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Abstract—Wireless sensor networks are usually deployed to
operate for a long period of time. Because nodes are battery-
operated, they eventually run out of power and new nodes need to
be periodically deployed to assure network connectivity. This type
of networks is referred to as Multi-phase WSN in the literature
[1]. Current key pre-distribution schemes, such as [2] and [3],
are not adapted to multi-stage WSN. With these schemes, the
security of the WSN degrades with time, since the proportion of
corrupted links gradually increases. In this paper, we propose
a new pre-distribution scheme adapted to multi-phase WSN.
In the proposed scheme, the pre-distributed keys have limited
lifetimes and are refreshed periodically. As a result, a network
that is temporarily attacked (i.e. the attacker is active only
during a limited amount of time) automatically self-heals, i.e.
recovers its initial state when the attack stops. In contrast, with
existing schemes, an attacker that corrupts a certain amount
of nodes compromises a given fraction of the total number of
secure channels. This ratio remains constant until the end of the
network, even if the attacker stops its action.

Furthermore, with our scheme, a network that is constantly at-
tacked (i.e. the attacker regularly corrupts nodes of the network,
without stopping) is much less impacted than a network that
uses existing key pre-distribution protocols. With these schemes,
the number of compromised links constantly increases until all
the links are compromised. With our proposal, the proportion of
compromised links is limited and constant.

I. MOTIVATIONS AND CONTRIBUTIONS

Motivation: Key management is a core mechanism to secure
wireless sensor networks. The goal of key management is
to establish secret keys between sensor nodes that need to
communicate securely. One important characteristics of key
management protocols is that they must be scalable, CPU and
energy efficient. In this paper, we are considering large net-
works of battery-operated wireless sensors. We are assuming
that the average lifetime of each node is much shorter that
the operating lifetime of the overall network. As a result, new
nodes are periodically deployed in order to assure network
connectivity. Each set of new nodes that join the network in a
future time consist of a node generation. Of course, new nodes
must be able to establish secret keys with previously deployed
nodes. Protocols that provide this property are known as Multi-
phase deployment protocols.

Public key cryptography cost is prohibitive for most WSNs
and can rarely be used. Most existing key management
schemes are based on symmetric key cryptography. One of the

most popular schemes, referred in this paper as RKP (Random
Key Pre-Distribution), was proposed by Eschenauer and Gligor
[2] and later on extended by Chan, Perrig and Song [3]. This
scheme is distributed and uses a random key pre-distribution
approach. In this protocol, each node is configured with a key
ring of m sub-keys. These keys are randomly drawn from a
large key pool of P sub-keys. Two nodes establish their secret
key from the sub-keys they have in common in their key ring.
If the parameters m and P are chosen properly, the probability
that any two nodes share at least one common sub-key is high.
This protocol is scalable, CPU and energy efficient. It also
trivially supports node addition: any new deployed node gets
configured with m sub-keys from the system key pool. It can
then establish a secret key with any previously deployed node.

One important drawback of this key pre-distribution scheme
is that an attacker that corrupts several nodes can partially
reconstruct, from the compromised nodes key rings, the key
pool of system. The more nodes it corrupts the more sub-keys
it obtains and the more communications it can eavesdrop. If
the attacker is constantly corrupting nodes, it will eventually
learn the whole key pool and all newly deployed nodes will
establish links that will immediately be compromised. In other
words, the security of the whole network degrades with time.
We believe this is a non-desirable property. A naive solution
would be to periodically refresh the key pool, i.e. configure
new deployed nodes with fresh sub-keys. Newly deployed
nodes would be more secure (since their sub-keys were not
exposed previously) but would be unable to establish secure
links with previously deployed nodes. Newly deployed nodes
would constitute a new network that is unable to securely
communicate with the previous one. A novel approach is
definitely needed.
Contributions: This paper presents a new key pre-distribution
scheme, referred as RoK (A Robust Key Pre-distribution
Protocol for Multi-Phase Wireless Sensor Networks) in the
rest of this paper, that allows sensors deployed at different
times to establish secure links. In this scheme, sub-keys have
limited lifetimes and are refreshed periodically. This has the
two following positive consequences:

1) A network that is temporarily attacked (i.e. the attacker
is active only during a limited amount of time) auto-
matically self-heals, i.e. recovers its initial state when



the attack stops. With the RKP scheme, an attacker that
corrupts a certain amount of nodes compromises a given
percentage of the total number of secure communica-
tions. This percentage remains constant until the end
of the network. With our proposal, the percentage of
compromised links gradually decreases to 0 when the
attack stops. The security of the network improves with
time.

