
Ankiewicz N-D manuscript No.
(will be inserted by the editor)

Rogue wave-type solutions of the mKdV equation and their
relation to known NLSE rogue wave solutions

A. Ankiewicz · N. Akhmediev

Received: date / Accepted: date

Abstract We present the first four exact rational

solutions of the set of rational solutions of the modi-

fied Korteweg de Vries (mKdV) equation. These so-

lutions can be considered as rogue waves of the corre-

sponding equation. Comparison with rogue wave so-

lutions of the nonlinear Schrödinger equation (NLSE)

shows a strong analogy between their characteris-

tics, especially for amplitude-to-background ratio.

The new solutions may be useful in the theory of

rogue waves in shallow water and for light propaga-

tion in cubic nonlinear media involving only a few

optical cycles.

Keywords Rogue waves · modified Korteweg de

Vries

1 Introduction.

Rogue waves are unexpectedly high amplitude single

waves that appear ”from nowhere” [1]. Rogue waves

are known to appear both in the open ocean and in

coastal areas [2]. The physical difference in the two

cases is the depth of water. Deep water waves are

commonly described by the nonlinear Schrödinger

equation (NLSE) [3]. Shallow water waves are de-

scribed by the Korteweg de Vries (KdV) equation [4,

5]. There are several other model equations for shal-

low water waves, such as the modified KdV (mKdV)

[6] and Camassa-Holm [7] equations. The mKdV equa-

tion is also used in the analysis of optical soliton

propagation in cubic nonlinear media involving ultra-

short pulses where only a few optical cycles are present
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[8]. Solutions of KdV and mKdV equations are re-

lated through the Miura transformation [9].

The first mathematical description of NLSE rogue

waves was given in [10]. Namely, it was suggested

that rogue waves are the solutions of nonlinear evo-

lution equations that are localized both in space and

time. As an example of such treatment, the two low-

est order doubly-localized solutions of the nonlinear

Schrödinger equation (NLSE) were given in [10]. In-

deed, the lowest order solution, namely the ‘Pere-

grine’ rational solution has been independently con-

sidered as a prototype of an oceanic rogue wave in

[11].

There is a set of NLSE solutions with progres-

sively increasing amplitude. There are infinitely many

and they can be viewed as higher-order rogue waves

[12]. These solutions can be classified according to

the number of fundamental rogue waves that they

contain [13]. There are also other equations that ad-

mit analogous sets of rogue wave solutions. These in-

clude the Hirota equation [14,15], Davey-Stewartson

equation [16,17], Sasa-Satsuma equation [18,19] and

others. These can be extensions of the NLSE [20,21]

or belong to other integrable hierarchies.

Standard soliton solutions and multi-soliton so-

lutions of the KdV and mKdV equations are well-

known. The subject of rogue waves has only emerged

in recent years and it is still not well established.

Definitions and mathematical models still need to

be clarified. There has been some consideration of

’rogue periodic waves’ of the mKdV equation [22].

On the other hand, presently, no (non-periodic) rogue

wave solutions are known for KdV and mKdV equa-

tions. In this work, we fill this knowledge gap, sug-

gesting that rogue wave solutions do exist, at least

in the case of the mKdV equation. Namely, we pro-
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vide such a set of rational solutions to the mKdV

equation and compare it to the known rogue wave

solutions of the NLSE. There are certain common

mathematical features of the solutions that allow us

to claim that the set of rational mKdV solutions

considered here do represent rogue waves.

Let us start with the case of the NLSE equation

[23,24]:

iψx +
1

2

∂2ψ

∂t2
+ |ψ|2ψ = 0, (1)

where x is the normalized propagation distance, t is

the retarded time in a reference frame moving with

the group velocity and the complex function ψ(x, t)

is the water wave envelope. This setting of variables

is one of the two possible alternatives [1].

The lowest order rogue wave solution of NLSE is

known as the ‘Peregrine solution’:

ψ =

[
4

1 + 2ix

1 + 4x2 + 4t2
− 1

]
eix. (2)

It is a rational solution with the lowest order poly-

nomials in the numerator and denominator. Higher

order solutions involve polynomials of higher degree.

They can be derived using several known techniques.

The solution (2) is located on a background |ψ| = 1.

