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Rogue waves as spatial energy concentrators
in arrays of nonlinear waveguides
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In an array of nonlinear waveguides, a giant compression of the input beam can be achieved by exciting a
rogue wave. Input field almost homogeneously distributed over hundreds of waveguides concentrates prac-
tically all the energy into a single waveguide at the output plane of the structure. We determine the required
input profile of the electric field to achieve this. We illustrate the phenomenon by modeling the array by
direct numerical simulations of the discrete nonlinear Schrödinger equation. © 2009 Optical Society of
America
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Rogue waves can be defined as strongly compressed
wave packets with high energy content that appear
on the otherwise chaotic average wave field. As the
chaotic field creates special initial conditions for their
appearance randomly, they tend to be unexpected,
thus “appearing from nowhere and disappearing
without a trace” [1]. The term “rogue waves” comes
from oceanography [2], where such waves played a
destructive role, and being the most powerful wave-
lets of ocean waves destroyed many ships over the
years. Although in an open ocean rogue waves are
undesirable and dangerous, they can be useful in op-
tics [3], opening ways for generating powerful
ultrashort pulses with high concentration of energy
in the peaks.

One of the main features of the rogue waves until
now was their chaotic nature; their appearance in the
open ocean is defined by the chaotic nature of the
waves in general. Even in optics, their experimental
observation is based on detection of random events
[3], despite the fact that laboratory conditions would
allow us to make experiments more deterministically.

The energy compression into peaks occurs mainly
because of the modulation instability (MI) of certain
types of nonlinearity [4]. In optics, these are known
as “self-focusing types.” For MI with an arbitrary pe-
riod of modulation within the gain bandwidth, the
wavelets would be periodically located. For the period
approaching infinity, there can be just a single maxi-
mum. The latter is usually described as a limiting
case and is given by a rational expression [1].

These strong wavelets can also be obtained as non-
linear superpositions of Akhmediev breathers [5],
and for integrable systems they can be constructed in
analytical forms. When a system loses integrability,
analytic solutions also disappear. However, for sys-
tems that are still close to being integrable, numeri-
cal solutions allow us to reproduce general features of

rogue waves as wavelets that compress an appre-
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ciable amount of energy into a single highly localized
spot. In this Letter, we consider an example of such
system.

Namely, we study an array of coupled nonlinear
waveguides, described by the discrete nonlinear
Schrödinger (DNLS) equation [6],

iq̇n + qn+1 + qn−1 − 2qn + ��qn�2qn = 0. �1�

Hereafter q̇n�dqn /d�, � is the propagation coordinate
(see the figures below), qn is the dimensionless field
amplitude in the nth waveguide, and � � 1 and �
� �1 stand for focusing and defocusing nonlineari-
ties.

We are interested in the process of a controlled for-
mation of a rogue wave, described by Eq. (1). Physi-
cally, the process of rogue-wave formation is the in-
verse of diffraction of the total energy in a single
waveguide into neighboring ones. Reversing this pro-
cess can be done numerically, but on the physical
level it involves two main ingredients necessary for
observing the phenomenon: the modulational insta-
bility and the properly chosen initial conditions. In
practical terms, we define the input signal that leads
to giant concentration of practically all energy at the
output into a single (or a few) waveguide(s). Unlike
the conventional ocean and optical rogue waves we
consider a wave evolving in space. Thus, our solu-
tions represent rogue waves “frozen” in time.

The solutions of Eq. (1) with � � �1 are linked by
the staggered transformation [7]. If qn��� is a solution
of Eq. (1) for � � 1, then �−1�nq̄n���exp�−4i�� (where
an overbar stands for the complex conjugation) is the
solution of the same equation, but for � � �1. There-
fore the following consideration is limited to the case
� � 1.

