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Understanding the phenomenon of rogue wave formation, often called extreme waves,
in diverse branches of nonlinear science has become one of the most attractive domains.
Given the great richness of the new results and the increasing number of disciplines
involved, we are focusing here on two pioneering fields: hydrodynamics and nonlinear
optics. This tutorial aims to provide basic background and the recent developments on the
formation of rogue waves in various systems in nonlinear optics, including laser physics
and fiber optics. For this purpose we first discuss their formation in conservative systems,
because most of the theoretical and analytical results have been realized in this context.
By using a multiple space–time scale analysis, we review the derivation of the nonlinear
Schrödinger equation from Maxwell’s equations supplemented by constitutive equations
for Kerr materials. This fundamental equation describes the evolution of a slowly varying
envelope of dispersive waves. This approximation has been widely used in the majority
of systems, including plasma physics, fluid mechanics, and nonlinear fiber optics. The
basic property of this generic model that governs the dynamics of many conservative
systems is its integrability. In particular, we concentrate on a nonlinear regime where
classical prototypes of rogue wave solutions, such as Akhmediev breathers, Peregrine,
and Ma solitons are discussed as well as their experimental evidence in optics and
hydrodynamics. The second part focuses on the generation of rogue waves in one-
and two-dimensional dissipative optical systems. Specifically, we consider Kerr-based
resonators for which we present a detailed derivation of the Lugiato–Lefever equation,
assuming that the resonator length is shorter than the space scales of diffraction (or the
time scale of the dispersion) and the nonlinearity. In addition, the system possesses a
large Fresnel number, i.e., a large aspect ratio so that the resonator boundary conditions
do not alter the central part of the beam. Dissipative structures such as solitons and
modulational instability and their relation to frequency comb generation are discussed.
The formation of rogue waves and the control employing time-delayed feedback are
presented for both Kerr and semiconductor-based devices. The last part presents future
perspectives on rogue waves to three-dimensional dispersive and diffractive nonlinear
resonators. © 2022 Optical Society of America
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1. INTRODUCTION

Ever since the first confirmed field measurements of a freak wave in the North Sea at
the Draupner platform on January 1, 1995, and reported in Refs. [1,2], extreme waves
or rogue waves have been of great interest to both researchers and engineers [3–6]. The
Draupner wave measured at a crest amplitude of 25.6 m on a sea state with a significant
wave height (SWH) of 12 m, and one of the possible theories advanced by Haver [3]
involved a self-focusing of energy of a wave group into one majestic wave event.
They consist of large-amplitude pulses with a narrow width that appears with low
probability. In contrast to typhoons, tsunamis, and storms that can be predicted hours
in advance, rogue waves appear unpredictable. The long tail probability distribution is
the fundamental characteristic which accounts for the generation of rogue waves. They
appear unexpectedly on the ocean’s surface which renders them extremely dangerous
even for huge ships, marine structures or submarines. They have also been observed
in both deep and shallow waters, and also in deep internal layers of the ocean [3–5].

Rogue waves appear not only in the ocean but also in optical fibers [7]. Indeed in 2007,
Solli and collaborators observed extraordinary soliton-like pulses with extremely large
intensity using fiber in a supercontinuum (SC) generation regime. More importantly,
they established an intriguing link between rogue waves in oceans and optical waves
along with fiber. In nonlinear optics and laser physics, coherent structures are generated
as extreme events from the propagation of laser beams. In particular, the possibility
of engineering the parameters of an optical fiber such as nonlinearity and dispersion
renders such systems of particular importance for frequency comb generation, which
has potential applications in spectroscopy. In addition, the intensity and the phase
of the input light may be tailored with advanced data-processing techniques leading
to real-time spectrum measurements such as a dispersive Fourier transformation and
time-lens techniques. These powerful real-time measurement techniques allow the
speed limitations of traditional optical or electronic measurements to be overcome.

A particular experimental originality of the work of Solli and collaborators is in the use
of a time-stretch dispersive Fourier transform to map spectral fluctuations into temporal
fluctuations in real time. The dispersive Fourier transformation consists of mapping the
frequency spectrum onto the temporal waveform [8,9]. Such time-lensing techniques
allow for the measurement of ultrashort pulses with sub-picosecond resolution. This
method has been applied to observe rogue waves such as Raman rogue waves [10],
soliton explosions in lasers and the generation of rogue waves [11], SC generation
[12], and Kerr-lens mode-locked [13] and fiber lasers [10,14,15]. On the other hand,
the time-lens technique allows one to measure the intensities of localized peaks with a
resolution of the order of picoseconds [9]. This comes from temporal imaging systems
which are analogous to spatial imaging systems as the time-lens technique allows one to
compress or expand the pulse width of optical waveforms without distortion. It has been
applied to investigate optical rogue wave (ORW) formation in relation to integrable
turbulence [16], and the spontaneous formation of breathers and rogue waves in
optical fiber modulational instability (MI) [17]. The combination of dispersive Fourier
transformation with a time-lens technique may lead to considerable advances in real-
time measurement of ultrafast soliton dynamics. The dispersive Fourier transformation
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theory and its applications in physics and photonics is beyond the scope of this
contribution, and the interested reader may refer to the review papers [18–21].

Since the seminal paper by Solli et al. [7], rogue waves appear in various nonlinear
systems such as mode-locked lasers [11,22], cavity semiconductors [23–26], plasma
waves [27,28], chemical reaction–diffusion systems [29–31], quantum optics, and
even in finance [32,33]. An example of such behavior is shown in Fig. 1 taken in
part from Refs. [7,34]. These extreme waves constitute an interdisciplinary issue and
considerable progress has been made toward the understanding of their formation,
stability, and interaction, though an important number of questions remain open, such
as the effect of noisy sources on their formation or their role in turbulent regimes.
In particular, optical systems and lasers display such events which arise due to self-
focusing nonlinearities, inducing multi-transverse modes and filamentation, which
deteriorates the beam quality. The first experimental evidence of rogue waves in fiber
optics [7] has triggered several groups to investigate this intriguing phenomenon. The
explosive growth of this field of research, can be witnessed by overviews [31,35–44].
Compared with oceanography, there remains a lot to be learned on the mechanisms
leading to the formation of rogue waves in optical systems. Access to experimental
data is important to better understand the underlying physics. Most systems exhibiting
rogue waves, struggle against experimental characterization because of their size or
time scales. In this respect, optical and photonics systems constitute an excellent
platform for researchers as they are classic examples of dissipative systems which
exhibit extreme events that can be experimentally investigated in a reliable way. In
particular, high-sensitivity experimental techniques have emerged very recently and
can be adapted to ultra-fast-pulse measurements [45,46].

Most of the analytical understanding of rogue waves in conservative systems has
been realized in the framework of the nonlinear Schrödinger equation (NLSE). The
latter serves as a basic model for the analytical understanding of the formation of
rogue waves in conservative systems. More precisely, the link between rogue waves
and the rational solutions of the NLSE has been established in the seminal paper by
Akmediev and collaborators [47]. It is generally admitted that the origin of rogue
waves is related to breather-type solutions of the NLSE [48–50]. Several mechanisms
have been suggested to be at the origin of the formation of rogue waves in the literature.
In most cases, the MI mechanism together with pulse collisions is considered to be
the main mechanism that generates rogue waves as shown by Peregrine [51] and by
Akhmediev et al. [47]. Experimental confirmation of Peregrine solitons and rogue
waves as a result of pulses collision have been demonstrated in optical fibers [52,53]
and in water wave tanks [54–56]. In these systems, small-amplitude pulses may grow
to large-amplitude pulses provided that their frequencies belong to a band of unstable
modes with a positive gain. Nonlinear interaction between these frequencies can lead
to complex wave dynamics. For instance, the case of the two frequency solutions of
the NLSE in the form of Akhmediev breathers has been analytically studied in Ref.
[57] and collisions of Akhmediev breathers have been experimentally evidenced in an
optical fiber system [58].

However, in dissipative systems, the NLSE fails to capture the dynamics because it
ignores pumping and dissipation. Moreover, in spatially extended systems, when the
dimensionality is higher than one, bounded solutions are not admitted by the NLSE
due to beam collapse rendering the formation of rogue waves impossible [59]. To
circumvent this problem, several physical mechanisms have been proposed in the
literature, which perfectly describe the nonlinear dynamics encountered, for example,
optical resonators. Indeed, the mean-field approach described by the Lugiato–Lefever
type of models for optical cavities have been of significant interest [60] as they take



Tutorial Vol. 14, No. 1 / March 2022 / Advances in Optics and Photonics 91

Figure 1

Rogue waves: (a) Japanese artist Katsushika Hokusai’s painting, known as “The Great
Wave off Kanagawa”; (b) a rough ocean surface with waves towering over a ship; (c)
one-dimensional fiber optics; and (d) two-dimensional broad-area lasers. (c) Reprinted
by permission from Macmillan Publishers Ltd: Solli et al., Nature, 450, 1054–1057
(2007) [7]. Copyright 2007. (d) Figure 5(b) reprinted with permission from Gibson
et al., Phys. Rev. Lett., 116, 043903 (2016) [34]. Copyright 2016 by the American
Physical Society.

into account, in addition to the nonlinearity, dispersion and/or diffraction, and they
also explicitly include pumping and dissipation. The Lugiato–Lefever equation (LLE)
has been shown to support the formation of robust stable localized structures (LSs)
in one-dimensional (1D), two-dimensional (2D) [61], and in 3D systems [62]. These
LSs, often called dissipative solitons or cavity solitons, are one of the most frequently
studied nonlinear objects.

In 1D Kerr resonators, temporal [63] and spatial [64] LSs have been observed experi-
mentally. In these systems, the spectral contents of the LSs are the optical frequency
combs, referred to as Kerr combs. The link between the formation of temporal LSs
and frequency combs have been established in Ref. [65] (see an excellent review by
Lugiato et al. [66] in the theme issue [67,68]). This phenomenon has attracted a lot
of interest because it has applications in the generation of ultra-stable light wave and
microwave signals which find direct applications in optical communication networks,
microwave photonic systems, and in aerospace engineering [69,70]. This is mainly
due to the development of laser-based precision spectroscopy including the optical
frequency comb technique [71]. Driven optical microcavities have been widely used
for the generation of optical frequency combs which can be modeled by the LLE
with unprecedented precision. In optical resonators subject to a high intensity of the
injected field, temporal LSs may exhibit complex behavior. Statistical analyses have
indicated that this phenomenon belongs to the category of extreme events or rogue
waves [23].
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In 2D dissipative broad-area devices, rogue waves have been predicted using the mean-
field approach and experimentally observed as well [25,26,34,72–75]. In addition to
2D LSs predicted in Kerr resonators, another interesting system is presented, namely,
semiconductor cavities. Thanks to the mature semiconductor laser technology and
the possibility for application of 2D localized pulses, they have attracted significant
interest in all-optical control of light, optical storage, and information processing. In
particular, vertical-cavity surface-emitting lasers (VCSELs) were first realized in Ref.
[76]. Light confinement has been investigated in VCSELs for which we refer the reader
to these recent reviews [77–79]. Rogue waves have been experimentally observed in
1D setting for VCSELs [24]. In 2D settings, rogue waves have been numerically
demonstrated in dissipative systems by pumping [25] or by optical feedback [26] in
broad-area surface-emitting laser with a saturable absorber (SA). They have been also
observed using photorefractive materials [80,81].

The present contribution aims to shed some light for a better understanding of the
mechanisms underlying the formation of rogue waves in optics and photonics, along
with an analogy in hydrodynamics when possible. After an introduction, we present the
advances in conservative systems in the first part, such as fiber optics. Following this,
we turn our attention to dissipative systems such as optical Kerr and semiconductor
cavities, in which we discuss how to control 1D and 2D rogue waves by injection or
via delayed feedback. In addition to presenting the state of the art, recent progress, new
ideas, and novel techniques, we also present experimental evidence of temporal and
spatial rogue waves in advanced conservative and dissipative optical systems. Rogue
waves in the above-mentioned dissipative systems are discussed in the second part
of this article, including experimental evidence of temporal rogue waves in all fiber
cavities, and spatial ones in broad-area lasers such as VCSELs.

2. ANALYTICAL TREATMENT OF ROGUE WAVES IN NONLINEAR DISPERSIVE
MEDIA

One of the famous equations that describes many physical problems in dispersive
media is the NLSE. This equation has become famous because it provides, in its linear
form, a basic description of a wave function in quantum mechanics. Nevertheless,
its main characteristic is the generic description of the evolution (propagation) of
the slowly varying envelope of dispersive waves; approximation widely used in the
majority of physical systems including quantum mechanical ones.

In this section, we are mainly interested in the two fields of optics and hydrodynamics
where, for more than a decade, a sustained research activity on the formation and
dynamics of ORWs have played an important role thanks to innovative developments
in theory and experience. Although hydrodynamics (surface waves) and optics (optical
fiber systems) correspond to different fields with regards to the physics of the under-
lying the observed phenomena, it is possible, in the leading slowly varying envelope
approximation, to model the wave propagation in both media by NLSE. A decisive
issue in this regard is the considerable progress made by Solli et al. [7] by observing
an optical counterpart of oceanic rogue waves in a photonic crystal fiber, producing
a phenomenon named the ORW owing to its similarity to the oceanic rogue wave.
The authors of Refs. [7,82,83] have shown that the ORWs appear as solutions of the
generalized nonlinear Schödinger equation (GNLSE), which is often used to describe
the nonlinear dynamics of water waves as well as light propagation in photonic crystal
fibers.

Here we focus on the derivation of the NLSE problem because it is much more generic
than its solutions. We use a multiple time and space scales analysis and assume that
the envelope of the wave packet that propagates in Kerr media is a slowly varying
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function of time and space. We begin by discussing the linear regime and the role of
MI. However, in the nonlinear regime, analytic results for the NLSE require strenuous
efforts, difficult and tiring and far beyond the scope of this tutorial. Different analyt-
ical approaches from the literature for solving the NLSE can be found in the book
by Akhmediev and Ankiewicz [84]. In this context, we present the exact analytical
solutions admitted by all the “rogue wave communities” as the most important proto-
types of rogue waves, in both optics and hydrodynamics. Following this, we provide
analogies between optics and hydrodynamics quantitatively.

