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Rogue waves of the Sasa-Satsuma equation in a chaotic wave field
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1Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain
2Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia

3Dynamics Group, Hamburg University of Technology, 21073 Hamburg, Germany
4Department of Mechanical Engineering, Imperial College, London SW7 2AZ, United Kingdom

(Received 24 March 2014; published 2 September 2014)

We study the properties of the chaotic wave fields generated in the frame of the Sasa-Satsuma equation (SSE).

Modulation instability results in a chaotic pattern of small-scale filaments with a free parameter—the propagation

constant k. The average velocity of the filaments is approximately given by the group velocity calculated from

the dispersion relation for the plane-wave solution. Remarkably, our results reveal the reason for the skewed

profile of the exact SSE rogue-wave solutions, which was one of their distinctive unexplained features. We have

also calculated the probability density functions for various values of the propagation constant k, showing that

probability of appearance of rogue waves depends on k.

DOI: 10.1103/PhysRevE.90.032902 PACS number(s): 05.45.Yv, 42.65.−k, 47.20.Ky

I. INTRODUCTION

Studies of rogue waves in recent years are becoming

extensive [1–4]. The subject has a great relevance for seafarers

as it is important for them to avoid rogue waves in the

open ocean [5–7]. It is also an interesting object in science

as researchers want to understand the physics behind the

phenomenon [8–10]. The field also provides sufficient material

for mathematicians as rogue waves can be studied using

rigorous analytical tools [11–14]. Moreover, the concept of

rogue waves is presently emerging in many other branches of

science [15–19] and even in finances [20].

The research naturally started with the simplest nonlinear

mathematical model, which is the nonlinear Schrödinger equa-

tion (NLSE) [21]. This approach allowed us to find unexpected

solutions, even for this well-known equation [22,23]. However,

the NLSE has limitations related to the approximations used in

its derivation [24,25]. Extending these techniques for finding

solutions to more general models [26] must be the next step in

the rogue-wave research.

The Sasa-Satsuma equation (SSE) is one of the known

integrable extensions of the NLSE. It contains the most

essential contributions often found in important physical

applications, such as dynamics of deep water waves [27,28],

pulse propagation in optical fibers [29,30], and generally in

dispersive nonlinear media [31]. Namely, it contains the terms

describing third-order dispersion, self-frequency shift, and

self-steepening in fixed proportions that make it integrable.

According to the original work of Sasa and Satsuma [32], the

equation can be written in the form

iψτ +
ψxx

2
+ |ψ |2ψ = iǫ[ψxxx + 3(|ψ |2)xψ + 6|ψ |2ψx].

(1)

Here, the arbitrary real parameter ǫ scales the integrable

perturbations of the NLSE. When ǫ = 0, Eq. (1) reduces to the

standard NLSE, which has only the terms describing lowest

order dispersion and self-phase modulation.

There is a number of publications dealing with the solutions

of the SSE [33–39]. The form of Eq. (1) has been used in a

series of works by Mihalache et al. [33–35]. The form of the

SSE in the work by Wright III [36] is slightly different from

the original version:

ipt − pxx − 2|p|2p = iδ[pxxx − 3(|p|2)xp + 6(|p|2p)x].

(2)

Equations (1) and (2) can be mutually converted one into the

other using the following transformation:

ψ(x,t) = p∗(x,t), τ = 2t, δ = 2ǫ. (3)

This means that we can easily transform solutions of one

equation into solutions of the other using Eq. (3). Also,

changing the sign of ǫ or δ is equivalent to changing the

direction in x. Keeping this symmetry property in mind,

without loss of generality, we can restrict ourselves to consider

only positive values of ǫ. Here, we will only present the results

for Eq. (1).