2) A network that is constantly attacked (i.e. the attacker
regularly corrupts nodes of the network, without stop-
ping) is much less impacted than a network that uses
the basic key pre-distribution protocol. With the RKP
scheme, the fraction of compromised links constantly
increases until it eventually reaches 1 i.e. until all the
links are compromised. With our extension, the propor-
tion of compromised links is limited and constant. The
security of the network is constant and does not degrade
with time.

Organization: The next section describes, in detail, our pro-
posal. Its explains how nodes get configured and how they
establish secure channels. Section III evaluates the security
of our scheme and compares it with the security of the RKP
scheme. This evaluation is performed by simulations and an-
alytically. It also discusses some issues such as counterfeiting
protection. Related work is summarized in Section IV and
Section V concludes this paper.

II. A ROBUST KEY PRE-DISTRIBUTION PROTOCOL FOR
MULTI-PHASE WIRELESS SENSOR NETWORKS

A. Overview

Because a sensor is battery-powered, it has a limited
lifetime. Very often, the sensor’s lifetime is much smaller
than the lifetime of the whole network. In order to assure a
good network connectivity, new sensors need to be deployed
periodically to make up for disappearing ones.

In our scheme, we assume that new sensors are deployed at
regular epoch that we call generations. The time between two
consecutive generations is called generation period. We also
assume that a sensor lifetime is bounded by a given number,
Gw, of generations. We refer to Gw as the generation window.
In other words, a sensor deployed at generation j will run out
of power before generation j+Gw. For simplicity, we assume
in the rest of this paper that the generation period is the time
unit, i.e. that the generation period is set to 1.

Newly deployed nodes should be able to establish secure
links with previously deployed nodes otherwise connectivity
will not be provided. In our scheme, a node deployed at
generation j can establish a secret channel with any other
sensor deployed in the time period [j − k, j + k], where k is
a integer. Note that we assume, for simplicity, in this paper
that k = Gw. Therefore, since all nodes deployed before
generation j −Gw have died, our newly-deployed sensor can
establish a key with any other node of the network. Note that,
in some scenario, it might make sense to choose a value of k
that is smaller then Gw. In this case, the newly deployed node

will only be able to establish a secure channel with a subset
of the network sensors.

Our scheme is similar to the key pre-distribution scheme
described by Eschenauer and Gligor [2]. However as opposed
to this scheme, we assign to each sensor A two different key
rings: FKRA and BKRA, where a key ring is a subset of a pool
of keys, namely FKRA ⊂ FKP and BKRA ⊂ BKP.

These key rings are respectively called the forward and
the backward key ring. Similarly, the key pool are called the
forward and the backward key pool. The pools of keys are
refreshed at every generation.

The rest of this section describes how the two key pools
FKP and BKP are built and refreshed, how the key rings are
assigned to nodes and how nodes establish secret keys.

Table I
SUMMARY OF NOTATION

Gw generation window
n last generation of the network
A sensor A

krj
A = (FKRj

A, BKRj
A) key ring of A at gen. j

FKRj
A Forward key ring of A at gen. j

BKRj
A Forward key ring of A at gen. j
m key ring size

FKPj Forward key pool at gen. j
BKPj Backward key pool at gen. j

P key pool size
fkj

t ∈ FKPj t-th fkey at gen. j

bkj
t ∈ BKPj t-th bkey at gen. j

h secure hash function
h : {0, 1}∗ → {0, 1}160

f hash function
f : {0, 1}∗ → {0, 1}log2(P )

RKP key management defined in [2]
RoK our scheme

B. Key Pools Generation

In the RKP scheme [2], the key pool is composed of random
keys that do not evolve with time. In contrast, in our scheme,
the key pools evolve with time: they are updated at each
generation.

The Forward key pool: The forward key pool is initiated
with P/2 random keys. At each generation, each key is up-
dated by hashing the current key with a secure hash function,
h : {0, 1}∗ → {0, 1}160, such as SHA1 [4].