2.1. The NLSE
In this subsection, we review the derivation of the NLSE. This equation describes how
a pulse with a slowly varying envelope propagates in a Kerr medium. To simplify the
analysis, we focus on a medium devoid of magnetization, current density, and charge
density. When an intense optical field propagates in a Kerr medium, it is likely to
modify the properties of this medium, for instance by distorting the electron balance
of its electron clouds. The susceptibility of the material then becomes dependent on
the field. Therefore, the response of the medium to an electrical excitation is no longer
linear, and the polarization has an additional nonlinear contribution. The classical
formalism expresses the vector polarization as P = Pl + Pnl where Pl and Pnl denote
the linear and the third-order nonlinear polarizations, respectively. We assume that
the second-order nonlinear polarization is absent because the Kerr media possesses
an inversion symmetry. This means that the Kerr material is cubic and centrosym-
metric. This property allows both anisotropy and second-order nonlinearities to be
avoided. This nonlinear response leads to frequency upconversion or downconversion
such as second-harmonic generation or optical parametric oscillators, both are non-
centrosymmetric media. From the macroscopic Maxwell equations together with the
above-mentioned approximations, the pulse propagation equation reads

LE(r, t) = ∇2E − ∇(∇ · E) −
1
c2 ∂

2
t (E + Pl) = µ∂2

t Pnl, (1)

with L is an integrodifferential operator acting on the electric field E. In general, the
response of the medium to an electrical excitation is not necessarily instantaneous. As
a consequence, the polarization does not only depend on the electric field value at the
current moment but also on its values at some time in the past. In this case, the two
contributions to the vector polarization read

Pl =

∫ t

−∞

χ(1)(t − t1)E(r, t1) dt1, (2)

Pnl =

∫ t

−∞

χ(3)(t − t1, t − t2, t − t3)E(r, t1)E(r, t2)E(r, t3) dt1 dt2 dt3. (3)

Second-order susceptibility χ(2) vanishes for a Kerr medium such as silica glass owing
to its inversion symmetry. Therefore, the lowest-order nonlinear effects in Kerr media
originate from the third-order susceptibility χ(3). This section aims to present the
derivation of the NLSE. The analysis presented is classical in the field of nonlinear
optics [85]. Our objective is to determine a slow time and slow space of the propagation
equation (1) through a perturbation expansion in powers of a small parameter ζ . This
analysis rests on the fact that the third-order polarization is a small correction to the
linear equation. This approximation is justified because χ(3) is small. This applies that
the right-hand side of the propagation equation (1) is of order ζ2. We next expand the
electric field in a power series of ζ as

E = E0 + ζE1 + ζ
2E2 + · · · . (4)
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The unperturbed wave packet E0 is assumed to be linearly polarized in a plane
orthogonal to the propagation direction

E0(r, t) = eA(r, t) exp [i(kz − ωt)] + c.c., (5)

where c.c. denotes the complex conjugate and e is a unitary vector in the transverse
plane (x, y). The envelope of the field A = A(r, t) varies slowly in the z direction
and in time t. The optical frequency ω and the wavenumber k are related by
the dispersion relation ω = vk with v the effective velocity of light in the Kerr
medium. Multiple space–time scale analysis requires the definition of slow coor-
dinates (X, Y , T) = (ζx, ζy, ζ t), Z1 = ζz, and Z2 = ζ

2z. The derivatives of the slowly
varying envelope with respect to these slow coordinates are

∂x,y,tA = ζ∂X,Y ,TA and ∂ZA = ζ∂Z1A + ζ
2∂Z2A. (6)

Finally, we expand the integrodifferential operator L defined by Eq. (1) as

L = L0 + ζL1 + ζ
2L2 + · · · . (7)

By replacing this expansion, and inserting Eqs. (4) and (7) into the propagation
equation (1), we obtain

(L0 + ζL1 + ζ
2L2)

(︁
E0 + ζE1 + ζ

2E2
)︁
= µ∂2

t Pnl. (8)

Equating the coefficients of equal orders in ζ , we obtain a sequence of equations

L0E0 = 0, (9)

L0E1 = −L1E0, (10)

L0E2 = −L2E0 − L1E1 + µ∂
2
t Pnl. (11)

2.1a. Order ζ0

By replacing the unperturbed wave packet E0 in Eq. (9), we obtain

L0E0 = [−k2 + k2(ω)]E0 = 0. (12)

This relation is satisfied only if k = ±k(ω). The wavenumber k of the wave packet
obeys the linear dispersion relation k = ±ωn(ω)/c. This means that the solution (5)
is indeed a solution to the trivial problem (9). At this order, the amplitude A remains
undetermined. This is because the amplitude A = A(X, Y , Z1, Z2, T) depends on the
slow time–space scale T , X, Y , Z1, Z2, which does not appear explicitly in the trivial
problem (9). We now proceed to higher order in the perturbation expansion orders ζ1

and ζ2.

2.1b. Order ζ1

Equation (10) can be rewritten as

L1E0 = 2iek exp [i(kz − ωt)]
(︂
∂Z1 + k′∂T

)︂
A + c.c. (13)

The vector L0E1 lies in the transverse plane perpendicular to the optical axis. The
solution at this order satisfies (︂

∂Z1 + k′∂T
)︂
A = 0. (14)

2.1c. Order ζ2

The nonlinear polarization contribution appears only at this order

Pnl = ϵe exp [i(kz − ωt)]
(︂
3χ(3,1) |A|2 + χ(3,3)A2 exp [2i(kz − ωt)]

)︂
A + c.c., (15)
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where the Fourier transforms of the third-order susceptibility are χ(3,1) =

χ(ω,ω,−ω) = χ(ω,−ω,ω) = χ(ω,ω,−ω) and χ(3,3) = χ(ω,ω,ω). By substituting
Eq. (15) into Eq. (11), and after some calculations, we obtain

L2E0 = e exp [i(kz − ωt)]
(︁
∂2

X + ∂
2
Y + 2ik∂Z2 − kk′′∂2

T
)︁
A + c.c.. (16)

In many applications the field is considered linearly polarized along some fixed direc-
tion. Indeed the variable E is the component of the electric field polarized along the x
direction. Taking into account Eqs. (14)–(16), Eq. (11) becomes

L0E2 = −e exp [i(kz − ωt)]
(︃
∂2

X + ∂
2
Y + 2ik∂Z2 − kβ2∂

2
T +

3ω2

c2 χ
(3,1) |A|2

)︃
A

−
9ω2

c2 χ
(3,3)A3 exp [3i(kz − ωt)] + c.c..

(17)

In addition, we limit our description to a weak dispersive medium where the last term
of this equation can be neglected. The solution of the inhomogeneous problem (17) at
order ζ2 yields

∂Z2A =
i

2k
(︁
∂2

X + ∂
2
Y
)︁
A −

iβ2

2
∂2

TA −
(︁
∂Z1 + k′∂T

)︁
A +

3ik
2
χ(3,1) |A|2A. (18)

The first term of the right-hand side of this equation accounts for diffraction, the second
term is group velocity dispersion where k′′ = β2 is the second-order dispersion, and
k′ = 1/vg is the inverse of the group velocity vg of the wave packet. The last term
describes material nonlinearity.

2.1d. The NLSE
By multiplying Eq. (14) by ζ , and Eq. (18) by ζ2, then the sum of these two equations
together with the use of the relation (6) yields

∂zE =
i

2k

(︂
∂2

x + ∂
2
y

)︂
E −

iβ2

2
∂2

t E − k′∂tE +
ikn2

n
χ(3,1) |E |2E, (19)

where E = ζA + · · · . The nonlinear refractive index n2 is linked to the third-order
susceptibility by the relation n2 = 3nχ(3,1)/2 where n is the linear refractive index.

By using the Leibniz transformation (retarded time)

τ = t − k′z,

Eq. (19) reads
∂zE =

ik
2
∇2
⊥E −

iβ2

2
∂2
τ + iγ |E |2E. (20)

Here ∇2
⊥ = ∂xx + ∂yy is the Laplace operator acting on the transverse plane (x, y) and

the nonlinear coefficient γ = kn2/n. The complex order parameter E = E(x, y, τ, t)
describes the propagation along the fiber axis (z) of the slowly varying wave envelope
in 3D configuration (transverse plane coordinates (x, y) and chromatic dispersion (τ
coordinate)). Note that the NLSE admits solutions only in a 1D setting due to beam
collapse [59]; namely, solutions in the form of bright and dark solitons, the propagation
of which has been experimentally observed in fiber optics [86,87].

With the following change of variables and parameters: (x, y) → (x, y)/
√

k, τ →
τ/

√︁
|β2 |, E = (n/kn2)

1/2F, Eq. (20) yields the dimensionless NLSE

∂zF =
i
2
(∇2

⊥ ± ∂2
τ )F + i|F |2F. (21)

The NLSE is a dynamical system that describes how the envelope of the pulse propa-
gates in a Kerr medium. It has been proved that NLSE is exactly integrable and their
most important solutions can be found analytically.
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2.2. Linear Regime: MI for Initiating Rogue Waves Formation
We restrict ourselves to a strictly 1D setting, by neglecting the diffraction phenomena
when using a guided waves structure in the plane (x, y). Nonlinear systems are well
known to manifest a large spectrum of dynamical behavior ranging from regular to
chaotic regimes. Both regimes exhibit complex spatiotemporal solutions that have been
subject to intensive research [88–90]. The key physical phenomenon characteristic of
nonlinear systems is instability, which is one of the main and important aspects that
encompasses all domains of nonlinear science. It is out of the scope of this tutorial
to report on all types of instabilities appearing in nonlinear systems. However, among
the different types of instabilities, MI, is one of the most famous because it naturally
appears in diverse physical areas, including hydrodynamics, plasma physics, and optics
among others. The first studies of MI date back to the early 1960s in such different
fields as hydrodynamics [91], nonlinear optics [92], and plasma physics [93]. MI
originates from the perturbation of an intense continuous or quasi-continuous field
by a weak signal that is then amplified exponentially [91]. In this linear stage of
evolution, amplification of modes leads to an increase in the amplitude (or intensity)
followed by the nonlinear regime where the system experiences the Kerr effect that
becomes dominant. Different bifurcations (or every scenario) arise from this dynamics,
which constitutes the origin of the fascinating regularity and complexity behaviors and
related states observed in almost all nonlinear systems, irrespective of the domain of
nonlinear science. These states may range from solitons (the most well-known regular
nonlinear solution) to highly developed turbulence. Of course, consecutive sequences
of bifurcations allow transitions between an impressive number of solutions and their
dynamical complexity. Fortunately, strong mathematical methods and tools exist to
help find analytically some (important) solutions, though this depends on the nonlinear
system at hand. Indeed, Hamiltonian systems (or conservative nonlinear systems)
are, in general, more tractable analytically than dissipative systems where there is,
intrinsically (because of dissipation), a lack of conservative quantities such as energy.
Still, in these systems, perturbative methods are highly useful to obtain many relevant
results. In general, for strongly nonlinear dissipative systems, mathematics often finds
its limit (except in special cases), but the advent of efficient and powerful computers
provides a precious approach to deeply understand highly complex dynamics such as
spatiotemporal chaos.

Let us return to the process of MI we are interested in. It is present in many fields
of physics and has been studied extensively in optical fibers because it provides a
convenient and valuable way for experimental generation and observation of a train
of ultrashort pulses. Before going further in the analysis, it is worthwhile to recall
linear stability analysis in the ubiquitous case of free light propagation in nonlinear
optical fiber systems. Light propagation in a mono-mode nonlinear optical fiber is
well described by the NLSE for the slowly varying complex amplitude E(z, τ) of the
electric field as shown in the Sec. 2.1 (see Eq. (20)). Let us rewrite the NLSE in the
following 1D form ∂zE = −i 1

2∂
2
t F + i |E |2 E, where the complex function E = E(z, t)

describes the time evolution of slowly varying wave envelope along the propagation
direction. This equation has the following nonlinear stationary (i.e., τ-independent)
solution:

Est(z) = E0 exp(iγP0z), (22)

where P0 = |E0 |
2 is the continuous-wave (CW) intensity at the entrance of the fiber.

We now perform a linearization of Eq. (20) around the nonlinear stationary solution
Est(z) with respect to a small perturbation a(z, τ) such that |a(z, τ)| ≪ |E0 |. Namely,
we look for a solution of Eq. (20) in the form

E(z, τ) = [E0 + a(z, τ)] exp(iγP0z). (23)
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Substituting Eq. (23) into Eq. (20) with ∇2
⊥ = 0 and keeping only linear terms in a(z, τ)

and a∗(z, τ), we obtain the following linearized equation:

∂za = −i
β2

2
∂2
τa + iγP0(a + a∗), (24)

where a∗ stands for the complex conjugate of a. The linearized equation (24) can
be solved for perturbations in the form of a(z, τ) = exp[i(Kz −Ωτ)] where K and Ω
are the wavenumber and the frequency of the perturbation, respectively. Non-trivial
solutions a(z, τ) exist only when K and Ω satisfy the following dispersion relation:

K = ±
1
2
|β2Ω|

√︄
Ω2 + s

4P0γ

|β2 |
, (25)

where we have set s = ±1 depending on the sign of β2. For normal (anomalous)
dispersion β2>0 (β2<0) and s = 1 (s = −1).

The dispersion relation (25) shows an important feature, namely, the instability criti-
cally depends on the sign of β2. When β2>0 (s = 1), the term under the square root is
positive and the wavenumber K is real for all Ω, meaning that the nonlinear stationary
solution is stable in the regime of normal dispersion. However, the same nonlinear
stationary solution is inherently unstable to plane wave perturbations in the anoma-
lous regime (β2<0) because the wavenumber K becomes a complex number with a
non-vanishing imaginary part giving rise to an exponential growth of the perturbation
as can be seen from Eq. (25). Indeed the term under the square root can be negative
for a band of frequencies that can be calculated from the dispersion relation (25) by
determining all frequencies Ω with ℑ(K)[Ω]>0. The frequencies of marginal (or neu-
tral) stable modes, often called critical modes, are defined as Ωc where ℑ(K)[Ωc] = 0,
which gives

Ωc = ±

√︄
4P0γ

|β2 |
. (26)

These modes are called marginal (neutral) because they are neither amplified nor
attenuated and define the limits of the frequency instability range.