II. PLANE-WAVE SOLUTION

Analytical solutions for rogue waves are always located on

a plane-wave background. The latter serves as the source from

which the emerging rogue wave acquires its energy. The Sasa-

Satsuma Eq. (1) admits the family of plane-wave solutions

given by

ψ0(x,τ ) = −
c

2ǫ
exp

[

i

(

k

2ǫ
x −

ω

8ǫ2
τ

)]

, (4)

where the amplitude parameter c, the wavenumber k, and the

frequency ω are coupled through the dispersion relation

ω = k3 + k2 − 6c2k − 2c2. (5)

The solution has two free independent parameters, c and k.

It looks singular with respect to the equation parameter ǫ.

However, this singularity is deceptive. Namely, when taking

the NLSE limit, ǫ → 0, we can choose c and k to be linearly

proportional to ǫ. Taking, in addition, ω ∼ ǫ2 eliminates the

singularity.

Equation (1) is normalized in a way that the coefficients

in the NLS part of the equation are set to 1/2 in front of

the diffraction term ψxx , and 1 in front of the nonlinear term
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FIG. 1. (Color online) Phase (dashed blue lower curve) and

group velocities (dotted brown upper curve) of the plane wave for

c = 2ǫ = 1. In the interval of k values [1.12,2.18], they have opposite

signs.

|ψ |2ψ . This choice sets the mutual scaling of the variables.

For consistency, we consider normalized solutions of Eq. (1).

Thus, without restricting generality, we shall deal with plane

waves with the amplitude set to one. This means that we can

choose the parameter c to be equal to 2ǫ. This is the choice

that we keep in all numerical simulations below. This, in turn,

means that the only free parameter of the plane-wave solution

is k.

One important conclusion from the expression for the plane

wave is that the group velocity is different from the phase

velocity. From Eq. (4), we can easily deduce that the phase

velocity of the plane wave is given by

vph =
1

4ǫ

ω

k
=

k2 + k − 6c2 − 2c2/k

4ǫ
. (6)

The k-dependence of the phase velocity, for c = 2ǫ = 1, is

shown in Fig. 1 by the dashed blue line. The phase velocity is

negative in most of the region of interest and becomes largely

negative at k values approaching zero.

On the other hand, the group velocity calculated from

Eqs. (4) and (5) is

vgr =
1

4ǫ

∂ω

∂k
=

3k2 + 2k − 6c2

4ǫ
. (7)

The k dependence of the group velocity is shown in Fig. 1 by

the dotted brown curve. As we can see, the group velocity is

negative at small k and becomes positive above k ≈ 1.12. In

the interval of k values [1.12,2.18], the two velocities have

different signs. This feature is quite different from the NLSE

case.

III. ROGUE-WAVE SOLUTIONS

The exact rogue-wave solution of the SSE has been

presented for the first time in the work [40]. The solution is

cumbersome and will not be reproduced here. Remarkably, it

contains the same two free parameters (k,c) as the plane wave

on which it resides. The third one is ǫ, which is the parameter

of the equation.

FIG. 2. (Color online) Rogue wave of the SSE at the threshold

of transition to the one-peak case. Parameters c = 1, ǫ = 0.5, and

k = 2. The rogue wave is skewed to the right.

Three examples of rogue-wave solutions are shown in

Figs. 2, 3, and 4. These different types of solutions are

typical of the three regions of k we are dealing with. The

solution has a single peak when k is higher than k = 2 (see

Fig. 2). It has two peaks when k is smaller than 2. An

example when k = 0.8 is shown in Fig. 3. The solution is

also skewed in the opposite direction. For even smaller k

values the solution keeps a double-peak structure and becomes

elongated keeping the same skew direction. The representative

case k = 0.25 is shown in Fig. 4. In these three cases, we have

kept parameters c and ǫ fixed in such a way that the back-

ground c/(2ǫ) remains constant = 1, namely we used c = 1

and ǫ = 0.5.

The same rogue-wave solution as in Ref. [40] was later

rederived by Shihua Chen in Ref. [41]. The expression given

in Ref. [41] is simply translated along the τ and x axes in

comparison to the original result [40]. The solution given in

Fig. 4 is called in Ref. [41] “twisted pair,” although in reality,

the double-peak solution at small k is just becoming elongated

as Fig. 4 shows.