In the low-amplitude limit, smooth solutions of Eq.
(1) can be approximated by the respective solutions of

the nonlinear Schrödinger equation (NLSE). This
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equation is obtained using the ansatz qn=���x ,z�,
where � is a small parameter, x=�n, and z=�2�. For �
� 1, we have i�z+�xx+ ���2�=0. The NLSE has an ex-
act solution in the form of a rogue wave [1]. Of
course, we do not expect validity of this solution for
the whole spatial interval for our discrete model.
However, strong localization can occur in the case of
discrete equations as well. Namely, for the input con-
ditions whose profiles over the waveguides are
smooth enough, one can expect the formation of
rogue waves similar to those in the continuous
model.

Following this strategy and assuming that the
length of each waveguide in the array is L, we solve
Eq. (1) subject to the initial condition

qn�0� = Qn � ��1 − 4
1 − 2i�2L

1 + 2�2n2 + 4�4L2�e−i�2L �2�

and look for the output profile at �=L, i.e. qn�L�. In
the initial condition (2) � � 1 is the control param-
eter, which can be interpreted as the background in-
put intensity. It also controls the discreteness effect,
as in the limit � → 0 Eq. (2) approximates the initial
condition of the corresponding exact solution for the
NLSE [1].

To study spatial evolution of solutions of Eq. (1)
with the initial condition (2) we have performed nu-
merical simulations. In the limiting case of a homo-
geneous distribution with the intensity �2 one would
observe the well-known MI scenario (see, e.g., [8]).
However, even smooth modulation of the initial am-
plitude and phase, results in a very different dynam-
ics. The respective results are summarized in Fig. 1.

Preliminary simulations (Fig. 1a) indeed show
strong localization of the almost homogeneous input
beam. Only 30 central waveguides are shown in all
figures. This solution clearly corresponds to the rogue
wave of the respective NLSE. However, even an

Fig. 1. (Color online) Contour plot of intensity �qn�2 on the
plane �n ,��. We used periodic boundary condition qn=qn+N
with N=101 and initial condition (2). Parameters are a,
� � 0.1, L=100; b, � � 0.2, L=100; c, � � 0.3, L=100; d, �
� 0.1, L=500. The insets show input and output field

profiles.
NLSE allows for a much higher degree of compres-
sion when a higher-order rational solution is chosen
[1].

Thus the above result is not optimized from the
viewpoint of energy concentration. We can pose a few
questions. In particular, is it possible to enhance the
effect by increasing the background intensity �? Or,
are the waveguide lengths accurately chosen to give
maximal concentration exactly at the output, i.e., at
�=L, as this happen for the exact NLSE solution cor-
responding to Eq. (2)? To answer these questions we
have performed simulations for various values of �
(panels b and c) and for different L (panel d).

First, comparing panels b and c we observe that
the growing effect of the discreteness (i.e., large �)
leads to a shift of the maximum of the intensity to-
ward the input. This effect becomes even more pro-
nounced, for larger lengths of the waveguides (in the
continuum case, an increase of L would lead to the
maximal intensity approaching �=L). Then the en-
ergy concentration occurs inside the structure rather
than at the output plane �=L (see Fig. 1d). We also
observe that by increasing � one indeed can increase
the peak intensity. The increase of � twice results in
the peak intensity four times larger (c.f. insets in
panels a and b). This happens below a threshold,
above which the appearance of MI peaks gradually
hampers the existence of the rogue wave (see Fig. 1c).
For the parameters of Fig. 1 this threshold is around
� � 0.3. In the case of big �, the rogue wave can be
even indistinguishable from MI background. The fact
that we indeed observed MI follows from the direct
estimate of the “most unstable” wavenumber q0��,
which corresponds to the wavelength 	0�2
 /�, equal
to �20 waveguides separating the nearest peaks.

Is it possible to enhance the focusing effect using
larger number of waveguides? The results of the nu-
merical study answering this question are shown in
Fig. 2 (c.f. Fig. 1d). As one can see from Fig. 2b, the
maximal intensity grows with an increase of the
number of waveguides in array, reaching the absolute
maximum at N�70, and saturates at the level of
�200 waveguides. This number corresponds to the
natural limit n��−1.