The gain spectrum of MI is obtained from the dispersion relation (25) by setting
s = −1, and the gain

g(Ω) = 2ℑ(K) = |β2Ω|

√︂
Ω2

c −Ω
2, (27)

where factor 2 is introduced for a power gain and we have set Ωc to its expression
defined in (26). The gain is displayed in Fig. 2(a) in the plane (Ω, g), for three increasing
values of the input power P0. The two instability lobes appearing in Fig. 2(a) stem
from the parity symmetry of the gain on the frequency and correspond to the spectral
sidebands generated by the instability, which are easily accessible to the experiments.
The gain exists only in the range [−Ωc,+Ωc] and reaches its maximum gMax at

ΩMax = ±

√︄
2γP0

|β2 |
= ±
Ωc
√

2
, (28)

where the maximum gain value is

gMax = g(ΩMax) =
1
2
|β2 |Ω

2
c = 2γP0. (29)

Note that, as can be expected, the frequency instability domains (the two lobes) increase
in size and height with increasing input power. A numerical check of the linear stability
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Figure 2

Numerical simulations: (a) spectrum gain (27), for three values of injected power,
showing the sidebands MI; (b) temporal intensity injected as initial condition com-
posed of continuous waves with a noisy source; (c) a pulse train resulting from the
spontaneous amplitude modulations induced by MI.

Figure 3

(a) Experimental frequency spectrum showing the sidebands instabilities. (b)
Monochromatic CW plane wave injected at the entrance of the nonlinear optical
fiber. (c) Corresponding constant amplitude CW plane wave.

analysis is depicted in Fig. 2(b) and 2(c) where we have initialized the propagation in
the fiber by injecting an external CW surrounded with a noisy source [Fig. 2(b)]. The
constant amplitude of the CW initial condition experiences the instability by showing
modulations at the maximum frequency ΩMax in its amplitude at the early stage of the
linear instability. It is these spontaneous temporal modulations in the amplitude of the
CW operation that justify the term of MI. As the electric field propagates in the fiber,
the nonlinear terms (Kerr effect) are excited and become dominant transforming the
modulations in the CW into a pulse train as can be seen in Fig. 2(c). The experimental
signature of MI is shown in the spectrum displayed in Fig. 3, where two symmetric
frequency sidebands are generated by MI [Fig. 3(a)] when the optical nonlinear fiber
is injected with a CW as plotted in Fig. 3(b) and 3(c).

More generally, the process of MI is present in many fields of physics and has been
studied extensively in optical fibers because it provides a convenient and precious way
for experimental generation and observation of a train of ultrashort pulses. In optics,
the first experimental observation of MI was reported in Refs. [94,95] where an intense
quasicontinuous field injected in optical fiber was converted into a train of ultrashort
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pulses [96] or fiber optical parametric amplifiers (FOPAs) [97,98]. This ground-
breaking experiment gave rise to the rapid development of parametric amplification
and ultrashort pulse generation that have become some of the most important branches
of research in nonlinear fiber optics. In hydrodynamics, MI was shown to be one of
the fundamental mechanisms responsible for the formation of the so-called rogue
waves [99]. Very recently, optical equivalents of the oceanic rogue waves have been
discovered in optical fibers [7] and are called ORWs. In this context, the GNLSE was
shown to be successful in describing the formation of rogue waves both in the ocean
and in fibers.

Nowadays, even after many years, the study of MI in hydrodynamics and optics remains
an attractive research activity. For instance, in optics, MI is the key ingredient for the
understanding of SC generation [100] and ORW formation [7,52,101]: both physically
originate from MI. From a fundamental point of view, MI results from the balance
between nonlinear and linear effects experienced by a field during the propagation in
dispersive nonlinear media. In the most usual case in optics, the linear phase mismatch
depends only on the group-velocity dispersion of the optical fiber [94,95,97,98]. The
contribution of other linear terms, such as the group-velocity difference between polar-
ization modes [102] or transverse ones [103], must be accounted for in birefringent
or multimode fibers, respectively. In the anomalous dispersion regime, the broadest
frequency shifts are obtained by pumping the fiber as close as possible to the zero-
dispersion wavelength as in FOPAs, or in the context of SC/rogue wave generation for
instance [7]. As a consequence, even higher-order dispersion terms must be included
in the linear phase-mismatch relation [104,105]. This explains the MI observed in
the normal dispersion region of an optical fiber [103,104]. In all these studies, the
theoretical background is based on the standard linear stability analysis, which shows
that the gain curve only depends on even-dispersion terms. This has been experimen-
tally confirmed in the context of FOPAs, for instance, in which excellent agreement
between theory and experiment is achieved when a CW seeds the process [98].

Many authors have reported the important impact of higher-order dispersive terms in
the GNLSE on the main characteristics of rogue waves [99,106,107] and also on their
non-Gaussian statistics [52]. In particular, it was demonstrated that the third-order
dispersion is already sufficient to explain the ORW formation and, most importantly,
their probability density function [101]. A striking feature when dealing with purely
NLSE remains in the transition from linear to nonlinear regimes that can be accounted
for in an elegant and instructive way by invoking MI. For instance, Akhmediev Breather
which is one of the main prototypes of rogue waves can be obtained as a nonlinear
stage of unstable linear plane waves.

2.3. Nonlinear Regime: Akhmediev Breather, Peregrine Soliton, and Bright Soliton As
Prototypes of Rogue Waves

Let us consider the dimensionless NLSE (21) in a 1D system where diffraction is
neglected by setting ∇2

⊥ = 0, and we assume that the sign of the second derivative with
respect to the retarded time τ is negative (anomalous dispersion regime). The NLSE
is a dynamical system with an infinite number of degrees of freedom and corresponds
to an infinite-dimensional Hamiltonian system. As it is an integrable system, it has an
infinite number of conserved quantities. The lowest-order integrals are the energy (or
the number of particles)

Q =
∫ +∞

−∞

|F |2 dτ, (30)

the momentum
M = i

∫ +∞

−∞

(FτF∗ − F∗
τF) dτ, (31)
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and the Hamiltonian
H =

1
2

∫ +∞

−∞

(|Fτ |
2 − |Fτ |

4) dτ. (32)

The seminal work [108] discusses the first few of the higher-order conserved quantities.
The NLSE can be written in terms of the Hamiltonian as

∂F
∂τ
= i
δH
δF∗

, (33)

where the right-hand side denotes a functional derivative.

It is far beyond the scope of this contribution to present the analytical derivation of
nonlinear solutions of the NLSE (21). This is because mathematics is not simple to
handle (see the mathematical aspects of optical solitons [109–111]). In particular,
let us mention the inverse scattering method that constitutes a powerful tool in the
soliton theory which has been applied to the Korteweg–de Vries equation, a nonlinear
partial differential equation that appears in hydrodynamics. However, its applicability
to the NLSE is an arduous mathematical problem. In this section, we only use the
results obtained by the analytical derivation of nonlinear solutions of the NLSE (21)
presented by Akhmediev and Ankiewicz [84]. In this book, a method leading to the
derivation of solutions associated with not only soliton but also periodic solutions,
and higher-order solitons is described. The 1D solutions of the NLSE reads [84]

F(τ, t) =

(︄
1 +

2(1 − 2a) cosh (bt) + ib sinh (bt)
√

2a cos (2
√

1 − 2aτ) − cosh (bt)

)︄
exp (it) (34)

with b = 2[2a(1 − 2a)]1/2. For a more detailed discussion see the excellent book [84].
Figure 4 shows three examples of well-known fundamental solutions of the NLSE,
which are the Akhmediev breather, Peregrine soliton, and Kuznetsov–Ma soliton.
These are the exact solutions of the NLSE. They are of great importance as analytical
solutions corresponding to simple prototypes of rogue waves observed in nature. They
are localized in space and periodic in time (Akhmediev breather), localized in time and
periodic in space [Kuznetsov–Ma (KM) soliton], and localized in both time and space
(Peregrine soliton). In addition to these properties of localization, they are set on a finite
background contrarily to fundamental solitons that are set on a zero background. More
importantly, because almost all-optical devices (optical cavities and fiber systems) are
subject to pumping fields in the form of quasi-plane waves, these solutions become
unavoidable and popular because they approach naturally, in the linear limit, the
unstable plane waves. Their formation, dynamics, and collisions are ubiquitous in
the nonlinear regime of these systems, including spatiotemporal chaos and turbulent
regimes. More precisely, in these systems, the MI governs the growth of periodic
perturbations on CW background. In particular, in optics, MI arises from noise seeded
in the laser pumps, which governs the growth and decay of perturbations giving rise to
LSs. Possible noise sources include quantum noise, amplified spontaneous emission, or
indeed could be technical laser noise. Some of these solutions (or their approximations)
have been compared with structures in hydrodynamics, and the phenomenon has been
referred to as the Benjamin–Feir instability, which was discovered in the 1960s after
vain attempts to make a perfectly regular series of waves in a wave tank [91,112]. The
Benjamin–Feir instability involves the transfer of dissipation of large-scale structures
to small-scale eddies via vortex interactions. In water wave tank experiments, an
initially regular series of waves always became irregular, with some waves higher than
others.

Let us now return to Fig. 4 and give more insight into the three displayed solutions.
They correspond to a particular value of a in the family of one-parameter solutions
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Figure 4

Three-types of breathers obtained using analytical formulas Eq. (34): (a) Akhmediev
breather; (b) Peregrine soliton; (c) KM (parameters provided in the inset).

Figure 5

Examples of higher-order rogue wave solution of NLSE. (a) Solution of the second
order. Figure 4 reprinted with permission from Akmediev et al., Phys. Lett. A 373,
675–678 (2009) [47]. Copyright 2009 by the American Physical Society. (b) Third-
order rogue wave solution. Reprinted with permission from Akhmediev , Front. Phys.
8, 631 (2021) [44]. Copyright 2021 by Frontiers Media S.A.

of Eq. (34). Solutions over the range 0<a<0.5 are the Akhmediev breather, with MI
instability growth rate being maximal at a = 0.25. Increasing a further gives the Pere-
grine soliton in the limit a → 0.5. When a>0.5 the solution exhibits localization in
time τ, but becomes periodic along the spatial direction. Such a soliton is referred to
as the KM soliton which is shown in Fig. 4 for a = 0.75. Note that, higher-order rogue
waves can also be analytically obtained from the NLSE and they are not discussed
here (see a recent overview on this issue in Ref. [44]). Typical higher-order rogue
waves are displayed in Fig. 5. These analytical solutions have motivated researchers to
gain insights into the formation of rogue waves in nonlinear dispersive systems which
have been verified experimentally in a 1D setting, both in optics and in hydrodynamics
[52–56,113]. In this regard, fiber optics provides an excellent experimental platform as
dispersion and nonlinearity effects could be controlled to yield a propagation regime
where the NLSE is valid. This is done by injecting a multi-frequency field into a
nonlinear fiber, using a method developed for coherent pulse generation in telecom-
munication [96,114]. Before embarking upon discussing possible mechanisms which
lead to rogue waves, we establish similarities between optical and hydrodynamical
systems in a quantitative way.

2.4. Similarities between Ocean Waves and ORWs
Establishing similarities between optics and photonics with fluid mechanics has
remained an open challenge ever since the derivation of the Lorentz model by Haken
[115]. The Lorentz model was originally derived to describe the Bénard convection.
Starting from the Maxwell–Bloch equation which describes a single-mode laser, Haken
derived for the first time a one-to-one analogy between optics and fluid mechanics
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[116]. In this analogy, the transport processes such as dispersion, diffraction, or diffu-
sion are neglected. This implies that the field envelope is assumed to be homogeneous
along with transverse and longitudinal coordinates. When transverse and dispersive
effects cannot be neglected, for instance, in broad-area optical devices several order
parameter equations have been proposed in the literature such as the well-known
laser Bernoulli [117], Kuramoto–Sivashinsky [118], and Ginzburg–Landau equations
[119,120].

In laser physics, the Kuramoto–Sivashinsky equation has been derived close to the
lasing threshold [118]. This equation holds in the limit of small atomic detuning, with
the resulting dynamics governed by the phase of the optical signal. While in fluid
mechanics, this phase equation has been used to model diffusive instabilities inherent
in a laminar flame front [121,122]. In the same vein, the complex Ginzburg–Landau
equation has been derived for laser systems [119,120], which also describes a large
class of fluid mechanics phenomena. This includes superconductivity, superfluidity,
and also extends to other systems such as liquid crystals, Bose–Einstein condensation
[123,124], and even to string theory [125]. The Swift–Hohenberg equation, on the
other hand, has been used to describe dynamics in laser systems (complex equation),
and also in passive systems such as driven optical cavities (real equation) [126–128].
In particular, it has to be noted that the real Swift–Hohenberg equation has been
first derived for studying convective patterns generated by the Bénard–Marangoni
instability [129].

We discuss the link between optics and hydrodynamics in a quantitative way using the
NLSE. For the ease of readability, we rewrite Eq. (33) in a 1D setting:

∂tF =
i
2
∂2
ττF + iη |F |2F. (35)

In optics, the variable F represents an envelope of modulated electromagnetic carrier
waves along with the fiber. This quantity in optics is obtained by normalizing the
envelope amplitude by the square root of the power (P). The variable t is the dimen-
sionless time, which is equivalent to z, the longitudinal coordinate along the fiber, and
L is the cavity length. As remarked earlier, the parameter η is either 1, which is the
self-focusing case, or −1 for the defocusing type of nonlinearity. The parameter L in
optics is given by 1/(γP) where γ is the nonlinearity parameter which ranges from 1
to 100 (W km−1). Typical rogue wave characteristics in fiber optics can lead to peak
power intensities in the range 0.1–10 kW. These extreme events have a very short time
duration of the order 1–10 ps. The variable τ represents the retarded time, i.e., the
time in the reference frame moving with the group velocity of light normalized by
the nonlinear length L as τ = (|β2 |L)1/2. Here β2 is the coefficient of the second-order
chromatic dispersion. In fiber optics β2<0, with absolute values lying in the range of
0.1–20 ps2 km−1, whereas in hydrodynamics the nonlinear length L is governed by the
wavenumber and the mean velocity of the water surface given by L = 1/(k3U2). The
wavenumber k is determined by the frequencies present in the system arising naturally,
or indeed could be chosen under laboratory settings by sending directional waves trig-
gered using wavemakers. For instance, in 1D settings experiments which were carried
out in water wave tanks for k in the range [1–16] m−1 [130], with frequencies lying
in the range 0.2–6.3 rad s−1. The linear dispersion relation linking these frequencies
with the wavenumbers is given by ω2 = gk for deep water waves, which still holds for
the water of intermediate-depth [131]. The variable τ which governs the time scale
of the system depends on the nonlinear length L as τ = (2πL/g)1/2 where g is the
acceleration due to gravity.