FIG. 3. (Color online) Rogue wave of the SSE with two peaks.

Parameters c = 1, ǫ = 0.5, and k = 0.8. The rogue wave is skewed

to the left.
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FIG. 4. (Color online) Rogue wave of the SSE with parameters

c = 1, ǫ = 0.5, and k = 0.25. Rogue waves become more and more

elongated at lower values of k and get a stronger tilt to the left.

In addition to changing the profile of the rogue wave, the

rogue-wave solution also changes its orientation in the (x,τ )

plane with changing the parameter k. As we can see from the

above figures, the solutions are skewed with respect to the τ

axis. When k = 2, the solution is skewed to the right while

in the other two cases, k = 0.8 and k = 0.25, the rogue wave

is skewed to the left. This observation is in agreement with

the change of sign of the group velocity at k = 1.12 in Fig. 1.

This feature had been observed before [40] but was presented

without any explanation. Interestingly, this tilt also appears in

the orientation of the waves created in a chaotic wave field.

This similarity serves as a basis for the explanation of this

interesting feature of SSE rogue waves. Below, we will use the

above-mentioned three values of k in order to demonstrate the

difference this parameter makes when we are dealing with a

chaotic wave field.

IV. CHAOTIC WAVE FIELDS

Processes described by a dynamical system such as the SSE

can be highly complicated. However, they are still governed

by a partial differential equation and can be predicted once the

initial condition is given. Thus, in contrast to true stochastic

processes, which are completely unpredictable, the processes

in our system are “chaotic.” Therefore, we use this term

throughout the paper.

In systems with three-dimensional phase space, chaotic

dynamics is related to exponentially diverging trajectories.

Our system is infinite-dimensional. It is significantly more

complicated than those usually considered in nonlinear dy-

namics. Nevertheless, different frequency components of the

initial condition in our system exponentially diverge too. This

can be seen from the fact that the growth rates of modulation

instability (MI) for various spectral components differ. Thus,

for initial conditions containing many frequencies, the total

dynamics quickly enters a chaotic regime of evolution. Being

described by a differential equation, this chaotic regime can

be called deterministic. On the other hand, various realizations

that start with different initial conditions may feature elements

of true stochasticity just because of the stochasticity of the

initial conditions. This additional complication makes a differ-

ence between systems with infinite-dimensional phase space

and simpler ones usually considered in existing textbooks on

chaotic dynamics.

We have numerically solved the SSE, taking as initial

condition the plane-wave solution Eq. (4) perturbed with white

noise of small amplitude. Namely, as initial condition we use

the function

ψ(x,τ = 0) = ψ0(x,0) + μf (x),

where ψ0(x,0) is given by Eq. (4) with τ = 0, μ is a small real

parameter, and f (x) is a complex function, whose real and

imaginary parts are uncorrelated random functions uniformly

distributed in the interval [−1,1] generated by a standard

random computer function. This random function contains all

spectral components with roughly equal amplitudes.

For the numerical simulations, we used a split-step Fourier

technique, solving the linear part in Fourier space and the

nonlinear part with a fourth-order Runge-Kutta method. The

mesh size in x axis varied from 0.005 to 0.01, depending on

the total size of the x interval, while the step size in τ axis was

fixed and equal to 0.00001. This choice provided stability of

the scheme for all numerical runs.

Modulation instability seeded by the above noise creates a

chaotic wave field that starts from this initial plane wave. An

example of a wave field generated this way is shown in Fig. 5

for k = 2. The figure shows in a color code the field amplitude

versus x and τ . The initial part (0 < τ < 0.5) is not shown in

the figure as the deviations from the plane-wave solution are

small and the field amplitude is very close to 1 for all x. As

expected, the spectral component of the noise with the highest

FIG. 5. (Color online) A typical example of a chaotic wave field

created by the SSE that starts with modulation instability. Parameter

k = 2. Most of the waves have a one-peak structure. Filaments are

propagating to the right with average group velocity vgr ≈ 5.