More precisely, the forward key pool at generation 0 (i.e.
when the network is first deployed) is defined as follows:

FKP0 = {fk0
1, fk0

2, . . . , fk0
P/2}

where each fk0
i is randomly generated. We call fkeys the keys

of the forward key pool.
At generation j + 1, the fkeys are refreshed as follows:

FKPj+1 = {fkj+1
1 , fkj+1

2 , . . . , fkj+1
P/2}

where fkj+1
t = h(fkj

t ), and

FKPj = {fkj
1, fkj

2, . . . , fkj
P/2}

defines the forward key pool at generation j.



The Backward key pool: The backward key pools, com-
posed of backward keys, are generated using a hash-based
Lamport chain [5]. If we assume that the network is deployed
at generation 0 and will last, at most, until generation n, we
start by generating the key pool of generation n. The bkeys
(backward keys) at generation n, i.e. the last generation of the
network, are initialized with random values i.e.:

BKPn = {bkn
1 , bkn

2 , . . . , bkn
P/2}.

At generation j, the bkeys are refreshed as follows:

BKPj = {bkj
1, bkj

2, . . . , bkj
P/2}

where bkj
t = h(bkj+1

t ) and

BKPj+1 = {bkj+1
1 , bkj+1

2 , . . . , bkj+1
P/2}

defines the backward key pool at generation j + 1.
That is, the bkj

t key of generation j is obtained from the
key bkj+1

t of generation j + 1, using the hash function h.

C. Key rings assignment

This section describes how the backward and forward key
rings are assigned to each sensor.

Each node is configured with m/2 subkeys from the back-
ward and forward key pools. The subkeys assigned to a given
node A deployed at generation j are selected using a pseudo-
random function. More specifically, the first subkey of the for-
ward key ring will be the subkey with index f(idA||1||j) of the
forward key pool, where f(.) is for example a hash function
with range [1;m]. Similarly, the first subkey of the backward
key ring will be the subkey with index f(idA||1||j) of the
backward key pool. The second subkey of the forward key ring
will be the subkey with index f(idA||2||j) of the forward key
pool. Similarly, the second subkey of the backward key ring
will be the subkey with index f(idA||2||j) of the backward
key pool and so on.

More formally, node A is configured with a key ring, krj
A =

(FKRj
A, BKRj

A), defined as follows:

FKRj
A = {fkj

t | t = f(idA||i||j), i = 1, 2, . . . ,m/2}

BKRj
A = {bkj+Gw−1

t | t = f(idA||i||j), i = 1, 2, . . . ,m/2}

and m is the size of the whole key ring.
Note that all the key rings are strictly bound to the deploy-

ment generation of the owner sensor. As a result, nodes need
to be loosely time-synchronized.

Note that node A can only update its key ring kri
A, for the

generations i between j and j + Gw. In fact since it cannot
compute the bkeys for the generations after generation j+Gw,
it cannot update krA beyond generation j +Gw. Furthermore,
since it cannot recover any fkeys for the generations before
generation j, it cannot compute krA for the generation before
j. As a result, the lifetime of its key ring is limited. As we
will see later, this is an essential aspect of our scheme since it
considerably limits the power of the attacker: an attacker that
corrupts a node will only be able to use its keys for a limited
period of time.

D. Establishing a secure channel

When a sensor A is deployed at generation j, it initiates
the neighbors discovery procedure by broadcasting a message
that includes its identifier, idA, and its generation.

All the nodes that receive its message are able to reconstruct
the list of the key indexes in krA and identify the keys that
they have in common.

For example, a neighbor node B can construct the set
{t | t = f(idA||l||j), l = 1, 2, . . . ,m/2} of the key indexes
and check if it shares at least one index t with A. The B node
then replies with its identifier, idB , and its generation. As a
result, A identifies the list t1, t2, . . . of all the key indexes in
common.

Both A and B then calculate their overlapping genera-
tions, that is the set of the generations in which they can
communicate. Formally, if A is deployed at generation j
and B was deployed at generation i with i ≤ j, their
overlapping generations will be all the generations in the
interval [j, i + Gw[.

Notice that if A and B have in common the key in-
dexes t1, t2, . . . , tz , then both of them compute all the fkeys
{fkγ

τ |τ = t1, t2, . . . , tz,γ = j, . . . , i + Gw − 1} and all the
bkeys {bkγ

τ |τ = t1, t2, . . . , tz,γ = j, . . . , i + Gw − 1}.
A and B can then compute their secret key as follows:

kAB = h(fkj
t1 || bki+Gw−1

t1 ||fkj
t2 ||bki+Gw−1

t2 || . . .
. . . ||fkj

tz
||bki+Gw−1

tz
)

In this formula, the forward keys fkj
x provide forward

security: The forward keys of corrupted nodes, that happen
to have the same key indexes that those used to compute
kAB , are only useful if they are corrupted before generation
j. The backward keys bki+Gw−1

x provide backward security:
The backward keys of corrupted nodes, that happen to have
the same key indexes that those used to compute kAB , are
only useful if they are corrupt after generation i.