Rogue waves have been attributed to mechanisms that generate large envelope ampli-
tudes F modeled by the NLSE, which takes into account group velocity dispersion and
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nonlinearity. When these two effects act together, this leads to the nonlinear focusing
scenario corresponding to η = 1. In this regard, the origin of the nonlinearity in optics
and hydrodynamics are both governed by a nonlinear dispersion relation [99,113,132].
It is important to note that optical waves with higher amplitudes of F propagate at
reduced velocities whereas in hydrodynamical systems such as in water wave tanks,
waves with higher amplitudes, propagate at increased velocity. In optical systems,
nonlinearity and dispersion are either self-focusing or defocusing unlike in hydrody-
namics where directional focusing of waves or random superposition of independent
wave train may lead to the generation of extreme events which are not limited to the
self-focusing case as in optics. The time-lens measurement technique has been used
to qualitatively compare the experimental results generated from the MI of a CW in a
single-mode fiber with the theoretical one obtained from the NLSE [17,37].

We remind the reader that the analogy between optical and hydrodynamical systems is
strictly limited to the 1D setting. This is mainly due to the fact that the NLSE supports
solutions only in the 1D setting because in two or more dimensions, this model
does not support solutions due to collapse which is mathematically demonstrated
by Ref. [108]. In the following section, we discuss some possible mechanisms in
conservative systems which could explain rogue waves in optical systems (1D setting),
and in controlled circular laboratory water wave tanks (2D settings). In this regard,
the analytical solutions of breathers via collisions is of particular interest as it is
considered to be one of the main mechanisms which generate rogue waves in these
nonlinear dispersive systems. This follows in the subsequent subsection where the
collision of these breathers is discussed following which we present the scenario from
a recent study made in circular wave tanks where the Draupner wave is recreated
experimentally.

3. COLLISION AND WAVE BREAKING

3.1. Rogue Wave Observation in Water Wave Tanks
In this section, we summarize the first experimental observations of the Peregrine
soliton in a water wave tank [54]. The evolution of the surface gravity waves in the water
wave tank is described by the NLSE, which is known to be valid for capturing weakly
nonlinear evolution of narrowband processes. The formation of rogue waves in oceans
have been attributed to the underlying breather-type solutions of the governing NLSE,
such as the Akhmediev breather, Peregrine soliton, and KM soliton [23,48,133,134].
While modeling deep water waves using the NLSE, the Peregrine soliton is considered
as an ideal candidate as it is localized both in space and time, and as such, it describes
unique wave events. It is to be noted that the Peregrine solution is a limiting case of
an Akhmediev breather when the period of modulations is taken to be infinite.

To the best of the authors’ knowledge, the first observation of an isolated rogue wave
in a water wave tank was shown in Ref. [54]. Specifically, Chabchoub et al. observed
a Peregrine-type breather solution experimentally in a water wave tank by providing
a direct analytical comparison with the solutions of the NLSE. The experiments were
performed in a water wave tank of dimensions 15 m × 1.6 m × 1.5 m with 1 m water
depth. The schematic of the experimental setup is shown in Fig. 6(a). A flap-paddle
activated by a hydraulic cylinder is used at one end of the tunnel to generate water
wave dynamics in the tank which produces a periodic wave with about 1 cm amplitude.
The dynamics on the water surface is quantified by measuring the surface elevation
across the test section. The deep water waves are described by the NLSE as shown in
Refs. [54,108].

For comparing experimental data with the analytical solution of the NLSE, the Pere-
grine breather solution has to be written in dimensional units (see [54]). In their
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Figure 6

(a) Schematic setup of the water wave tank used in Ref. [54]. (b) Comparison of
the experimentally measured surface height at the position of maximum amplitude
corresponding to a rogue wave (shown in blue) with the theoretical Peregrine solution
(shown in red). Figure 5 reprinted with permission from Chabchoub et al., Phys. Rev.
Lett. 106, 204502 (2011) [54]. Copyright 2011 by the American Physical Society.

study, a0 is the dimensional far-field amplitude selected to be 0.01 m. The wave-
length of the carrier wave is set to be λ = 0.54 m, corresponding to a wavenumber
of about k = 11.63 m−1 with an angular frequency ω = 10.7 s−1. As remarked in Ref.
[54] it has to be ensured that the wavelength of the carrier wave should be large
enough to ignore surface tension effects, while at the same time still small enough
to have sufficient tank length to develop the wave evolution described by the Pere-
grine solution. By measuring the surface elevation of the water wave across the tank
at different streamwise locations allows for a direct comparison with this analytical
Peregrine solution. Further details on the experimental procedure can be found in
Ref. [54].

Figure 6(b) shows the surface-height measurement at a position close to the maximum
envelope amplitude across the water wave tank. It can be seen that while the amplitude
of the carrier wave is around 1 cm, the maximum surface height of the breather is
almost exactly three times reaching a value of 3 cm. This indicates the formation of
a rogue wave with amplitudes greater than twice the SWH, confirming the existence
of rogue waves. The periodic wave shown in Fig. 6(b) reveals a deep trough next to
the breather’s maximum either side of the wave crest. In addition, the return from the
state of the extreme wave back to the state of a periodic wave in the experiment is
almost symmetric in time, as expected from the underlying theory. Indeed, carefully
controlled experimental procedures such as that presented in Ref. [54] allows for a
controlled observation of rogue waves in water wave tanks. In addition, they also reveal
the role of breather-type solutions of the NLSE in the formation of rogue waves in
oceans, where detailed experimental measurements are typically incomplete and rare.
We now present another interesting study where the observation of super rogue waves,
which are higher-order breathers in water waves, are experimentally shown [130].

3.2. Higher-Order Breather Solutions in Water Waves
The Peregrine soliton discussed in the previous section is characterized by an ampli-
fication factor of three. By considering a higher-order rational solution, localized in
both space and time, allows one to boost the peak amplitude of the carrier wave on the
water surface by a factor of five. These solutions are detailed in Ref. [130]. In order
to excite super rogue waves in water tanks, as in the earlier study, one has to fix the
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initial amplitude of the carrier wave a0 and the wavenumber k. In doing so, one fixes
the steepness of the carrier wave which is given by ϵ = a0k.

Figure 7(a) shows the evolution of the temporal profile of the surface elevation along
the downstream direction from the paddle (location of the wavemaker) as a function
of time. The amplification of the water surface as the wave propagates along the test
section can be clearly seen with significant amplification occurring at a distance of nine
units from the flap-paddle. The high-order wave packet generated by the wavemaker’s
paddle evolves to a super rogue wave as it propagates along the water wave tank. This is
further quantified in Fig. 7(b) which compares the theoretical prediction at the position
of maximal amplitude with the experimentally measured surface height elevation. An
amplification factor of five has been observed indicating the formation of higher-order
super rogue waves. Even higher amplifications were obtained for higher values of the
steepness of the carrier wave.

The role of MI in governing the growth of small-amplitude pulses leading to higher
amplitudes resulting in ocean waves was first discussed by Peregrine [51]. The pres-
ence of multiple frequencies in optical and hydrodynamical systems renders explicit
modeling rather complicated. However, the problem can be simplified and effectively
reduced to the interaction of two independent frequencies within the positive-gain
band. For instance, the collision of Akhmediev breathers have been observed exper-
imentally in nonlinear fiber optics [58], confirming the fact that coherent structures
may emerge locally in a turbulent environment when the phase difference between the
colliding structures is optimal. The collision of Peregrine solitons has been derived
analytically [56,135]. The phase difference between the interacting solitons plays a
significant role in deciding the initial conditions required for the formation of rogue
waves. These solitons are localized along two directions which are well separated.
Such collisions can happen in nonlinear systems frequently leading to the generation
of high-intensity pulses of small widths. These bounded states of solitons are unsta-
ble to variations of the relative phase difference between them. However, no stable
bounded states of two solitons in 1D homogeneous media have been reported in the
literature. This is due to the fact that these solitons do not have an oscillatory tail
that connects the LS with the homogeneous background rendering bounded states
impossible.

3.3. 2D Settings
In 2D settings spatiotemporal rogue events have been experimentally observed in
the context of optical multiple filamentation in Ref. [136]. In this study the transient
appearance of bright spots in the beam profile of optical filaments formed in xenon
were investigated experimentally. In this regard, optical filaments are dynamic light
structures with an intense core, which propagate over extended distances, which is
significantly larger than the usual diffraction length in the given medium. This effect
allows the maintenance of a narrow beam size without any external guidance which is
governed by two counteracting nonlinear optical mechanisms which are self-focusing
and plasma defocusing. There exists a critical power Pc ≈ 0.15λ2/n0n2 above which the
breakup of a spatially homogeneous beam profile into one or several highly localized
strings, where λ is the wavelength and n0 and n2 are the linear and the nonlinear index
of refraction, respectively. The experimentally observed filamentation was numerically
investigated using simulations of the NLSE. A snapshot of the formation of multiple
parallel optical filaments is shown in Fig. 8. The formation of extreme events was
quantified using probability distribution functions to quantify the heavy-tail character
which represents the presence of extreme events in such optical cavities. Rogue events
that exceed the SWH by a factor of 10 were reported. Of particular interest, mergers
between filament strings were identified as a possible microscopic driver mechanism
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Figure 7

(a) Evolution of the temporal profile of the water-surface elevation along the wave
tank demonstrating a super rogue wave formation further downstream from the paddle.
(b) Experimental and theoretical confirmation of higher-order rogue waves showing
the measured wave profile at the expected position of maximal carrier amplification.
Here the background amplitude a0 = 0.001 m, with a steepness of ϵ = 0.03. Figure
6(a) reprinted with permission from Chabchoub et al., Phys. Rev. X, 2, 011015 (2012)
[130]. Copyright 2012 by the American Physical Society.

Figure 8

Multiple parallel filament strings along the longitudinal direction z obtained from
numerical simulations of the NLSE with the color coding showing the relative phase
differences between the optical filaments. Figure 2 reprinted with permission from
Birkholz et al., Phys. Rev. Lett., 111, 243903 (2013) [136]. Copyright 2013 by the
American Physical Society.

for the observed rogue events. As the system is 2D as in the ocean surface, such
filamentation techniques allows for an excellent experimental platform for studying
the phenomenon of rogue waves.

We now turn to an example from hydrodynamical settings wherein significant advances
have been made in the past two decades in the context of extreme events, using
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Table 1. Summary of the Draupner Wave Reconstruction from Ref. [137] a

∆θ hd(m) hu(m) a(m) kdd kud
0◦ 24.2 23.5 16.6 1.68 1.85
60◦ 23.9 23.9 18.0 1.76 1.85
120◦ 25.4 24.5 17.9 1.76 1.89
Draupner 25.0 25.6 18.5 1.74 1.91
aAt different crossing angles, ∆θ, quantified using the down- and up-wave heights hd and hu, the total crest height
above still water a, and steepness kh/2 to scale the waves. The values of the wavenumber k were calculated using
the linear dispersion relationship ω2 = gk tanh(kd). The values corresponding to the iconic Draupner wave measured
on the North Sea are also indicated. Reprinted with permission from McAllister et al., J. Fluid Mech. 860, 767–786
(2019) [137]. Copyright 2019 Cambridge University Press.

statistical, numerical, and experimental tools [131,133,137–139]. The Draupner wave
was recently recreated in controlled laboratory settings by McAllister et al. [137]
to gain an understanding of the role of the type of wave breaking for crossing and
non-crossing waves. The conditions at the Draupner platform based on hindcasting
studies have indicated the presence of wind fields at different angles [137,140]. More
pertinently, the question of interest raised by McAllister et al. [137] were on the
directional conditions of the waves whose interactions lead to large crest amplitudes,
without crest-amplitude-limiting breaking, as the crest amplitude from a single wave
train is limited due to breaking. Their study showed that the breaking mechanism can
be fundamentally altered, with the crest amplitude not being limited due to breaking,
but rather resulting in upward jet-like behavior.

As a brief summary, McAllister et al. [137] performed experiments in a circular wave
tank surrounded by 168 wavemakers, which allows for the creation of waves traveling
in all directions. For instance, by sending out waves at different frequencies toward
the center of the circular tank that travel at different speeds, they were able to create a
“spike” wave which arises due to the constructive interference with the tank. It is to
be noted that previous numerical studies could reproduce the Draupner wave only by
the crossing of two wave groups, due to the interaction between the wave trains at a
specific angle [131,141]. Based on this, McAllister et al. [137] created two different
wave groups traveling toward the center of the tank, and varied the angle between
them. They found out that a “freak wave” or a “rogue wave” formed only when the
difference in angle between the two wave groups was around ∆θ ≈ 135◦.

Figure 9 shows a summary of the observations from Ref. [137] for different values
of ∆θ, the angle between the wave groups. They observed that the breaking process
when the angle between the wave groups was large changes significantly. For ∆θ = 0◦,
one can see that the wave energy is traveling unidirectionally, similar to what can be
observed at a beach, with the waves breaking in a “plunging”-type manner, thereby
limiting the maximum crest amplitude. When the angle between the wave groups was
changed to ∆θ = 120◦, a “spouting”-type wave breaking can be observed in the form
of upward projected jets. This type of wave breaking does not limit the wave height
under the crossing-sea conditions, and in fact enhances the wave height, which could
explain the Draupner wave observed in the North Sea. A summary of the Draupner
wave features are provided in Table 1. The study clearly shows that the wave breaking
plays a key role in the formation of extreme waves, which are, in turn, governed by
the crossing angles between the traveling wave groups.

4. DIFFRACTIVE AND DISPERSIVE OPTICAL RESONATORS

The above theory of rogue waves in the context of optical systems based on the NLSE
holds only in the 1D setting. However, beam collapse prevents the NLSE to have
bounded solutions in more than one dimension which renders the formation of high-
dimensional rogue waves impossible. There exist several mechanisms leading to the
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Figure 9

A summary of the observations from [137] where ∆θ is the angle between the two
wave groups. The still images of the free surface were taken at intervals of 100 ms (0.6
s at field scale), with the time sequence increasing from left toward right. Reprinted
with permission from McAllister et al., J. Fluid Mech. 860, 767–786 (2019) [137].
Copyright 2019 Cambridge University Press.

stabilization of 2D solutions such as SAs, non-local coupling, or optical cavities. Due
to this reason, we focus on optical cavities filled with a nonlinear material by using the
mean-field approach, which was first used to describe Kerr media and semiconductor
materials: the LLE. This approach includes pumping and dissipation, in addition to
nonlinearity, dispersion, and/or diffraction [60]. Furthermore, the LLE is by now
recognized as a very accurate model to capture the physics of Kerr optical frequency
comb generation using integrated ring resonators [142], and in whispering gallery
mode cavities [143]. In what follows, we focus on dissipative rogue wave formation
in nonlinear optical cavities. For this purpose, two dissipative systems are considered:
the driven Kerr optical cavities subjected to an optical injection, and the broad-area
surface-emitting lasers with a SA.