032902-3



SOTO-CRESPO, DEVINE, HOFFMANN, AND AKHMEDIEV PHYSICAL REVIEW E 90, 032902 (2014)

FIG. 6. (Color online) Chaotic wave field created by the SSE that

starts with modulation instability. The wave number k = 0.8. Most

of the maxima are grouped in pairs. Filaments propagate to the left

due to the negative group velocity.

growth rate dominates and splits the plane wave into filaments.

The presence of other frequencies ensures that the filaments

evolve chaotically. Figure 5 shows one realization of many

thousands that we conducted in our work. For the statistical

plots presented below, we used 5 000 realizations each running

from τ = 0 to 40.

In contrast to the NLSE case, the filaments here have a

preferential direction of propagation with nonzero velocity.

This happens because the group velocity of the waves is

different from the phase velocity. The velocity of these

filaments can be estimated from the expression for the group

velocity [Eq. (7)]. When k = 2, the group velocity is positive,

vgr = 5. This agrees well with the average velocity of the

filaments observed in Fig. 5.

Occasionally, the filaments collide or become narrower

creating maxima at certain points of the wave field. These

maxima can be seen in this figure in the form of red spots.

These red spots essentially have a single maximum and are

slightly elongated in the same way as the rogue wave seen in

Fig. 2. The orientation of the peak elongations is the same as in

Fig. 2. Moreover, the direction of these elongations is roughly

the same as the orientation of the filaments. This means that

the direction is given by the group velocity [Eq. (7)]. Thus,

even the orientation of the rogue waves on the (x,τ ) plane

roughly can be estimated using Eq. (7).

This conjecture is further confirmed by the plot shown in

Fig. 6. This chaotic wave field is generated for the case k = 0.8.

The group velocity changes sign at approximately k ≈ 1.12.

It is negative vgr = −1.24 for k = 0.8. The filaments in Fig. 6

propagate to the left in agreement with this prediction. The

peaks of the chaotic wave field are also elongated and have

roughly the same orientation as the filaments. Remarkably,

this also agrees with the orientation of the rogue wave shown

in Fig. 3. Moreover, the big waves in Fig. 6 have two maxima,

just like the rogue wave in Fig. 3. These double maxima are

clearly visible in red color in Fig. 6.

Additional confirmation comes from Fig. 7. The chaotic

wave field here is calculated for k = 0.25. The group velocity

FIG. 7. (Color online) Chaotic wave field created by the SSE that

starts with modulation instability. Parameter k = 0.25. Some of the

big waves have an elongated two-peak structure similar to the rogue

wave shown in Fig. 4. One example is encircled by the black ellipse.

Filaments are propagating to the left at a larger angle than in the case

k = 0.8.

in this case is vgr ≈ −2.65. The filaments and the orientation

of the maxima in numerical simulations have the direction

predicted by this value, although quantitatively deviations from

the predictions of Eq. (7) can be larger than in the cases k =

2 and k = 0.8. Some of the elongated structures of double

maxima have roughly the same profile as the rogue wave shown

in Fig. 4, as the one encircled by a black ellipse in the figure.

V. COUNTING BIG WAVES

In order to find the waves with highest amplitudes in

the chaotic wave fields shown above we used the following

procedure. In each numerical run, we took the function |ψ(x)|

at each fixed τ and found the absolute maximum of it as

a function of x. The typical numerical x interval in these

simulations was chosen close to [−100,100]. Plotting these

maxima as a function of τ allowed us to find the largest waves

in the whole run. One subtlety in these simulations is that the

initial plane wave should be kept periodic on the numerical

grid. In order to satisfy this condition, the total grid length

must contain an integer number of periods. In other words,

the numerical grid should have a length of (2Nπ/k), with N

being a sufficiently large positive integer.