The key kAB can then be used to established a secure
channel between sensors A and B.

At each new generation, each node should erase their for-
ward keys of the previous generation. By doing this, the fkeys
of the previous generations not yet retrieved by the adversary
cannot be compromised any more: all nodes will have the
fkeys of the new generation and none of the nodes that can
be captured will maintain a copy of the previous fkeys. As
a result, all the secure channels established with fkeys of
previous generation j cannot be compromised anymore. As
we will see in Section III, this significantly increases security.

E. Example

This section illustrates our protocol with an example (see
Figure 1). Let’s assume two sensors A and B, deployed
respectively at generation j and j + 2, with a generation
window Gw of 4. The overlapping generations are therefore
j+2, j+3 and j+4. Let’s also assume that A and B share the
keys t1 and t2 (that is tτ = f(A||lAτ ||j) = f(B||lBτ ||j + 2)
for some lAτ and lBτ , with τ = 1, 2).



j j+1 j+2 j+3 j+4

 overlapping generations

j+5 j+6

A
B

bk
j+4
t1

bk
j+4
t2

fk
j+2
t2

|| || || )fk
j+2
t1

k = h(AB

Figure 1. Key establishment: A and B share the keys t1 and t2

A and B can then compute the common secret key

kAB = h(fkj+2
t1 ||bkj+4

t1 ||fkj+2
t2 ||bkj+4

t2 ).

When generation j+3 arrives, A and B update their forward
key ring by hashing all their fkeys. They must also erase from
memory their forward keys of the generation j + 2. Note that
the keys used by node A are only valid between generation j
and j + 4. Similarly, the keys used by node B are only valid
between generation j + 2 and j + 6.

III. SECURITY EVALUATION

A. Objectives

Our scheme improves the security of the RKP scheme by
limiting the lifetime of the key pools and refreshing the pool
subkeys. With RKP, an attacker that corrupts enough sensors
can reconstruct a large part of key pool and compromise many
of the established or upcoming links. Since the key pool does
not change, newly deployed nodes are configured with some
corrupted subkeys. In other words, the security degrades with
time.

In contrast, in our scheme, the key pools evolve with time.
As a result, since newly deployed nodes are configured with
fresh subkeys, an attacker has to constantly corrupt nodes and
be very aggressive if he wants to eavesdrop on the established
communications. If the attacker operates only during a limited
period of time, the network will automatically self-heal when
the attacker stops compromising nodes.

The goal of this section is to evaluate the security of our
proposal and compare it with the security of the RKP scheme.

We evaluate the security of these two schemes by evaluating
the number of channels that get indirectly corrupted when
x nodes are compromised (and their keys are disclosed). A
channel, between nodes A and B, is said to be indirectly
corrupted when neither A nor B have been corrupted, but
the adversary has collected all the backward and forward sub-
keys that A and B have in common. These sub-keys have been
collected by compromising other nodes.

We evaluate the two following ratios:
1) Ractive is the ratio of the number of indirectly corrupted

active channels over the total number of active channels.
A channel is active when both of its ends are still
alive. An attacker that corrupts an active channel can
decrypt all the messages that are sent of the link, and
can also inject bogus messages by impersonating one of
the communication nodes.

2) Rtotal is the ratio of the total number of indirectly
corrupted channels over the total number since the
beginning of the network, over the total number of
channels that have been established since the birth of the
network. An attacker that corrupts a non-active channel,
can decrypt the messages that were sent over these chan-
nels, if these messages were recorded. However, these
messages are old and might not be valuable anymore.
Furthermore, an attacker that corrupts a non-active node
cannot inject bogus messages, since the secret key it has
recovered has expired and cannot be used anymore to
send new messages. For these reasons, we believe the
Ractive is more important. However, for completeness,
we evaluate both ratios.