4.1. The Lugiato–Lefever Model
In free propagation, the evolution of the envelope of the electric field inside the Kerr
material can be described by the standard NLSE Eq. (35). In what follows, we consider
a Fabry–Perot cavity filled a Kerr medium and driven coherently by an injected beam
with an instantaneous Kerr media (see Fig. 10).
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Figure 10

Schematic setup of an optical cavity filled with a Kerr medium. The cavity is driven by
an external field Ei. The mirrors M1,2 are identical and their reflection and transmission
coefficients are denoted by ρ and θ, respectively. Reprinted with permission from Ref.
[62].

The cavity is driven by a coherent plane wave wherein the intracavity field undergoes
a coherent superposition with the injected field at the input of the mirror. This process
corresponds to the following cavity boundary conditions

Fp+1(0, x, y, z) = ρFp(l, x, y, z) exp (iϕ0) + θFi, (36)

where ρ and θ are the reflection and transmission coefficients at the input and the output
mirrors. The above equation provides a relation between the intracavity field envelope
Fp+1 at the input of the cavity after the p + 1 round trip and the field Fp(l, x, y, z) at the
output after p round trips, where l is the cavity length. The phase shift ϕ0 accounts for
the linear phase accumulated by the intracavity field during one round trip time; tr.
The evolution of the intracavity field is, thus, slow at the time scale of the order tr.

The NLSE (35) supplemented by the cavity boundary conditions (36) constitutes an
infinite-dimensional map. In the mean-field approach based on a good cavity limit
and high Fresnel number, this infinite-dimensional map can be reduced to a single
partial differential equation referred to as the LLE [60]. To perform this reduction,
we consider cavities with high finesse. In this case, the transmission coefficient θ is
much smaller than unity (ρ ≈ 1 − θ2/2). In this limit, the temporal evolution of the
field within the cavity is slow compared with the round trip time tr. Therefore, this
temporal evolution can be considered as continuous by replacing the map index p by
a slow time scale t for the modeling of the field envelope evolution at the input of the
cavity, i.e., the point z = 0. This can be realized by defining the continuous variable
E(t, x, y, τ) as the intracavity field envelope at z = 0 as

F(t = ptr, x, y, τ) = Fp(z = 0, x, y, τ), (37)

where p is a positive integer number. The time t describes the slow evolution of the
intracavity field from one round trip to another, while the structure of the intracavity
field changes at the fast time scale τ. The slow time derivative can be defined as

∂tF(t = ptr, x, y, τ) =
Fp+1(z = 0, x, y, τ) − Fp(z = 0, x, y, τ)

tr
. (38)

When the cavity possesses a high finesse, the cavity resonances are narrow, and
the injected field is coupled to the cavity only if the system is close to resonance.
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This means that intracavity field does not vanish when the system operates close to
resonance where the phase shift ϕ0 is close to 2π. This implies that both the linear
cavity detuning δ0 = 2πm − ϕ0 with m is an integer and the nonlinear cavity phase
shift lF2 must be much smaller than unity. In addition, we assume that the cavity
length is much shorter than the characteristic dispersion and diffraction lengths of the
intracavity field. With these approximations together with the fact that we focus on the
high-finesse cavities, we can rewrite Eq. (36) as

Fp+1(0, r) = θFi +

(︃
1 −
θ2

2
− iϕ0

)︃
Fp(l, r), (39)

with Fp+1(0, r) = Fp+1(0, x, y, τ) and Fp(L, r) = Fp+1(0, x, y, τ). By averaging the right-
hand side of the NLSE (35) over one cavity length, we obtain

Fp(z = l, r) − Fp(z = 0, r) =
il
2
∇2Fp(z = 0, r) + il|Fp(z = 0, r)|2Fp(z = 0, r). (40)

By combining Eqs. (39) and (40) and by taking into account Eqs. (37) and (38) together
with the above-mentioned approximations consisting of assuming that θ, ϕ0, l|F2 |, and
l are small quantities, the 3D LLE reads [144,145]

tr
∂F
∂t
=

√
θFi −

(︂
κ + ı̇ϕ − ı̇γl|F |2

)︂
F

+ı̇
(︂ l
2q

∇2
⊥ +
β2l
2
∂2

∂τ2

)︂
F.

(41)

Here E = E(x, y, τ, t) is the normalized slowly varying envelope of the intracavity field
and Fi is the input field. The time t corresponds to the slow-time evolution of F
over successive round trips, whereas τ accounts for the fast time in a reference frame
traveling at the group velocity of light in the Kerr medium. The cavity round trip time
is denoted by tr. The 2D diffraction is described by the Laplace operator ∇2

⊥ = ∂xx + ∂yy
acting on the transverse plane (x, y). The diffraction coefficient is inversely proportional
to the wavenumber modulus in the cavity material q = ω0nl/c = 2πn/λ0 where ω0 is
the injected field frequency, λ0 is the wavelength in vacuum, n is the linear refractive
index, and c is the speed of the light. The second derivative with respect to τ describes
the group velocity dispersion. The chromatic dispersion coefficient β2 is considered to
be positive assuming that the Kerr cavity operates in anomalous dispersion regime. The
nonlinear coefficient γ = 2πn2/λ0 is the nonlinear coefficient with n2 is the nonlinear
refractive index of the Kerr material considered. The transmission coefficient θ is
supposed to be much smaller than unity. The length of the cavity is denoted by l
and ϕ0 = 2πl/λ0 is the linear phase shift accumulated by the intracavity field over the
length l. To simplify further and to reduce the number of parameters describing the
time evolution of the intracavity field, we introduce the following changes:

(x, y) →

√︄
l

2qκ
(x, y), (t, τ) →

(︂ tr
κ

t,
√︃
β2l
2κ
τ
)︂
,

Fi → κ

√︃
κ

γθl
Ei, and E →

√︃
κ

γl
E.

(42)

Under these changes, the generalized LLE (41) takes its dimensionless form

∂E
∂t
= Ei − (1 + ı̇δ)E + ı̇

(︃
∇2
⊥ +

∂2

∂τ2

)︃
E + ı̇|E |2E, (43)

where δ = ϕ0/κ is the cavity detuning parameter. The LLE is a driven damped NLSE.
It was first derived to describe the plasma driven by a radio-frequency field [146,147]
and the condensate in the presence of an applied ac field [148].
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Kerr resonators constitute a basic configuration in nonlinear optics and photonics
which allows for the generation of 1D and 2D spatial rogue waves described by the
LLE. The latter was first derived to describe the dynamics in passive resonators [60],
which was later on extended to fiber optics [149], left-handed materials [150], whisper-
ing gallery mode cavities [144], integrated ring resonators [69], and chains of coupled
silver nanoparticles embedded in glass [151]. A discrete version of the LLE has been
established to model coupled-waveguide resonators [152–155], or extended Josephson
junction [156]. The LLE constitutes a paradigm for the study and for the understanding
of various dynamical properties of laser fields confined in nonlinear optical resonators
such as hard-mode symmetry-breaking instability and self-organization either in time
and/or space (see a recent overview [157]). The mean-field approach has been com-
pared with the propagation model supplemented by cavity boundary conditions in
Refs. [158,159].

The model, Eq. (43), supports stationary localized [61,160] and self-pulsating local-
ized [161] structures. In the conservative limit, where injection and dissipation are both
small, LSs have analytical solutions [88,162–164]. LSs can exhibit regular time oscil-
lations leading to complex behavior (see also the recent review on the link between the
LLE and the driven damped sine-Gordon and the Lugiato–Lefever model [165]). It is
also worth mentioning several interesting works on their bifurcation structures which
belong to the class of homoclinic snaking type of instability [166–168]. Their relative
stability analysis as well as their snaking bifurcation diagram have been reported [169].
When polarization degree of freedom is taken into account within Kerr resonators,
new MIs appear [170–172] and vector LSs are predicted [173–176]. However, when
the Kerr resonator is operating in a dispersion regime, another class of LSs resulting
from interactions may be generated in scalar [177–182] and vectorial cases [183,184].
The stabilization mechanism of these localized states is attributed to a front locking
mechanism in the bistable regime [185,186]. Their bifurcation diagram exhibits a
heteroclinic collapsed snaking type of bifurcation.

4.2. Linear Stability Analysis
In the absence of diffraction and dispersion, the homogeneous steady-state solutions
of Eq. (43) satisfying ∂tE = 0 and ∇2E = 0 are

Ii = Is
[︁
1 + (δ − Is)

2]︁ , (44)

with Is = |Es |
2 and Ii = E2

i are the intracavity field intensity and the injected field
intensity, respectively. For δ<

√
3 (δ>

√
3) the transmitted intensity as a function of

the input intensity Ii is monostable (bistable). At the onset of optical bistability, there
exist a second-order critical point where the output versus input characteristics has an
infinite slope. The critical detuning at the onset of optical bistability is δ =

√
3.

When diffraction and dispersion are taken into account, spatial and/or temporal fluctu-
ations can destabilize the system and allow for the formation of dissipative structures.
The spontaneous transition from a homogeneous steady state to a periodic structure
is a general feature of many far from equilibrium systems, and has motivated many
studies since the pioneering work of Turing [187], followed by the physical interpre-
tation by Prigogine [188,189]. It concerns almost all fields of natural science such as
biology, chemistry, ecology, physics, fluid mechanics, optics, and photonics (see the
reviews on this issue [189–197]).
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The linear stability analysis of the homogeneous steady states can be performed by
linearizing Eq. (43) and its complex conjugate around Es and E∗

s as

[E(t, x, y, τ), E∗(t, x, y, τ)] = (Es, E∗
s ) +

[︂
δE(t, x, y, τ), δE∗(t, x, y, τ)

]︂
exp(ik.r + λt),

(45)
with r = (x, y, τ) and k = (kx, ky, kτ). By replacing the perturbation Eq. (45) in Eq. (43)
and its complex conjugate, and linearizing, we obtain the characteristic equation

λ2 + 2λ + ∂IsIi +
[︁
k2 − 2(2Is − δ)

]︁
k2 = 0, (46)

where ∂IsIi = 1 + (Is − δ)(Is − δ) is the slope of the homogeneous steady-state curve.
At the turning point or a limit point the slope vanishes, i.e., ∂IsIi = 0. The coordinate
of the turning points are I±l = [2δ ± (δ2 − 3)1/2]/3. The corresponding injected field
intensities are I±l = I±l [1 +

(︁
δ − I±l

)︁2
]. The critical point associated with the bistability

is reached when these two turning points coincide, i.e., I−l =
+
l .

In the presence of small fluctuations depending on the space (x, y) or the retarded time
τ, the homogeneous steady state undergoes a symmetry-breaking instability when the
eigenvalue λ vanishes for a finite wavenumber. Above this instability point, there exist
a finite band of unstable Fourier modes k<k<k+, with

k2
± = 2Is − δ ±

√︁
Is − 1, (47)

which are linearly unstable and trigger the spontaneous evolution of the intracavity field
toward a stationary, periodic solution that occupies the whole space available in the
(x, y, τ) Euclidean space. The threshold associated with the symmetry-breaking insta-
bility is obtained when k− = k+. The critical intracavity field intensity is Im = |Em |

2 = 1
and the corresponding critical injected field intensity at the onset of the instability is
Iim = E2

im. At this bifurcation point, the critical wavelength of the pattern which emerges
from the symmetry-breaking instability or MI is Λc = 2π/

√
2 − δ. When δ = 2, the

critical wavelength becomes infinite, i.e., zero wavenumber. For this particular value
of the detuning parameter, the MI coincides with the lower turning point (Iim = I−l ) of
the homogeneous steady states. This symmetry-breaking bifurcation is known as the
Turing instability [187] and is often called MI in the context of optics and photonics.
The resulting patterns emerging from that bifurcation are called dissipative struc-
tures which are characterized by an intrinsic wavelength that is determined only by
dynamical parameters and by physical boundaries or other external effects [188,198].
Self-organization and symmetry-breaking phase transition or instability leading to
the spontaneous formation of spatially periodic patterns such as rolls or hexagons
have been observed in almost all driven away from equilibrium systems. Generally
speaking, the mechanism responsible for the stabilization of these patterns rests on the
balance between two opposite processes: (i) diffraction (and/or diffusion or thermal
diffusivity) that tends to restore spatial uniformity, and nonlinearity which is typically
generated by light–matter interactions which are responsible for the amplification of
spatial inhomogeneities, (ii) pumping or injection which compensates losses or dissi-
pation. The balance between these two opposite effects can stabilize spatial structures.
The physical interpretation and the possibility to have spatial oscillations in far from
equilibrium systems have been proved by Prigogine and Lefever [188,198]. They have
shown that the transition from uniform state to a spatial order is not in contradiction
with the second principle of thermodynamics extended to out of equilibrium systems.

Note that in hydrodynamics, and in particular in the Bénard cells experiments [199],
discovered in 1900, the emerging dissipative structures wavelength is not intrinsic but
rather extrinsic. This famous experiment consists of a fluid between two horizontal
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conducting plates in the field of gravity and heated from below. The fluid will reach
the state of thermodynamic equilibrium, in which there is no bulk motion and both
temperature and density are constant. In this case fluctuations such as local increase of
temperature will be damped out. This is a conduction regime so that the fluid remains
at rest. However, if we increase further the bottom plate temperature, and above some
threshold, the fluid starts to exhibit a bulk movement leading to spatial order in the
form of well-structured convection cells. These cells that emerge in the convective
regime generate an extrinsic dissipative structures. This is because their wavelengths
are determined by external factors such as the boundaries and the thickness of the fluid
layer considered [198].

4.3. Optical Crystals
The LLE supports periodic dissipative structures that emerge spontaneously from MI.
When using guided wave structures, the intracavity field is spatially stabilized in the
transverse plane-(x, y), and therefore in this case diffraction can be neglected. In a 1D
setting, periodic structures have been observed using all-fiber resonators [200]. When,
however, diffraction cannot be neglected when using broad-area devices, the periodic
patterns such as rolls or hexagons exist as shown in Refs. [61,201]. Analytical analysis
based on a pattern selection process and a relative stability analysis have proved that
only hexagonal structures of the H0 are stable over other possible periodic transverse
structures [202]. When diffraction and dispersion have a comparable influence on the
system, 3D dissipative structures are formed. These structures consist of self-organized
light-bullets traveling in the cavity and have been reported in nonlinear Kerr cavities
[145], and optical parametric oscillators [145,203].