One of these functions for k = 0.8 is shown in Fig. 8 by

the blue dashed curve. The curve starts at the background

level |ψ | = 1. The initial exponential growth of the curve

is caused by the modulation instability. The curve reveals

several maxima that are 2.5–3 times higher than the amplitude

of the original plane wave. These maxima can be attributed

to rogue waves in this chaotic wave field. For the sake of

comparison, we also provide the curve that corresponds to
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FIG. 8. (Color online) Absolute maximum of the chaotic wave-

field amplitude in x as a function of τ in the case k = 0.8. The blue

dashed (upper) and red dotted (lower) curves are obtained using either

the whole numerical x interval or a smaller portion of it. The black

solid curve on the left is the exact rogue-wave solution (x = const)

given in Fig. 3. The yellow part (in the interval 2.5 < τ < 10) is the

region of chaotic waves beyond modulation instability. It is the same

region as shown along the vertical axis in Fig. 6.

the exact SSE rogue-wave solution presented in Fig. 3. It is

shown in Fig. 8 by the black two-peaked curve. As we can

see, the amplitudes of rogue waves generated by the chaotic

wave field are comparable or exceed the amplitude of the

exact rogue-wave solution. The strongest rogue wave in this

plot appears at τ value slightly below τ = 5. Its exact position

on the x axis can be found investigating the function |ψ(x)|

for this value of τ .

The blue dotted line in Fig. 8 is constructed using the data

obtained with the numerical grid along the x axis equal to 157

in the dimensionless units. Clearly, when selecting narrower

intervals along the x axis in calculations, some maxima are

missed. Thus, the whole curve can then be lower than the blue

line. An example of such reduction is the red dotted curve in

Fig. 8. It is located well below the blue curve except some

of the maxima that remain in the narrower interval. Even in

this case, the remaining rogue-wave amplitude is comparable

with the amplitude of the exact solution, which is around the

level of 2.5. It is also worthy to mention that some maxima

in this figure appear in pairs although not necessarily strictly

symmetric. When this happens, the maxima belong to one of

the rogue-wave structures in the form of double red spots well

visible in Fig. 6. This is also consistent with the double-peak

profile of the exact solution for rogue waves shown in Fig. 3.

VI. PROBABILITY DENSITY FUNCTIONS

The probability of having a wave of certain peak amplitude

(A) in the chaotic wave field provides us with important

information about the field itself and the rogue waves in

particular. We constructed these probabilities based on the

total wave field using as many numerical data as possible.

Namely, we counted all local maxima of the chaotic wave

fields generated as described above. Naturally, figures in the

previous sections showed only a small part of the numerical

results. Comparison of the blue and red curves in Fig. 8 shows

that having large data sets is essential. The probability density

functions (PDFs) presented below are based on significantly

larger data sets than shown above.

In plotting the PDFs, there are different approaches used for

surface water waves and in optics. In each case, the envelope

function that satisfies the evolution equation contains a faster

oscillating wave with certain carrier frequency. When we are

dealing with water waves, the value of interest is the crest to

trough height of the wave, which is roughly equal to twice

the envelope amplitude. In the case of optical waves, the

measurable quantity is the optical intensity, which is given

by the amplitude square of the envelope. Thus, PDFs in each

of these cases can be constructed either plotting the wave

height, which is twice the amplitude or intensity, which is the

squared amplitude. As we do not apply our results to any of

these cases, we provide here more general PDFs plotting along

the horizontal axis the amplitude, which is the modulus of the

complex envelope. These curves can be recalculated into more

practically oriented PDFs keeping in mind these simple rules.

For each value of k under consideration, we used several

thousands of independent realizations. In order to increase the

number of maxima we considered the field at a discrete number

of values of τ for each realization and found all local maxima

of the field amplitude varying just x. In all these cases we

discarded the initial MI stages of evolution. Besides, we did not

count small-amplitude waves and discarded all maxima with

amplitude below 0.1. The amplitude of the initial plane wave is

one and all amplitudes are relative to this reference. Typically,

for each plot, the data we dealt with consisted of several tens

of millions of maxima, which allowed us to obtain relatively

smooth statistical curves. The exception is the high-amplitude

parts of the curves, where data become scarce due to its low

probability.