We first evaluate these ratios for both schemes, RKP and
RoK, by simulation. This allows us to consider elaborate
and complex scenarios. As detailed in the following section,
we consider different types of attackers. We then compute
analytically the ratio Ractive. We believe this is also useful
for a network designer to understand and control the security
of its network. He can, for example, compute for some
sets of parameters, the security of its network (i.e. fraction
of corrupted links). Alternatively, he can set the maximum
acceptable fraction of corrupted links, and use our formulas
to derive the network parameters (i.e., for example, the sensor
node lifetime).

B. Evaluation by Simulation

1) Simulation Set-up: We have simulated our scheme,
referred to as RoK, and the Eschenauer and Gligor scheme,
referred to as RKP.

To simplify the security analysis, we modeled the network
as a grid of sensors of size 400. We assumed that the number
of neighbors, i.e. of nodes in the communication range, of
each sensor is constant and equal to four.

When nodes are deployed, they establish a secure channel
with their four neighbors, using all the sub-keys they share. If
the intersection of the key rings of two neighboring nodes, A
and B, is empty, node A (resp. B) checks whether any of its
2-hop neighbors shares at least a subkey with B (resp. A). If
this is the case, this 2-hop neighbor is used as a proxy. If not,
A extends its search to its 3-hop neighbors. This algorithm
proceeds until a node that shares a subkey with B (resp.A) is
found. This node is then used as a proxy.

In order to be fair, we used the same memory requirement
for both schemes. The RKP scheme used a key pool of size
P and each node was configured with a key ring size of m.
In contrast, the RoK scheme used a forward key pool of size
P/2, a backward key pool of size P/2 and each node was
configured with two key rings, each of size m/2. Since the
connectivity (the probability of two neighbors to establish a
key) depends on the size of the key pool, the connectivity
performance of our scheme, that uses a key pool of size m/2,
is weaker than the connectivity achieved with the RKP scheme.
However since our scheme uses proxies, the overall network
connectivity achieved with these two schemes are similar. In



our simulations, P was set to 20000 and m to 500. These
parameters are similar to the ones used in [2] and [3].

We assumed that each generation is composed of 10
time slots. At generation 0, N nodes are deployed. We
simulated nodes expiration by assigning to each node a
random expiration date, chosen according to a Gaussian
distribution with mean Gw

2 and with standard deviation Gw
6 .

Where not differently specified, we used a generation window
Gw = 10. In order to simplify the security analysis, we
assumed that the network topology does not change over
time: At each generation, expired nodes are replaced with new
ones, configured with fresh keys. The new nodes establish
secure channels with their four neighbors, using the common
keys of the least and the greatest overlapping generations
(respectively for the fkeys and for the bkeys).

2) Attacker model and strategy: It is important to underline
that the fkeys and bkeys can be computed separately. For a
captured node of generation j, fkeys with the same subscripts
of all future generations after j (even after j +Gw) and bkeys
with the same subscripts of all generations before j +Gw can
easily be computed, stored and exchanged among captured
nodes. In this way, the attacker may create a table of keys
that belong to various generations. This table of keys might
be used to compromise some additional secure links of various
generations (including the past ones).

In our simulations, the attacker uses the strategy described
above: at each time slot, he corrupts x active nodes and updates
the previously described table with their backward and forward
keys. He then uses this table to corrupt links (alive or past).

We considered two different types of attackers: the eager,
and the temporary attackers. An eager attacker keeps compro-
mising nodes at constant rate, from the deployment of the first
generation of sensors to the end of the network. In contrast,
temporary attacker compromises nodes during a limited period
of time, from generation 5 to generation 14 in our simulations.

We then counted, at each time slot, the number of compro-
mised links (i.e. links that were secured using forward and
backward compromised keys that are known to the attacker),
and computed the ratios Ractive and Rtotal, described in Section
III-A.

In the next section we report the results of our simulation.
All the simulations were repeated 25 times and the results
report the average values.

3) Simulation results: This section presents the results of
our simulations for the different types of attackers.

Eager Attacker model: Figure 2 and 3 display, respec-
tively, the Ractive and Rtotal ratios with an eager attacker.
These figures present the simulation results for three different
corruption rates: 1, 3 and 5 nodes at every time slot, i.e.
respectively 10, 30 and 50 nodes per generation. Notice that
we only consider indirectly corrupted channels, i.e. channels
established between non-compromised nodes.