At that bifurcation point, the homogeneous steady-state solution of the LLE (44)
becomes unstable with respect to modes satisfying the relation, k2

x + k2
y + k2

τ = 2 − δ.
Beyond this critical point, there exists a finite band of unstable Fourier modes lying
on a sphere with the radius kc =

√
2 − δ. These modes are arbitrarily directed in the

Fourier space (kx, ky, kτ) because the system is isotropic. Although a large number of
unstable modes may be excited along arbitrary directions, a periodic optical crystal is
selected and emerges due to the nonlinear interaction. In the linear regime, crystals,
or 3D periodic patterns, can be approximated by a linear superposition of n pairs of
opposite wave vectors kj lying on the critical sphere of radius kc as

E(r, t) = Es + e
n∑︂

j=1
Aj exp (ır.kj) + c.c., (48)

where e the eigenvector of the corresponding Jacobian matrix associated with the zero
eigenvalue. The lamellae and rhombic structures are characterized by n = 1 and n = 2,
respectively, and the 3D hexagons or hexagonally packed cylinders (hpc) correspond
to n = 3 with

∑︁3
j=1 kj = 0. The face-centered-cubic (fcc) lattice and the quasiperi-

odic crystals are obtained for n = 4 and n = 5, respectively. The body-centered-cubic
(bcc) lattice corresponds to n = 6. The bcc optical crystals are characterized by six
pairs of wave vectors whose coordinates are kc(±1,±1, 0)/

√
2, kc(±1, 0,±1)/

√
2, and

kc(0,±1,±1)/
√

2. These wave vectors form a regular octahedron of eight faces in the
form of equilateral triangles.

In a weakly nonlinear regime, normal form analysis in the neighborhood of the 3D
MI allows the determination of all the above-mentioned 3D periodic solutions. A
relative stability analysis has proved that only the bcc crystals are stable over other
possible periodic structures [145]. The results of these analyses are summarized in
the bifurcation diagram displayed in Fig. 11(a) taken from Ref. [204]. We plot the
amplitude of lamellae, hpc, and bcc lattice as a function of the injected beam with
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respect to the relative distance from the MI critical threshold. The bcc/hpc and the
hpc/lamellae transitions are both excluded for the 3D LLE. Note that in two dimen-
sions, the well-known hexagon/stripe transition studied in 2D transverse systems is
also excluded [202]. As mentioned in an earlier report [145] on 3D crystals, the results
were obtained in a perturbative way and they need further support from numerical sim-
ulations. More recently, numerical simulations have been performed for both optical
crystals and 3D confinement of light in Kerr resonators [62]. The delay in simulating
3D LLE is originated from the fact that the 3D pattern contains a strongly nonlinear
term. When performing discretization, this leads to large systems of strongly nonlinear
stiff ordinary differential equations [205,206]. The finite-difference methods can lead
to non-physical solutions [205]. The spatial discretization of the LLE is done using a
Fourier spectral method with periodic boundary conditions [206–208], and the time-
stepping is carried out with a fourth-order exponential time differencing Runge–Kutta
method [206–208]. All the numerical simulations are carried out on a periodic domain
of size 80 units in each direction resolved using 128 grid points, with a time step of
0.01. The initial condition consists of a 3D structure with bcc symmetry. The max-
imum intensity of the intracavity field associated with the bcc structures is plotted
together with their 3D Fourier transform in Fig. 11(b).

4.4. Complexity in Kerr Resonators: Spatiotemporal Chaos
The stationary periodic solutions of the LLE (44) lose their stability when increas-
ing the injected field Ei. Two routes to spatiotemporal regimes of chaos have
been identified: period-doubling and extended quasiperiodicity. In the large-intensity
regime, complex spatiotemporal dynamics have been reported in driven Kerr cavities
[209–212]. Indeed, transitions from either stationary periodic or localized states to the
spatiotemporal complex type of behavior are shown in Fig. 12. This figure is obtained
by numerical integration of Eq. (43) using periodic boundary conditions. The inte-
gration scheme is based on a Runge–Kutta method combined with a pseudo-spectral
algorithm. Fig. 12(a) shows a space–time map showing the evolution of the intracavity
intensity when changing the injected field amplitude with a step of 0.02 at each 200
time units. The initial condition consists of a stationary localized solution with large
intensity.

When further increasing the intensity of the injected field, the localized states become
unstable with respect to the 3D pattern forming process at the critical value I = Iim.
For Ii>Iim, periodic structures emerge. This is because, above the critical value of
the intracavity field, the background state or the lower homogeneous steady state is
unstable resulting in the breakup of LSs giving rise to periodic structures. When
increasing further the injected field intensity, these periodic solutions undergo a Hopf
bifurcation leading to the time oscillations of high-intensity peaks of the intracavity
field intensity as shown in Fig. 12(c1). The corresponding power spectrum indicates
that, indeed, the patterns exhibit harmonic oscillations with the frequency f1 as shown
in Fig. 12(c2). When increasing further the injected field amplitude, Ei, the time
oscillatory pattern exhibits a Torus bifurcation with two frequencies f1 and f2 as shown
in Figs. 12(d1) and 12(d2). For large values of the injection, the system develops
an extended quasiperiodic route to chaos as shown in Figs. 12(e1) and 12(e2). This
complex behavior is illustrated by Fig. 12(a). When starting with an initial condition
obtained for large intensity (Ei) which constitutes an irregular pattern, by slowly
reducing the injected field amplitude with a step of 0.02 at each 200 time unit,
the intracavity field undergoes interesting dynamics. The intracavity field exhibits a
complex behavior and by reducing further the injection, a transition toward a stationary
periodic pattern takes place. Such transitions are illustrated in the space–time map of
Fig. 12(b).
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Figure 11

(a) 3D bifurcation diagram of optical crystals obtained for a fixed cavity detun-
ing parameter (δ = 0.7) versus the relative distance from the MI critical point
(Ei − Eic)/Eic. The homogeneous steady state (HSS) is plotted together with optical
crystals. The full and the broken curve indicate stable and unstable states, respectively.
Lamellae and hpc are denoted by lam and hpc, respectively. The black circles indicate
the corresponding intensity off bcc crystals obtained by numerical simulations: (b)
the bcc optical crystal in real space and (c) its Fourier transform in (kx, ky, kτ) space
obtained for δ = 0.7 and Ei = 0.098. Reprinted from Chaos, Solitons Fractals 152,
Tlidi et al., “Optical crystals and light-bullets in Kerr resonators,” 111364, copyright
2021, with permission from Elsevier [204].

A number of tools have been developed to characterize and to classify the complexity
of the observed patterns such as power spectra, filtering spatiotemporal diagrams,
embedding dimensions, or using a time series analysis. Details of these tools can be
found in Refs. [209–212]. An interesting question is how to characterize the com-
plexity of the observed intracavity field structure, and how to distinguish between
various complex behaviors such as spatiotemporal chaos, low-dimensional chaos, and
turbulence. The only reliable tool for the characterization of these complexities is the
Lyapunov spectrum. Classification of these complex regimes based on the Lyapunov
spectrum is shown in Refs. [213–216]. Lyapunov exponents measure the sensitivity
of the system to initial conditions. If the Lyapunov spectrum possesses a continuous
set of positive eigenvalues, the complex behavior belongs to the class of spatiotem-
poral chaos. In the case of low-dimensional chaos, the Lyapunov spectrum possesses
rather a discrete set of positive eigenvalues. Finally, turbulence or weak turbulence
in system dynamics are characterized by a power-law cascade, such as the celebrated
Kolmogorov scaling law [216].
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Figure 12

Space–time maps obtained from numerical simulation of Eq. (43) showing the evolu-
tion of the intracavity field intensity. (a) Along the z direction Ei is increased from 1.3
to 3.3. (b) Here Ei is decreased from 3.3 to 1.3. (c1), (d1), and (e1) Time traces for an
isolated peak in the intracavity structure for Ei = 1.85, 1.9, and 2.1, respectively. (c2),
(d2), and (e2) Corresponding power spectra. Reprinted by permission from Macmillan
Publishers Ltd: Panajotov et al., Eur. Phys. J. D 71, 176 (2017) [213]. Copyright 2017.

Numerical simulations of Eq. (43) indicate that the complexity in the intracavity field
structure belong to spatiotemporal chaos type of behavior [165,213,217]. Indeed, the
Lyapunov spectrum formed by a continuous set of positive exponents are plotted in
Fig. 13. These exponents are denoted by λi, where i = 0, 1, . . . , N with N being the grid
number. For p>q, λp ≤ λq. The optical cavity, which is composed of N cells, exhibits
a complex behavior seeded by a random initial condition as shown in the space–time
map of Fig. 13(a). The corresponding Lyapunov spectrum is plotted in Fig. 13(b),
which constitutes the only reliable tool to characterize the spatiotemporal chaotic
regime. In addition, we compute the Yorke–Kaplan dimension (DYK) introduced by
Ott [218]

DKY ≡ p +
∑︁p

i=0 λi

λp+1
, (49)

where p is the largest integer exponent satisfying the condition
∑︁p

i=0 λi>0. The
Yorke–Kaplan dimension DYK scales with the size of the system as shown in Fig. 13(b).
It is an extensive quantity, which increases linearly with the size of the system [215].
The Yorke–Kaplan dimension provides a measure of the strange attractor complexity.
An attractor is called strange if it has a non-integer dimension. In spatially extended sys-
tems although the phase space is an infinite-dimensional function space, the universal
attractor has a finite fractal dimension [219]. In addition, chaotic fluctuations possess
a finite correction length and computing correlations of such chaotic fluctuations is
not an easy task and requires the use of a parallel computer [220–222].



Tutorial Vol. 14, No. 1 / March 2022 / Advances in Optics and Photonics 117

Figure 13

Characterization of spatiotemporal chaos in the LLE with losses α which are not nor-
malized to unity using numerical simulations [213]: (a) space–time map; (b) Lyapunov
spectrum; (c) the Yorke–Kaplan dimension as a function of the system size. The linear
growth of DYK dimension is fitted by a slope of 1.73 as shown by a dashed gray line.
Parameter settings: α = 0.16, ∆ = 1, and Ei = 0.16. Reprinted with permission from
[217]. Copyright 2017 Optical Society of America.

4.5. Dissipative Rogue Waves in Kerr Resonators
In addition to the above-mentioned complex behavior in the form of spatiotemporal
chaos, theoretical and experimental studies have shown the possibility to generate
rogue waves in all-fiber resonators. Their formation is attributed in most cases to the
MI. In these dissipative systems, small-amplitude pulses may grow to large amplitudes
if their frequencies fall in the band of unstable modes with a positive gain. Evidence
of rogue waves formation in the framework of LLE has recently been provided in the
1D setting in the absence of delayed feedback [213,223,224] and in the presence of
time-delayed feedback [23,26,75].

Recently, experimental observations of rogue waves in a coherently driven all-fiber
cavity have motivated further interest in the field of optics and photonics [224]. A
schematic setup is shown in Fig. 14(a). In this experiment, an all-fiber ring cavity of
length 26.5 mm long is used to generate ORWs. The temporal and spectral charac-
teristics of the intracavity field are measured using an intensity autocorrelator with a
resolution of 10 fs at a resolution of 2.5 GHz for the optical spectrum analyzer. The
light field circulating in the fiber ring cavity indicated by the yellow box of Fig. 14(a)
suffers dispersion and nonlinearity. The nonlinear resonator depicted in Fig. 14(a)
constitutes an ideal testbed for the experimental study of rogue wave formation in sys-
tems subject to a permanent pumping of energy. In addition, when taking into account
injection and dissipation, this part of the setup can be described by the temporal and
spatial LLE (43). We refer the reader to Ref. [224] for a detailed description of the
experimental arrangement. Numerical simulations of this equation indicate that when
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Figure 14

(a) Schematic sketch of an optical fiber cavity modeled by the LLE. (b) Intensities of
the optical pulses from experimental observations and numerical simulations showing
rogue events. (c) Logarithmic scaled probability density functions of spatiotemporal
pulses as a function of the injected power showing the long tail distribution. Reprinted
under a Creative Commons 4.0 license [224].

increasing the pump power Ei, the temporal profile of the intracavity field exhibits
complex behavior. In particular, the optical pulses exhibit “spiking” and “bursting”
types of behavior. This feature is shown in Fig. 14(b) taken from Ref. [224]. From this
figure, we can see that the highest peak intensity pulses are surrounded by smaller ones
located at a position ζ2 which is often called the correlation length. Mathematically,
this length is defined as the exponential decay of the equal time two-point correlation:

C(δz) = ⟨
(︁
F(δz + z′) − ⟨F⟩

)︁
[F(z′) − ⟨F⟩]⟩, (50)

where the brackets ⟨.⟩ denote averaging along the longitudinal coordinate z. The
probability density distribution of the associated peak heights as a function of the
injected power Ei is shown in Fig. 14(c). The temporal profiles of the intensity that
burst in a spatiotemporal complex regime are accurately estimated using the correlation
function as can be seen in Fig. 14(b). These extreme events are quantified by the
corresponding probability distribution function shown in Fig. 14(c). The green line
indicates peaks that are twice as large as the background intensity, and the black lines
denote the Rayleigh distribution with a unity mean value.

https://creativecommons.org/licenses/by/4.0/
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Figure 15

2D dissipative rogue event in Kerr resonators. (a) Intensity profile of the intracavity
field in logarithmic scale. (b) Probability distribution function (PDF) of the pulse
amplitudes indicating extreme events with pulse amplitude larger than twice the SWH.
Parameter settings: Ei = 5, θ = 2. (c) As in (b) with the injected field Ei varied between
1.5 and 7. Reprinted by permission from Macmillan Publishers Ltd: Panajotov et al.,
Eur. Phys. J. D 71, 176 (2017) [213]. Copyright 2017.

In 2D settings, stationary 2D LSs become unstable when increasing the intensity of the
injected field. In this regime, the system can exhibit spatiotemporal chaos via period-
doubling or quasiperiodicity. This transition is similar to that discussed in the 1D
setting in Sec. 4.4. Such high-intensity regimes are characterized by the appearance of
rogue waves. An example of such behavior in 2D settings is shown in Fig. 15(a) where
an extreme event is captured. A statistical analysis documenting the number of events
as a function of pulse amplitude is shown in Fig. 15(b). There exists a considerable
number of events with spatiotemporal maxima of intracavity intensity more than
twice the SWH, and even events with amplitude as high as six times the SWH appear.
The non-Gaussian statistics of the wave intensity, with a long tail of the probability
distribution, reveal the typical signature of rogue wave formation. Figure 15(c) shows
the variation in the number of events when the injected field Fi is further increased.