So far, we considered the focusing effect based on
initial conditions creating the rogue-wave solution of
the continuous NLSE. The natural question arises: Is
it possible to numerically generate the solution of the
DNLS equation that has exactly the properties of the
continuous rogue wave that “appear from nowhere

Fig. 2. (Color online) a, Contour plot of intensity �qn����2
obtained for N=301, � � 0.1, and L=500. We used periodic
boundary conditions and the initial profile (2). b, Output in-

tensity in the central waveguide versus N.
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and disappear without a trace” [1]. Answering this
question would be a justification of the terminology
that we use classifying the concentrator effect as a
rogue-wave generation.

The exact solution for this problem can hardly be
found analytically. Therefore we again employ nu-
merics. The first requirement is obtaining initial con-
ditions (we call them fitted) that would obey the
equality qn�0�=qn�2L�. The second requirement is
that the maximal peak of the rogue wave should ap-
pear at z=L in the central waveguide. These are the
same properties that characterize the exact rogue-
wave solution of the NLSE. Figure 3a shows the nu-
merical solution of this problem, where we show the
spatial density distribution of the discrete rogue wave
having a single maximum with high intensity at the
very center of the �n ,�� plane and symmetric decay of
the profile in each direction. The solution was ob-
tained using forward–backward propagation tech-
nique with profile adjustments at each cycle. Quali-
tatively, this solution is similar to the conventional
time-dependent rogue wave of the NLSE [1]. To
stress this similarity, we plot the 3-D profile [Fig. 3a]
along with the transverse intensity distribution at
the middle line [Fig. 3b].

Finally, we consider the effect of boundary condi-
tions on the discrete rogue waves. To do this, we per-
formed numerical integration of Eq. (1) subject to the
fitted initial conditions with either zero or the “trav-
eling wave” boundary conditions. The latter repre-
sents the analytical limit �n � →� of Eq. (2). The re-
sults are presented in Fig. 4. As one can see from Fig.
4a, the zero boundary condition results in a shift of
the rogue-wave peak to the values below � � 500.
Thus the peak appears inside the waveguide array
rather than at the output plane. Increasing the num-
ber of waveguides can reduce this shift. On the other
hand, using traveling wave boundary conditions with
numerically fitted initial condition leaves the maxi-
mum of the rogue wave at the output plane of wave-
guide array (Fig. 4b).

The representative experiment could be done by
starting with all the energy in a single waveguide

Fig. 3. (Color online) a, Plot of intensity �qn�2 on the �n ,��
plane for � � 0.1, N=301, L=500, obtained from Eq. (1)
subject to the periodic boundary and fitted initial condi-
tions. b, Fitted initial condition at � � 0 (solid green curve),
input intensity (2) (dashed blue line) and the field profile at
the middle line � � 500 (solid red curve).
and using phase-conjugated and amplified output
launched into another similar array. Clearly, it will
be focused back into the central waveguide. Our ini-
tial condition suggests a close alternative to this so-
lution. It may be not yet the most efficient in terms of
concentration, but it provides a profile (Lorentzian)
that roughly has the same effect.

To conclude, we found a possibility of observing the
discrete rogue waves in arrays of nonlinear optical
waveguides. Such rogue waves can be used to con-
struct optical energy concentrators. Giant energy
concentration at the output of the array is achieved
when initial conditions are properly adjusted to the
length of the system and to the number of
waveguides. Concentration occurs despite the fact
that the input energy has nearly homogeneous distri-
bution.
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Fig. 4. (Color online) a, Contour plot of intensity �qn�2 in
the �n ,�� plane. We used the following: a, zero boundary
condition q−�N+1�/2=q�N+1�/2=0 and the initial condition
qn�0�=�1−4n2 / �N+2�2Qn with Qn given by (2); b, traveling
wave boundary conditions q−�N+1�/2=q�N+1�/2=� exp�i�2��
and the fitted initial condition. Other parameters are �
�0.1, N=301, and L=500. The insets show the input and
output field profiles.