An example of PDF constructed this way is shown in Fig. 9.

Here, we used k = 2. The red curve shows the probability,

in logarithmic scale, of having a wave with a given peak

amplitude in the chaotic wave field. The low-amplitude part of

the curve is neglected as explained above. The high-amplitude

part of the curve still has a random component due to the

insufficient data. However, by averaging this part we can

estimate that it can be approximated by a smooth exponentially

decaying tail. The amplitude of the exact rogue-wave solution

for the same value of k is shown in the plot by the vertical

FIG. 9. (Color online) Probability density function for the case

k = 2. The peak amplitude of the analytic rogue-wave solution

presented in Fig. 2 is marked here by the dotted vertical line.
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FIG. 10. (Color online) Probability density function for the case

k = 0.8. The peak amplitude of the rogue-wave solution presented in

Fig. 3 is shown by the dotted vertical line.

dotted line. As we can see, a significant number of the field

maxima lies above this line.

Similar PDF curve is obtained for the case k = 0.8. It is

shown in Fig. 10. Qualitatively, it has a shape very similar

to the one for k = 2. A noticeable difference is the slightly

elevated number of events above the theoretical rogue-wave

amplitude shown by the vertical dotted line. In addition, the

curve extends up to the amplitude A ≈ 4, while in the previous

case the upper limit for the maximal observed amplitude is

slightly lower.

Significant differences appear at lower values of k. The

PDF for k = 0.25 is shown in Fig. 11. The shape of this PDF

cannot be described by any known statistical functions. Instead

of a single maximum probability for a certain peak amplitude,

it has an almost flat top in the interval [0.8,2.6], below the

rogue-wave threshold. Despite the fact that the corresponding

rogue-wave amplitude (2.8) is now higher than in the two

previous cases (≈2.5), a significant number of waves have

even higher amplitudes. The whole tail of this PDF is elevated

and the maximal presented peak-amplitude goes up to 4.4

while in the previous cases this value was below 4. For the

sake of comparison we used the same horizontal and vertical

scales in all three figures.

All PDFs can be approximated by an exponential tail

that does not prevent appearance of waves with even higher

amplitudes than in the three plots shown above. Indeed, in

one of our simulations with k = 0.25, we observed the highest

amplitude, which was slightly higher than 5, i.e., well beyond

the scale of Fig. 11. Clearly, the high-amplitude parts of these

curves can be continued further but need special techniques to

be accurate.

Although our study is far from being complete, it shows

clearly that higher-order terms in the evolution equation have

a significant influence on both the shape of the big waves

and the probability of their appearance. We have chosen the

coefficient ǫ in the Sasa-Satsuma equation to be not very small

FIG. 11. (Color online) Probability density function for the case

k = 0.25. The peak amplitude of the rogue-wave solution presented

in Fig. 4 is shown by the dotted vertical line.

(0.5) in order for these differences to be more noticeable.

This equation is convenient for analytic studies as it keeps the

integrability for an arbitrary value of ǫ. However, we expect

that higher-order terms in proportions different from the SSE

case may also have significant influence on the probabilities

of big-wave appearance. Further steps in these studies with

specific cases of practical interest should be done in future.

VII. CONCLUSIONS

To conclude, we studied the properties of the chaotic wave

fields generated by the Sasa-Satsuma equation. We have found

that the filaments of the self-focused fields generated due

to modulation instability propagate in the direction roughly

defined by the group velocity calculated from the dispersion

relation for the plane-wave solution. These results provide an

explanation for the skewed shape of the rogue waves given by

the exact solutions.

The calculation of the probability density functions for

various values of the initial wavenumber shows that smaller

values of k result in elevated probability of high-amplitude

waves. Our results demonstrate the importance of the higher-

order terms in the evolution equation that may lead to higher

probabilities of rogue waves in a chaotic wave field.
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