Large-intensity pulses generated in Fig. 15 belong to the class of rogue waves or
extreme events. We would like to emphasize that rogue waves are only formed in
the LLE model when the spatiotemporal chaos is well developed, i.e., when the
neighboring pulses in the oscillating pattern are interacting strongly. For example,
Fig. 15 displays the statistics of pulse heights in the quasiperiodic and chaotic regimes
discussed in the previous section for the 1D LLE model. Even when the peak amplitude
of the pulses display chaotic dynamics, as in the case of Ei = 2.1 [Fig. 15(c)], no rogue
waves are formed in the system. This is reflected in the tail of the pulse height
distribution which stays below the threshold of twice the SWH. Note that the first
experimental evidence of 2D rogue waves in nonlinear optics has been realized using
a nonlinear optical cavity, formed by a unidirectional ring oscillator with a liquid
crystal light valve [225,226].

5. DISSIPATIVE ROGUE WAVES IN CAVITY SEMICONDUCTOR

We consider the mean-field model describing the space–time evolution of broad-area
VCSEL with saturable absorption [227]. We first describe experimental evidence
of extreme events in 1D setting without injected field and delayed feedback. Then
we investigate the control of rogue waves in two dimensions by taking into account
the combined influence of optical injection and delay feedback. The advantage of
implementing delayed feedback in optical resonators is that it allows for the reduction
of the threshold associated with MI, self-pulsating cavity solitons, and rogue wave
generation.
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5.1. Model Equations for Cavity Semiconductors
The modeling of temporal–spatial dynamics in semiconductor broad-area lasers is
complicated, requiring extensive knowledge of semiconductor physics, laser dynamics,
and numerical methods. Many of these techniques have been already developed and
used in both small and broad-area VCSEL nonlinear dynamics. In particular, the
complicated microscopic physics of semiconductor materials imposes to include all
the physically relevant variables, including those having a slow dynamic such as
the crystal or carriers lifetime. Therefore, the radiation–matter interaction dynamics
cannot be described only by the electric field alone as in the case of the Kerr media. To
simplify further, we assume that only the coupling of the electric field with the excitonic
resonance is considered in that model. This means that the continuous absorption band
that alters the high-frequency side of the excitonic line in the absorption spectrum of
the semiconductor material is neglected.

To model the cavity semiconductor, we use the slowly varying approximation and
we assume a paraxial approximation of the coupled Maxwell–Bloch equations. We
assume the validity of the mean-field approximation which requires high-finesse cavity
or high-Q-factor resonators such that the semiconductor cavity operates on a single
longitudinal mode. We neglect the field polarization degrees of freedom by assuming
that the coupled Maxwell–Bloch equations are scalar. To control the 2D rogue waves
by time-delayed optical feedback, we modify the model from Ref. [227] by adding
delayed optical feedback from a distant mirror in a self-imaging configuration, i.e.,
light diffraction in the external cavity is compensated for [228,229]:

∂tE =
[︁
(1 − iα)N + (1 − iβ) n − 1 + i∇2

⊥

]︁
E + ηeiφE(t − τ), (51)

∂tN = γ1

[︂
µ − N

(︂
1 + |E |2

)︂]︂
, (52)

∂tn = −γ2

[︂
γ + n

(︂
1 + s |E |2

)︂]︂
, (53)

where E is the slowly varying electric field envelope, N (n) is related to the carrier
density, α (β) is the linewidth enhancement factor, and γ1 (γ2) is the ratio of photon
lifetime to the carrier lifetime in the active layer (SA) (normalization is the same
as in Ref. [227]). Here µ is the normalized injection current in the active material,
γ measures absorption in the passive material, and s = a2γ1/(a1γ2) is the saturation
parameter with a1(2) the differential gain of the active (absorptive) material. The
diffraction is described by the Laplace operator ∇2

⊥ acting on the transverse plane
(x, y) and carrier diffusion is neglected. Time and space are scaled to the photon
lifetime τp and diffraction length, respectively.

We are interested in investigating the effect of the time delayed feedback control
(TDFC) schemes on the space–time dynamics of the cavity semiconductor. TDFC is
based on the use of the difference between systems variables at the current moment
of time and their values at some time in the past. The delay feedback is modeled
by adding an external mirror located at a distance Lext from the output facet of the
VCSEL. The diffraction in the external cavity is fully compensated, and the feedback
field is sufficiently attenuated so that it can be modeled by a single delay term with a
spatially homogeneous coefficient ηeiφE(t − τ). The modeling of the delayed feedback
has been introduced in an earlier report by Rosanov [230] in solid-state lasers and
Lang–Kobayashi in semiconductor lasers [231]. The delay feedback is characterized
by the time delay τ, the feedback strength η, and phase ϕ.

In a 2D setting, despite significant theoretical advances made in cavity semiconductor
devices regarding the formation of rogue waves, there are still some important remain-
ing issues, such as their experimental evidence are still lagging. To some extent,
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this is because only recently wide-aperture VCSEL technology has attained maturity
[232,233]. The first experimental demonstration of LSs in optically pumped semi-
conductor microresonators was carried out in 2001 [234] and in electrically pumped
VCSELs in 2004 [235]. Their properties were studied in 2004 [236]. The possibility to
obtain LSs above the lasing threshold was demonstrated in 2006 [237]. Experimental
observation of LSs in medium-size VCSELs has been reported [238] as well as their
polarization properties [239]. Alternatively, LSs can be realized without holding beam
in a laser containing a SA or subject to frequency-selective feedback. The SA scheme
was considered theoretically as early as 1992 [240] and realized experimentally in 1997
[241]. Only recently such LSs have been experimentally demonstrated in broad-area
VCSELs in Ref. [242], and Ref. [243] for SA systems and frequency selective feedback.
However, the monolithic semiconductor laser–SA system has only been realized by
optical pumping [244]. When the interaction of several field components of different
frequencies or polarizations is considered, vector LSs are predicted theoretically for a
dichroic Kerr cavity [245]. Due to the surface emission, the weak cavity anisotropies,
and the spin-flip mechanism, VCSELs emit linearly polarized light that may switch
between two orthogonal directions [245]. A single orthogonally polarized LS with 44
µm diameter has been demonstrated experimentally [246]. Control of LSs by periodic
forcing in space or time (“rocking”) was suggested in Refs. [247–249]. The inclusion
of delayed feedback in the modeling of VCSELs with saturable absorption has been
investigated recently. It has been shown that the delay-induced motion of dissipative
solitons can be predicted to appear in nonlinear [250], and laser [251] systems. Recent
studies on VCSELs [252–254] showed that the phase of the delayed feedback and
the carrier decay rate strongly affect the parameter region where LSs experience a
drift.

5.2. Experimental Evidence of Dissipative Rogue Waves in a Cavity Semiconductor
The observation of rogue wave formation in Kerr optical fiber has spurred interest
in other laser configurations such as semiconductor resonators. In particular, spa-
tiotemporal chaos and extreme events have been demonstrated in an extended planar
microcavity laser with a SA [24]. In small-area semiconductor lasers, where the
diffraction is neglected, there exist narrow parameter regions where the laser inten-
sity exhibits high-intensity pulses in the time domain [255–257]. When the delay
feedback is taken into account temporal rogue waves have also been generated in a
semiconductor laser with a short external cavity [258].

In what follows, we consider a 1D problem where the diffraction term is given in
Eqs. (51)–(53). In addition, we do not consider the delayed feedback and optical
injection. The above-mentioned experimental observations of extreme events were
conducted in a microcavity laser which possesses a VCSEL with intracavity SA
[24,259]. It consists of two multilayer mirrors for optimized optical pumping and an
active zone with two InGaAs quantum wells for the gain section and one InGaAs quan-
tum well for the SA section. The cavity has a large Fresnel number and is pumped along
a rectangular aperture. The dynamics are recorded at the same time at two different
spatial points. The spatial coupling mediated by diffraction together with light–matter
interaction, and dissipation are at the origin of spatiotemporal complexity observed
in this system [24,260]. In particular, the transition from regular self-pulsating pulses
to a very irregular one has been observed [24]. It has been shown that this simple
device undergoes spatiotemporal chaos. This behavior is similar to that observed in
Kerr resonators (see Sec. 4.4).

The recorded time traces allow one to obtain a histogram of the intensity heights. This
statistical analysis together with the estimation of the SWH that is larger than two,
indeed indicates the evidence of extreme events as shown in Fig. 16. This figure shows
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Figure 16

Histogram of the intensity heights as a function of the pump intensity obtained (a)
from experimental data and (b) from numerical simulation obtained for the parameters
α1 =, β = 0, γ1 = γ2 = 0.005, γ = 0.5, s = 10, and η = 0. Figures 2 and 3 reprinted
with permission from Selmi et al., Phys. Rev. Lett. 116, 013901 (2016) [24]. Copyright
2016 by the American Physical Society.

histograms of the intensity heights as a function of the injected field intensity obtained
experimentally and numerically. Numerical simulations are performed by neglecting
the diffusion of the carriers, the optical injection field, and delayed feedback. Time
has been rescaled to the field lifetime in the cavity, which is calculated to be of the
order of 8.0 ps. Thanks to this short time scale, large recordings and accurate statistics
can easily be extracted from the output of this simple device. Space is rescaled to the
diffraction length which is of the order 7.4 µm. The numerical simulations of the model
given in Eqs. (51)–(53) have been realized by using periodic boundary conditions. In
the experiments, as the normalized pump power P/P0 is increased, the histograms of
the intensity heights develop long tails.

6. CONTROL OF ROGUE WAVES BY DELAYED FEEDBACK

Delayed feedback can be used to control the formation of 2D rogue waves in the
Kerr cavity [23,26,213]. In this section, we consider the formation of rogue waves
in a broad-area surface-emitting laser with a SA and with the delay feedback [see
Fig. 17(a)]. It has been shown that when applying time-delayed feedback a single 2D
dissipative soliton exhibits a period-doubling bifurcation to spatially localized chaos
[228]. In 2D settings, it has been numerically predicted that a broad-area surface-
emitting laser with a SA is capable of generating 2D spatial rogue waves either
by strong pumping [25] or by optical feedback [26,213]. Note that, in small-area
VCSELs, optical feedback induces rogue waves as in small-area semiconductor lasers
in the short-cavity configuration. In this case, the round trip time in the external cavity
is shorter than the laser relaxation oscillation period.

We consider the parameter range where the VCSEL with saturable absorption exhibits
a bistable behavior between the zero homogeneous solution (E = 0, N = µ, n = −γ)
and the lasing solution (E =

√
Ieiwt, N = µ/(1 + I), n = −γ/(1 + sI)). In addition, we

set parameters such that the upper lasing solutions exhibit a subcritical MI allowing
for the formation of stable dissipative solitons [228]. By increasing the strength of
the delay feedback, the output undergoes a period-doubling bifurcation to spatially
localized chaos [228].
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Figure 17

Broad-area surface-emitting laser with a SA and optical delayed feedback. (a) A
schematic sketch of the VCSEL with delayed feedback. (b) 2D rogue waves in the
transverse plane (x, y). (c) Statistical distributions of pulse height as a function of the
delay feedback strength. We vary the strength of the delayed feedback η. The red curve
is obtained for η = 0.1, blue for η = 0.3, and green for η = 0.5. (b) and (c) Reprinted
with permission from Panajotov et al., Chaos 30, 053103 (2020). [43]. Copyright
2020, AIP Publishing LLC.

Figure 17(b) shows an example of complex 2D spatiotemporal type of behavior
obtained by numerical integration of Eqs. (51)–(53) with periodic boundary condi-
tions. The parameter settings are α = 2, β = 0, b1 = 0.04, b2 = 0.02, γ = 0.5, s = 10,
µ = 0.3, and optical feedback with a time-delay of τ = 100 and phase ϕ = 0. The time-
delayed feedback parameters are: τ = 50, η = 0.1, and ϕ = 0. Statistical distributions
of pulse height in Fig. 17(c) show a non-Gaussian statistics with a long tail or L-shape
indicating the occurrence of extreme or rare events in 2D settings. To control rogue
waves, we fix all the parameters and we vary the strength of the delay feedback. When
increasing the feedback strength, the histogram evolves toward an L-shape distribution
with a long tail.

7. 3D ROGUE WAVES

7.1. Acoustic Rogue Waves
In this section, we summarize recent studies on 3D rogue waves. The first experi-
mental observation of rogue waves in 3D settings has been reported in Ref. [261]
where the authors showed the existence of acoustic rogue waves in dusty plasmas
[261,262]. Specifically, they addressed the problem of rogue wave formation as a
result of wave–particle interactions by correlating rogue wave event and low-amplitude
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Figure 18

3D rogue waves. The spatial distribution of the normalized dust intensity at various
time instants along a horizontal slice in the xy plane with the dust acoustic wave
propagating in the vertical z direction. The peak wave amplitude is indicated by red
arrows clearly depicting that the individual wavefronts travel at different speeds thereby
causing an irregular spacing where maximum amplitudes are observed. The rogue
wave event arises due to particle focusing near regions which are the low-amplitude
holes, which triggers the rapid growth of the wave amplitude and the emergence of
a rogue wave in a very short period of time, of the order of 10 ms. Reprinted by
permission from Macmillan Publishers Ltd: Williams, Nat. Phys. 12, 529–530 (2016)
[262]. Copyright 2016.

hole filaments with their surrounding 3D waveforms and particle motion. Their study
focuses on dust acoustic waves which are fundamental nonlinear acoustic-type den-
sity waves governed by modulation-type nonlinear dynamical equations. They are
associated with the low-frequency longitudinal oscillation of negatively charged dust
particles in gaseous plasmas.

A dusty plasma consists of ions, electrons, and neutral particles with the addition of
small particulate matter, which is the “dust” [262]. The dust can be any type of small
particulate matter which is present in the plasma medium (carbon, pollen, or manu-
facture spheres of silica). In the study described in Ref. [261], polystyrene particles of
5 µm were used. The dust in the plasma environment interacts with the surroundings,
and thereby acquiring a net charge of its own, thereby resulting in a more complex
system. The size of the dust present in the plasma environment plays a pivotal role
as it determines the net charge acquired by the dust. The interaction between the
dust and plasma surroundings can be tuned by adjusting the background properties of
the plasma. In the study described in Ref. [261], they could track this interaction by
performing a direct video imaging of large-area dust density evolution, and by track-
ing individual particle motion. This allows one to construct an Eulerian–Lagrangian
picture, thereby enabling a direct experimental observation of 3D rogue wave event,
which are both localized in space and time.