Relative to this background, it is localized both

in time and space. Higher-order solutions have the

same property, while the central amplitude in-

creases with the order of the solution [10,12,13].

The mKdV equation has the form:

ψx + βψ2ψt − γ3ψttt = 0, (3)

where the variables x and t have the same meaning

as in Eq.(1) while ψ(x, t) is a real function describ-

ing the wave form directly rather than its envelope.

The values β and γ3 are the nonlinear and dispersion

coefficients, respectively. Although they can be elim-

inated by rescaling time and the amplitude, in the

present work, we keep them as independent parame-

ters. The reason is that equation (1) and the complex

form of Eq.(3) belong to the same hierarchy of in-

tegrable equations [20,21] and the variables in these

equations can be related. Below, we present the set

of rational solutions of Eq.(3) which take the form

of rogue waves with progressively increasing ampli-

tude, and show their connection to the set of rational

solutions of the NLSE.

Some rational solutions for the case of mKdV

have been given earlier [25–30]. In particular, the

first and second order solutions presented here have

been given in [30]. Rational mKdV solutions of up to

second order, in addition to non-singular complexi-

ton solutions, have also been obtained by Zhaqilao

et al. in [31]. However, some higher-order solutions

presented here, and the finding that they essentially

describe rogue waves, are new.

The recent work of Sluniaev and Efim Pelinovsky

[32] discloses the role of soliton and breather inter-

actions in the formation of rogue waves within the

framework of the integrable modified Korteweg–de

Vries (MKdV) equation. The main focus of atten-

tion in [32] relates to calculating the amplitudes of

the resultant rogue waves. It shows that the focused

wave amplitude is exactly the sum of the focusing

soliton heights. In other words, it shows that the fo-

cusing of solitary waves or/and breathers leads to

rogue-wave-type dynamics, representing a new non-

linear mechanism of rogue wave generation. Here,

we provide explicit rational solutions of the mKdV

equation in order to show that collisions of travelling

waves lead to the generation of rogue waves.

The backgrounds of the rogue wave solutions of

the NLSE are completely flat, but this is not the case

for the rational solutions of the mKdV equation (3).

Instead, they have additional ”solitons” on a back-

ground that extends to infinity in a fixed direction.

Nevertheless, for higher order solutions, the central

amplitude is higher than both the background and

the amplitude of these ”solitons”. Therefore, the cen-

tral peak can be viewed as a rogue wave, although

it always appears on top of these ”solitons”, rather

than on a flat background. Thus, with these caveats,

we can label the new higher-order solutions presented

below as ”rogue waves”. This approach is in agree-

ment with the views expressed in the work of Slu-

niaev and Efim Pelinovsky [32]. In presenting the

new solutions, we limit ourselves to fixed unit back-

grounds (ψ = ±1), since any other background can

be obtained by a simple rescaling [24]. The sign of
the mKdV solutions can be chosen freely and can be

changed to the opposite with no limitation of gener-

ality. Presenting rogue wave solutions, we naturally

choose the positive sign for the maximum amplitude

of the solution. Then the sign of the background may

appear positive or negative depending on the order

of the solution. This property is similar to the higher-

order rogue wave solutions of the NLSE [33].

2 First order rational solutions

The first order rational solution can be written as:

ψ1 =
12γ3

3γ3 − 2β(t− βx)2
− 1, (4)

where velocity v = β. This solution, as well as all

others below, can be checked by direct substitution
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into Eq.(3). The plot of the solution is presented in

Fig.1 for a particular choice of the two free param-

eters. It resembles a soliton with a fixed velocity v.

It has a similar 3D profile for any other set of the

parameters, except for the case when v → 0. Then

the soliton increases its width, being transformed in

the actual limit into a new background, ψ = 3.

Fig. 1 First order rational solution, Eq.(4), of mKdV.
Here γ3 = 1 and β = −12.

The maximal amplitude of the solution is along

the line t = xv. Remarkably, the maximum ψ = 3 is

the same as that for the first order NLSE rogue wave

(2). However, the background level here is −1. Thus,

the maximum is 4 units higher that the background.