The main observation is that while the RKP scheme has
ratios of compromised channels with an almost constant
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Figure 3. Rtotal. Adversary compromises nodes at constant rate (constant
attacker)

growth, the ratios obtained with the RoK scheme are bounded
by a threshold value, that depends on the value x. Secondly,
from Figure 2 it can be observed that with RKP, the Ractive

ration reaches 1 in a really short time (around 30 generations
for corruption rate 10 and 8 generations for corruption rate
50), while with RoK the ratios are much smaller and always
below 1/2.

The oscillations in the plots are due to newly-deployed
nodes: the new nodes establish secure channels with keys
not yet compromised by the adversary, suddenly reducing the
ratio compromised/active channels. In the RKP scheme, the
oscillation amplitude reduces as the adversary keeps acquiring
keys. With the RoK scheme the amplitude is almost constant,
for the whole life of the network, since keys are refreshed at
every generation.

We can also observe that the plots for the RoK scheme in
Figure 2 have an increasing phase followed by a decreasing
one. Furthermore, for all three corruption rates, the plots reach
their maximum around the 5-th generation. This apparently
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unexpected behavior is due to the proximity of the deployment
time: at generation 5, almost half of the nodes of the network
were deployed at the first generation and almost all the keys
that the adversary has collected can be used to exploit the
channels of those nodes (since Gw = 10, the average lifetime
of a node is Gw/2 = 5). From the 6-th generation on, most
of the nodes are “young” and the channels were established
with keys that were not compromised yet. As soon as the
population of the nodes of the network stabilizes, the ratio of
compromised channels also stabilizes.

Note that corruption ratio of the total number of established
channels shown in Figure 3 never reaches 1 because of the
directly corrupted channels that are not taken into account.

It can be observed in Figure 3 and Figure 4, that RKP
outperforms our scheme in the first generations (i.e. from
generation 0 to 5, when the network is mainly composed
of nodes deployed at the first generation). In fact, since the
connectivity achieved with our scheme is smaller, each link
is secured with less sub-keys than with the RKP scheme
and can therefore be compromised more easily. However, as

new nodes are deployed in the network and new channels
are established with fresh sub-keys, the performance of our
scheme significantly increases with time.

Temporary Attacker Model: The results for the temporary
attacker are collected in Figure 4 and in Figure 5. The interval
of action of the attacker (from generation 5 to generation 14)
is denoted with the label “adversary activity”.

We simulated a network with the same settings as the
network used for the eager attacker, and the three corruption
rate of 10, 30 and 50 nodes per generation.

Both figures illustrate the self-healing property of the pro-
posed scheme: as soon as the adversary stops its activity, the
ratio of the compromised channels starts decreasing as new
generations of nodes are deployed. Figure 4 in particular shows
that the network starts recovering as soon as the attack stops.
It takes 10 generations for the network to fully recover.

The RKP scheme, instead, keeps a ratio of compromised
channels greater than 0, even when the adversary stops its
activity. Moreover, when the attacker corrupts nodes with
a rate greater than 30, the ratio approximates 1 and never
decreases. Figure 5 shows that with RoK the ratio Rtotal

decreases when the adversary stops; for the RKP scheme the
ratio keeps increasing toward 1.

In summary, these simulation results show that our RoK
scheme outperforms the RKP scheme. The number of active
compromised nodes can be reduced by a factor of 10. For ex-
ample, when 10 nodes are compromised at each generation, the
ratio of active compromised channels is reduced from 100% to
10%. The security of our proposal is based on the assumption
that it takes time for an adversary to physically compromise
sensors and get their keys. Since in our proposal, the key
vulnerability period, i.e. the time that attacker has to corrupt
useful keys is reduced, security is improved significantly.

C. Analytical Evaluation

1) Ractive computation: In this section, we compute ana-
lytically Ractive, the fraction of active indirectly compromised
links when x nodes get compromised. We assume that most
of the links are established directly, i.e. each node shares at
least one sub-key with each of its neighbors.

As explained in [3], the probability that two nodes share i
sub-keys is defined by:

pi =

(
P
i

)(
P−i

2(m−i)

)(
2(m−i)
(m−i)

)
(

P
m

)2 (1)

where m is the key ring size and P the key pool size.
Therefore the probability that two nodes share at least one

sub-key is defined by 1− p0 i.e:

pconnect = 1−
(

P
2m

)(
2m
m

)(
P
m

)2 (2)

We need to choose m and P such that pconnect ∼ 1, i.e., for
example, m = 250 and P = 10000.