In the experiment of Ref. [261] the dust acoustic wave mode was created by passing a
sinusoidally varying current through a gas at low pressure. An ion-streaming instability
results in the downward propagation of a naturally occurring dust acoustic wave,
which appears as a modulation in the background dust intensity. This is illustrated in
Fig. 18. The interaction of the dust particles with the background plasma results in
regions where particles accumulate, and regions where there is particle depletion as it
propagates [262]. The 3D perspective of this phenomenon is shown in Fig. 19(a) in the
xt and yt planes. The rogue wave event, which is localized in both space and time, is
indicated by an arrow. The low amplitude holes (defects) are indicated using crosses,
the trajectories of which are shown in Fig. 19(b). It is interesting to note that the
rogue wave events are surrounded by low amplitude filament holes, which indicates
the role of dust particle interaction with the background plasma in the formation of
dust acoustic rogue waves.
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Figure 19

(a) Distribution of the normalized dust intensity in the xt and yt planes showing the
typical undulated waveform. The arrows indicate the position of a rogue wave event
(RWE), which is localized on the top xy plane. The locations of the low-amplitude
holes are indicated by crosses, which are regions where wave amplitudes are null and
phases are undefined. (b) Irregular hole filaments surrounding rogue wave event in the
xyt space, with their projections on the floor. Reprinted by permission from Macmillan
Publishers Ltd: Tsai et al., Nat. Phys. 12, 573–577 (2016) [261]. Copyright 2016.

7.2. 3D ORWs
In nonlinear optics and photonics, most of the study of rogue waves is limited to 1D
or 2D settings. Experimental evidence of 3D structures in Kerr media is still missing
in the literature. However, 2D [72] and 3D rogue waves have been observed in optical
systems devoid of any nonlinearity [263]. They appear in the speckle distribution of
a spatially modulated optical beam that generates inhomogeneity in the system. They
have been also observed in microwave experiments where the transport of waves is
realized through an arrangement of randomly distributed scatterers [264]. This work
applies the microwave techniques to obtain information on the transport of waves in a
2D disordered media. Large deviations from Rayleigh’s law for the distribution of the
wave height are observed at lower frequency. In spatial locations, the system developed
so-called “hot spots” whose intensity is much higher than expected in a random wave
field.

The scarcity of 3D study in nonlinear Kerr media is because in the course of propa-
gation, a single or more light-bullets suffers beam collapse in the case of the NLSE
when the dimensionality of the system is larger than one [59]. To avoid beam collapse,
a saturable nonlinearity [265] or an optical cavity [144,266,267] are used to sta-
bilize the light-bullet. When taking into account 2D diffraction and 1D dispersion,
3D dissipative structures can be formed in an optical cavity. They consist of self-
organized light-bullets traveling within the cavity at the group velocity of the light
[62]. Note, however, that stable light-bullets were first predicted in a frequency con-
version material [268–273] because quadratic nonlinearity does not provoke collapse
in two and more dimensions [274]. In contrast to conservative a Kerr medium where
the emergence of light-bullets suffers beam collapse, here the balance between pump-
ing and dissipation allows for their stabilization [62,145]. They have been predicted
in cavity nonlinear optics such as optical parametric oscillators [266,275], type II
second-harmonic generation [203,276], and wide aperture lasers with a SA [277,278],
semiconductor [279,280], in an inhomogeneous array of carbon nanotubes [281], or
twisted waveguide arrays [282]. Furthermore, 3D structures in nonlinear resonators
have also been predicted from models going beyond the mean-field approximation
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[283,284]. The formation of light-bullets in nonlinear optics is a well-documented
issue (see overviews in Refs. [41,285–287]).

Finally, we discuss recent developments in the formation of light-bullets and 3D rogue
waves in Kerr cavities. We have shown in Sec. 4.3 that close to the 3D MI, the
output field presents a 3D periodic distribution of light-bullets with a well-defined
frequency (in the temporal regime) or wavelength in the spatial domain. The weakly
nonlinear analysis allows for the construction of different branches of 3D structures.
This analysis is valid in the range of the detuning parameter where δ<41/33. In the
strongly nonlinear regime where the MI appears subcritical, i.e., δ>41/30, there exists
a so-called pinning zone of parameters in which stable light-bullets can be generated.
In this regime, spatial and temporal confinement of light is possible [62]. A single, as
well as bounded light-bullets, are generated numerically as shown in Fig. 20(a)–20(f).
They are stationary solutions of the 3D LLE (43) in the reference frame moving with
the group velocity of the light within the cavity. The number and the positions of
light-bullets in the Euclidian space (x, y, τ) depend on the seeded initial condition.
As the amplitudes of light-bullets having different numbers of peaks are close to one
another it is convenient to plot the dimensionless “L2 norm,”

N =

∫
|E − Es |

2 dx dy dτ,

as a function of the strength of the injected field amplitude. The results are shown in
the 3D bifurcation diagram of Fig. 20(g). Plotting N instead of the intracavity field
intensity allows for better visualization of the clustering property of light-bullets. In
the pinning range of parameter settings denoted by P where light-bullets are stable,
the system undergoes a high degree of multistability: in addition to the bcc crystal,
and the homogeneous background which are both stable, an additional stationary
close-packed light-bullets can be generated. We plot only clusters involving up to six
light-bullets as shown in Fig. 20(a)–20(f). The cross section of the single light-bullet
along the transverse plane is shown in Fig. 20(i). This figure shows a damping and
decaying oscillatory tail of the light-bullet. This is an important property of dissipative
solitons setting a non-zero background. Finally, under a radial approximation where
the Laplace operator can be reduced to ∇2

⊥ + ∂
2/∂τ2 = ∂2/∂r2 + (2/r)∂/∂r where r =

(x2 + y2 + τ2)1/2. The stationary solution of a single light-bullet is plotted together with
that obtained by direct numerical simulations of the 3D LLE (43) and the comparison
shows a good agreement.

The 3D bifurcation diagram of Fig. 20(g) suggests that light-bullets formation belong
to the class of the well-known homoclinic snaking type of bifurcation [288–292].
The bifurcation diagram is established by continuation methods and its consists of
two snaking curves; one describes LSs with an odd number of peaks and the other
corresponds to an even number of peaks. As one moves further along the snaking curve,
the LS becomes better localized and acquires stability at the turning point where the
slope becomes infinite. Afterward, the LS begins to grow in spatial extent by adding
extra peaks symmetrically at either side. This growth is associated with back and forth
oscillations across the pinning interval where the system develops multistability [see
region C in Fig. 20(g)]. This type of bifurcation is well understood in the 1D setting
(see overviews of this issue in Refs. [293–296]).

When increasing the strength of the injected beam further, we observe the transition
from stationary light-bullets to complex 3D structures. In this large-intensity regime,
the cavity field presents an emission of extreme waves. Indeed, statistical analysis
of pulse height distribution of this spatiotemporal complex regime in the 3D LLE is
summarized in Fig. 21. The long-tailed statistical contribution is a signature of the
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Figure 20

(a)–(f) 3D isosurface of dissipative light-bullets and clusters of them in a Kerr resonator
involving up to six 3D peaks. (g) 3D bifurcation diagram obtained for δ = 1.7. (h)
Comparison between the LB obtained by a spherical symmetry (red dotted line)
and the cross section along 1D direction represented by a continuous black line. (i)
Cross section along the transverse plane of the single LB. Parameters are δ = 1.7 and
Ei = 1.21. Figure 2 reprinted with permission from Gopalakrishnan et al., Phys. Rev.
Lett. 126, 153902 (2021) [62]. Copyright 2021 by the American Physical Society.

presence of rogue waves. Waves with pulse heights more than twice the SWH appear
in the output of the Kerr cavity.

Finally, we discuss some possible experimental parameter values relevant to the gen-
eration of light-bullet and transition to rogue waves formation. We suggest using
chalcogenide glass, which is characterized by a very strong Kerr effect and a very fast
response to an electrical excitation. Typical physical parameters values are as follows.
The nonlinear refractive index n2 coefficient is as high as n2 ≈ 2.3 × 10−17 m2 W−1.
This results in a nonlinearity coefficient of γ ≈ 0.144 W−1 km−1 for an effective
(illuminated) area of Aeff = 25 × 104 µm2. The length of the cavity is l = 1000 µm
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Figure 21

3D rogue waves in Kerr cavity. (a) Isosurface of 3D rogue waves obtained for δ = 1.7
and Ei = 5. (b) The cross section along the transverse (x, y). (c) The number of events
as a function of the intensity of the pulses in semi-logarithmic scale for two different
values of Ei. The dashed line indicates events of amplitudes at twice the SWH. Figure
2 reprinted with permission from Gopalakrishnan et al., Phys. Rev. Lett. 126, 153902
(2021) [62]. Copyright 2021 by the American Physical Society.

and the reflectivity of the mirrors 1 − θ = 0.95, so that the optical losses are deter-
mined by the mirror transmission as the intrinsic material absorption loss can be as
small as 40 dB/km. The wavelength λ0 = 4 µm is chosen close to the zero disper-
sion wavelength. The choice of these physical parameters are from Refs. [297,298].
The response to an excitation by an optical injection Ei, which is the amplitude of
the driving field incident on the cavity input mirror M1 with an intensity transmis-
sion coefficient θ, is Pin = |Ei |

2, which is the driving power. The intracavity power
is P = |E |2. These two powers are linked through the homogeneous steady states
Pin = P[1 + (δ − P)2] With the above-mentioned realistic physical parameters and the
dimensionless parameters for which the light-bullet exists Ei = 1.21 and δ = 1.7, the
intensity of the injected field should be of the order of 10 MW cm−2. This is rea-
sonable because it is well below the damage threshold of chalcogenide, which can
be as high as 1 GW cm−2. The link relation between the physical parameters and the
dimensionless parameters are given by the relation (42). The physical model corre-
sponds to Eq. (41) and the adimensional model is Eq. (43). In these settings, we expect
that the spatial width in (x, y) plane will be ≈ 270 µm and the temporal width of the
LB will be ≈ 0.08 ps for a value of β2 ≈ 20 ps2 km−1 and about 1 ps for a value of
β2 ≈ 3000 ps2 km−1.
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8. CONCLUDING REMARKS

The bridge between photonics and the field of extreme events and the generation of
ORWs has been established in 2007 by Solli and collaborators. They experimentally
observed soliton-like pulses with ultrahigh intensities named ORWs along fibers oper-
ating in the SC generation regime. The main characteristic of these pulses is that they
undergo a strong localization either in time and/or in space, and their formation is ruled
by a long-tailed statistical distribution. Since this pioneering work, evidence of rogue
events has been shown, thanks to several investigations in different optical systems:
Kerr media, semiconductors, photorefractives, liquid crystals, and xenon gas to name
a few. We have discussed some similarities between nonlinear optics and photonics
regarding the formation of rogue waves.

Their dynamics are characterized by a complex irregularity due to the sensitivity
to the initial conditions (chaotic or turbulent nature). These characteristics render
these waves unpredictable. However, they are generated in almost all systems either
linear or not, stochastic or deterministic. In spite of the accumulation of important
theoretical tools describing rogue waves, still a contentious debate remains about
their dynamical origin. Statistically, there is a consensus: a wave that is twice the
SWH of the surrounding area can be considered as a rogue wave. However, from
a dynamical system theory point of view, there remains no consensus about their
origin. Recently, important progress has been realized toward a unified concept and
framework for describing the formation of rogue waves not only in oceanography and
hydrodynamics, but also in various fields such as optics, laser physics, and biology
[299,300]. This new approach is grounded on a mathematical concept called instantons
well known in quantum chromodynamics [301,302].

In the first part, we reviewed in a detailed way the derivation of the NLSE describing
the propagation of wave packets in a homogeneous, cubic, centrosymmetric with Kerr
material. We have used a multiple time and space scales analysis allowing one to
derive this fundamental equation assuming the envelope of the wave packet to be a
slowly varying function of time and space. We have discussed the most important
property of this fundamental equation, namely the integrability and it is considered
as the simplest model to describe light propagation in a Kerr medium such as optical
fibers.

In this framework, we provided a simple theoretical description of rogue waves in
terms of breathers as solutions of the NLSE, and their interaction. We have limited the
discussion to the first-order basic breathers such as Akhmediev breathers, Peregrine,
and Ma solitons. This allows one to understand the formation of rogue waves in the
framework of conservative system where most of the theory has been developed. In
addition, we have highlighted similarities between oceanic rogue waves and ORWs
in a strictly 1D setting. However, we have pointed out that the analogy in 2D settings
between optical and hydrodynamical systems is far from being established. In addition,
we did not cover the formation of rogue waves from higher-order solutions and their
interactions as soliton collision, soliton explosion, and random lasers.

In the second part, we have presented dissipative rogue waves in nonlinear optical
cavities. Two systems have been considered: (i) temporal optical pulses occurring in
microresonators with application to frequency comb generation; and (ii) semiconduc-
tors in relation with processing and encoding information in all-optical devices. We
have shown that in all these dissipative systems rogue events are possible in 1D and
2D settings. To control such rogue events, we have discussed the role of pumping,
the strength of injected field, and delayed feedback. It has been shown that delayed
feedback can effectively decrease the number of rogue events in these optical cavities.
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Finally, we have addressed the formation of dissipative 3D light-bullets and their
transition to 3D rogue waves in Kerr optical cavities. The multiplicity of these light-
bullets solutions of the LLE are strongly reminiscent of homoclinic snaking. Whether
the 3D light-bullets exhibit a homoclinic snaking type of bifurcation or not remains
an open question that worth to be investigating in the future. Experimentally, in
nonlinear optics and photonics devices, most of the studies are limited to 1D or 2D
settings. Although experimental evidence of 3D rogue waves has been realized in
inhomogeneous and linear media, still there is no experimental evidence of 3D rogue
waves in nonlinear media. In particular, in Kerr media, 3D studies are scarce. In this
context, we have shown numerical evidence of 3D rogue waves in optical Kerr cavities
and we have provided realistic parameters toward an experimental realization of light-
bullets and rogue waves in Kerr optical resonators. The subject of rogue waves has
evolved so much in recent years that it currently touches all branches of nonlinear
science and even beyond (finance research, for instance). We are convinced that its
progress will continue in the future, so fascinating and interdisciplinary this theme is.
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