3 Second order rational solutions

We omit algebra and present the second order solu-

tion in terms of two polynomials, G2 and D2:

ψ2 =
12G2

D2
+ 1. (5)

Here,

G2 = 3− (6ax+ bt)
[
(6ax+ bt)3 + 6(22ax+ bt)

]
and

D2 = 12ax
[
243(2a)4x4(ax+ bt)

+bt
(
3b4t4 − 2b2t2 + 51

)
+72a2btx2

(
5b2t2 − 9

)
+108a3x3

(
15b2t2 − 13

)
+3ax

(
15b4t4 − 30b2t2 + 139

) ]
+b6t6 + 3b4t4 + 27b2t2 + 9.

where the composite coefficients a = b3γ3/4 and

b =

√
−2β

3γ3

are either both positive or both purely imaginary. In

either case, the solution ψ2 is real, so all real equation

parameters are allowed.

Fig. 2 Second order rational solution, Eq.(5), of mKdV.
Here γ3 = 1, β = −6. The minimum is −3 and this occurs
near the line t = −6x when |x| is large enough.

The maximum of the solution Eq.(5) at the point

(0, 0) is 5. This is the same as the maximum of the

second order NLSE rogue wave solution, even though

the equation has no NLSE component. The wave

profile resembles a peak on top of a moving soliton.

As the peak is higher than the soliton, the central

bump can be interpreted as a rogue wave.

The profile of the solution Eq.(5) is shown in

Fig.2 for β = −6. The solution looks similar for any

other choice of parameters except for the limiting

case β → 0 when the central bump spreads and ap-

proaches a flat background equal to 5. For β = −6,

when x is not very close to zero, there is a ’valley’

along the curve which looks roughly like the straight

line t = −6x. Actually the curve is given by the

formula t = sign(x)|6x|1/3 − 6x.

4 Third order rational solution

The general third order rational solution is:

ψ3 =
24G3

D3
− 1, (6)

where

G3 = 4{800c3x3z + 150c2x2
(
16z4 − 8z2 + 5

)
+120cxz

(
−16z4 + 40z2 + 15

)
+z2

[
8z2(32z6 + 120z4 + 420z2

−225)− 675
]
}+ 675,
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and

D3 = 2025 + 8{800c4x4 − 800c3x3z(−3 + 4z2)

+30c2x2(165− 180z2 + 240z4 + 64z6)

+10cxz[−675 + 32z2(45− 27z2 + 8z6)]

+z2
[
6075 + 2z2(3375 + 16z2[585

+135z2 + 24z4 + 16z6])
]
}.

Here, complex coefficients z = 1
4 (2bt− cx) and

b =

√
−2β

3γ3
,

while c = −3b3γ3. Again, a and c are either both

positive or both purely imaginary. In either case, the

solution ψ3 is real, so all real equation parameters

are allowed.

The third-order solution has higher-order poly-

nomials G3 and D3 in comparison to the previous

solutions. The plot of this 3-rd order rational solu-

tion is shown in Fig.3. The highest point of the plot

is at the centre. It is equal to 7. The background is

−1, thus, the maximum is 8 units above the back-

ground. The peak surely can be considered as a rogue

wave. This plot vaguely resembles collision of 2 mov-

ing bright solitons while the ”solitons” are roughly

parallel at infinity.

Fig. 3 The plot of the third order rational solution,
Eq.(6) when γ3 = 1, β = −12. The composite coefficients
are b = 2

√
2 and c = −48

√
2. The minimum is around

−3.3 and this occurs at 2 valley points close to the centre.
The ridges have heights around 3. The maximum occurs at
the origin. It is 7, being the highest point of the solution.

5 Fourth order rational solutions

The exact solutions can be calculated to any order.

We restrict ourselves to the fourth-order solution as

the expressions become too lengthy for journal pre-

sentation. Thus, the general fourth order rational so-

lution is given by

ψ4 =
40G4

D4
+ 1, (7)

where the bulky polynomials G4 and D4 are given in

the Appendix. A plot of this solution is presented in

Fig.4 for one set of parameters. The maximum of the

solution at the origin is 9. It has the same qualitative

features for any other set of parameters.

Fig. 4 Fourth order rational solution, Eq.(7), for the set
of parameters γ3 = 1, β = −12. The composite coefficient
d =

√
2. The maximum is now 9 and the background is

+1.

