl. Math.

25, 16 (1983).

[12] N. Akhmediev, V.M. Eleonskii, and N. Kulagin, Zh. Eksp.

Teor. Fiz. 98, 1542 (1985).

[13] N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69,

1089 (1986).

[14] M. J. Lighthill, J. Inst. Math. Appl. 1, 269 (1965).

[15] T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417

(1967).

[16] V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).

[17] H. C. Yuen and B.M. Lake, Adv. Appl. Mech. 22, 67

(1982).

[18] N. Karjanto and E. Van Groesen, J. Hydro-environment

Res. 3, 186 (2010).

[19] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62

(1972).

[20] E. Kuznetsov, Dokl. Akad. Nauk SSSR 235, 575 (1977).

[21] B. Kibler et al., Nature Phys. 6, 790 (2010).

[22] Rogue waves—Towards a unifying concept?: Discussions

and debates [Eur. Phys. J. Special Topics 185, 5 (2010)].

0 2 4 6 8 10 12

−0.02

−0.01

0

0.01

0.02

0.03

Time t (s)

S
u
rf

a
c
e
 e

le
v
a
ti

o
n
 (

m
)

FIG. 5 (color online). Comparison of measured surface height

at the position of maximum rogue wave amplitude (solid line)

with the theoretical Peregrine solution (dashed line) evaluated at

X ¼ 0.
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