6 Common features with the NLSE rogue

waves

Figs. 2-4 of the previous Sections demonstrate clearly

that the rational solutions have maximum amplitude

at the centre. These peaks can be interpreted as the

collision point of the localized travelling waves or

solitons. Near the maximal wave points, they can

also be considered as rogue waves. This interpreta-

tion has been suggested in several previous works in-

cluding [32] for the case of mKdV. A detailed math-

ematical comparison with the rogue waves of the

NLSE shows that this interpretation has deeper roots

than it may appear from a first glance. Let us com-

pare the maximal amplitudes relative to the back-

ground levels of the solutions. The main parameter

of the rogue wave is the wave amplification which is

the absolute value of the ratio of the wave maximum

to the background level. This ratio for the mKdV

turns out to be the same as for the NLSE. A few
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other mathematical features of the solutions for the

two cases also are found to be the same.

In Table 1, we summarize the findings. The first

column in the table shows the order of the solution

while the second and third columns show the power

of the polynomials involved in each solution. The

fourth column shows the background level. This is

either +1 or −1. Finally, the last column provides

the maximum value of the solutions.

The most intriguing finding deduced from our

calculations is that these rational solutions of 3rd or-

der PDEs, with no NLSE components, still show fea-

tures of the rogue waves associated with the NLSE.

Namely, for the rogue wave of order j, the highest

power in the denominator polynomial is j(j + 1),

the background level is (−1)j and the central maxi-

mum value is 2j+1. These analytical expressions are

shown in the last row of Table 1. Remarkably, they

are exactly the same as the values for NLSE rogue

waves given earlier [33]. Naturally, we can consider

the new solutions being analogs of the NLSE cases.

As the equation is real, it directly describes the wave

profiles rather than giving NLSE-type envelope func-

tions. We assume that there should be a limiting

transition between the solutions of the NLS and the

mKdV equations. However, finding this transition is

beyond the scope of the present work.

j HP (Gj) HP (Dj) background max.
1 0 2 -1 3
2 4 6 +1 5
3 10 12 -1 7
4 18 20 +1 9
j j(j + 1)− 2 j(j + 1) (−1)j 2j + 1

Table 1 Main features of rational solutions of order j.
Here, HP (Gj) is the highest power occurring in the nu-
merator, while HP (Dj) is the highest power occurring in
the denominator.

As we deal with an odd order equation, all the

solutions show velocity effects on propagation. The

ridges and valleys of the solutions resemble ’soli-

tons’ propagating with velocities close to β, and they

persist indefinitely. Thus, the rogue waves of these

equations have additional tails spreading to infinity.

Nevertheless, the central elevation of these solutions,

which is higher than the background, may appear at

any position along these ridges. This position is nor-

mally defined by the initial conditions. Therefore,

we can describe the central bumps of these solutions

as waves that ’appear from nowhere and disappear

without a trace’, thus providing an excellent analogy

with NLSE rogue waves [10].

7 Conclusions

We have shown that a set of polynomial rational so-

lutions exists for the mKdV as a 3rd order equation.

The new solutions possess the main features of rogue

waves, just like the rational solutions of the NLSE.

For the first order solution, the maximum value oc-

curs along a ridge. For higher-order solutions, their

maximum values are higher than the wave ampli-

tudes around them. Each peak is tied to the ridges

of the solution, but can be located anywhere along

it.

Mathematically, a rogue wave is a solution of an

evolution equation which is localized both in time

and space and which features a high amplitude peak.

The Peregrine solution of the NLSE is one example

of a rogue wave that falls into this category. Our

second to fourth-order solutions of the mKdV also

satisfy this definition. Thus, they can be considered

as new examples of rogue waves for this equation.

Moreover, as Table 1 shows, some parameters of the

rogue wave hierarchies, such as the maximum ampli-

tude relative to the background level, are the same

for the two equations. Thus, there are strong rea-

sons to view the family of rational solutions found

in our work as rogue waves of the mKdV. The fact,

that the solution parameters of these rogue waves,

expressed in analytical form, are exactly the same

as for the rogue waves of the NLSE may have far-

reaching consequences for the relation between the

NLSE and the mKdV rogue wave solutions. We leave

finding this relation for future analysis.

As the mKdV is integrable, in principle, the whole

set of solutions of arbitrary (jth) order could be

found in analytical form. As the complexity of the so-

lutions increases dramatically with j, the fifth-order

solution is expected to occupy more than a standard

journal page. Consequently, we leave presentation of

such higher-order solutions for future studies.

One more problem to address is the stability of

the solutions. This is a complex problem that can

be separated into stability of relative to: (1) per-

turbations on the solutions, and (2) perturbations

on the governing equation itself. The results in each

case differ significantly, as the previous studies of the

NLSE case reveal [34]. Clearly, this is another com-

plex issue that cannot be fully solved in the frame of

a single publication. Rogue waves are limited in both

space and time, and so do not remain stable in the

sense of a soliton that can persist forever. Thus “ro-

bustness” is a better term than “stability” for rogue

waves.
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The issue of the modulational stability of a plane

(background) wave for the mKdV has been stud-

ied in [35]. If we convert notation (thus setting the

dispersion coefficient, γ3 to -1), then the results in

[35] show that a plane wave is modulationally sta-

ble when β < 0 (i.e. for the ’defocussing’ case) and

modulationally unstable when β > 0 (i.e. for the

’focussing’ case).

Clearly, interesting topics remain for future work.

Appendix

Here, we provide the polynomials appearing in the

fourth-order solution given by Eq.(7). Namely,

G4 = 4465125− 4
[
12250(16d t)5(dt− 6y)

−g1 − g3 + g2 + g0
]
,

where

g0 = 384d(g5 − 992250)ty + (g7 + 355721625)y2,

g1 = 3675(16d t)4
(
32y6 − 830y2 − 45

)
,

g2 = 210(4d t)2
[
8(g4 + 3019275)y2 + 14175

]
,

g3 = 700(8d t)3y[16
(
112y6 − 5808y4 + 882y2

+50785
)
y2 + 135135]

g4 = 2y2[16
(
48y6 + 2456y4 − 63975y2

+18585
)
y2 + 4621925],

g5 = y2
[
8(g6 − 37241225)y2 − 158704875

]
,

g6 = 2y2[16y2
(
16y6 − 840y4 − 23485y2

+422275
)
− 2720025],

g7 = 16y2
[
4(g8 + 335264125)y2 + 1090648125

]
,

g8 = 2y2
[
4(g9 − 23649465)y2 + 44942625

]
,

and

g9 = 8y2
[
4
(
4y4 − 69y2 + 2745

)
y2 + 209405

]
.

Now, the polynomial in the denominator is given

by

D4 = 8{700(8d t)3[120d(d9 + 1575)t

+(d10 − 656775)y] + d11 + d12}+ 22325625,

where

d1 = 2y2[8
(
16y6 − 920y4 + 13845y2 − 15550

)
y2

+15612625],

d2 = y2
[
8(d1 − 134765925)y2 + 4789381625

]
,

d3 = 2y2
[
32(d2 + 4789119125)y2 + 9531388125

]
,

d4 = 8y2
[
8y2

(
2y4 − 58y2 + 175

)
− 115185

]
,

d5 = y2
[
2(d4 + 3754625)y2 − 54385975

]
,

d6 = 16y2
[
16(d5 − 38463775)y2 − 73150875

]
,

d7 = 4y2[4(768y8 − 5824y6 + 501872y4

−1924860y2 + 25822265)y2 + 50654975],

d8 = 6(20d t)2
[
4(d7 + 30131325)y2 + 1885275

]
,

d9 = 8y2
[
16
(
2y4 − 7y2 + 700

)
y2 + 3115

]
,

d10 = 4y2[8y2
(
32y6 − 4120y4 + 15060y2 − 450835

)
−1269275],

d11 = 120d(d6 − 82852875)ty + (d3 + 5529313125)y2

+d8,

and

d12 = 61250(16d t)5(dt− 6y)
(
4y2 + 1

)
.

Here, y = d(t+ 6γ3d
2x), with

d =

√
−2β

6γ3
.

As in the previous solutions, d and y are either both

positive or both purely imaginary. In either case, the

solution ψ4 is real, so all real equation parameters

are allowed.
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