Furthermore, a secure link will be created by, on average,
nk sub-keys, where nk is defined as follows:

nk =
+∞∑
i=1

pi · i (3)

Note that for m = 250 and P = 10000, nk ∼ 6.
We assume in our scheme that n nodes are deployed at

bootstrap time (generation 0, G0). Nodes that die during gen-
eration Gi are immediately replaced at generation Gi+1. The
time between two deployments is called generation period.

We also assume that each sensor has a lifetime that follows
a distribution, for example Gaussian, with a density probability
f(x, µ, σ), where µ defines the mean lifetime (the unit is the
generation period) and σ the standard deviation. The density
probability f(x, 3, 1/6) indicate that the mean lifetime of
a sensor is 3 generations and its standard deviation is 1/6
generation. The lifetime of a node is bounded by Gw, i.e if a
node is deployed at generation Gj , it will, for sure, be dead
after generation Gj + Gw.

It can easily be shown that the number of nodes that died
at generation Gj−1, and redeployed at generation Gj , with
j > 1, is defined by:

Xj =
Gw∑
i=1

Xj−i

∫ i

i−1

f(x, µ, σ) dx (4)

with X0 = n.
If the sensor lifetime follows a Gaussian distribution

f(x, µ, σ), we have:

Xj =
Gw∑
i=1

Xj−i · (F (i;µ, σ)− F (i− 1;µ, σ)) (5)

where

F (x;µ, σ) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]
. (6)

We can demonstrate that, for j enough large, Xj becomes
constant: the network stabilizes and, then, the average number
of nodes to re-deploy is constant.

If we denote, X(i) the number of active nodes deployed i
generations ago, we can have:

X(i) = Xj

∫ Gw

i

f(x, µ, σ) dx (7)

= Xj(F (Gw;µ, σ)− F (i;µ, σ)) (8)

From Formula 8 we can compute that, on the average, a node
picked at random from the network has age i, with 0 < i <
Gw, with probability:

p(i) =
1
n
·X(i) (9)

The average age E[α] of nodes is therefore defined as:

E[α] =
Gw∑
i=0

i · 1
n

X(i) =
1
n

Gw∑
i=0

iX(i) (10)

Let the average number of captured nodes be x during a
period. Since each node contains m keys, the probability that
a given key has not been compromised is (1− m

P )x. Therefore
if a given link was secured with i sub-keys, the probability
that this link is compromised is (1− (1− m

P )x)i.
According to [3], we defined the average probability that a

link is indirectly1 corrupted when x nodes are corrupted as:

plc =
m∑

i=1

(
1−

(
1− m

P

)x)i

(11)

Therefore, with the RKP scheme, the probability that an
active link is compromised at generation j is defined as
follows:

plcRKP(j) =
m∑

i=1

(
1−

(
1− m

P

)j·x
)i

pi (12)

with pi defined by Formula 1. Note that this probability
increases with time.

With RoK, the probability that an active link is compromised
at generation Gj depends on the generation of the “oldest”
node that established the channel. So, we have to evaluate the
average age of the oldest between two random nodes of the
network. Let be X and Y two independent random variables
with the same distribution defined by Formula 8. Let be Z =
MAX(X, Y ). The expected value of Z is the average time at
disposal of the adversary to indirectly corrupt a random active
channel.

The probability that Z assumes the value j, where 0 < j <
Gw is defined by:

P{Z = j} =P{(X = j ∧ Y ≤ j)
∨ (X ≤ j − 1 ∧ Y = j)}

(13)

= p(j) ·
j∑

k=0

p(k) +
j−1∑
k=0

p(k) · p(j) (14)

= p(j)2 + 2

(
p(j) ·

j−1∑
k=0

p(k)

)
(15)

Therefore, E[Z] can be computed as follows:

E[Z] =
Gw∑
j=0

j · P{Z = j} = (16)

=
Gw∑
j=0

j

[
p(j)2 + 2

(
p(j) ·

j−1∑
k=0

p(k)

)]
(17)

Finally, the probability that an active link is compromised
at generation j with our scheme is defined as:

plcRoK(j) ∼
m∑

i=1

(
1−

(
1− m

P

)x·E[Z]
)i

pi (18)

Note that this probability is constant, since it does not depend
on j.
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Figure 6. Average number of nodes to re-deploy every generation. For every
generation is reported the expected number of nodes died in that generation.

2) Some numerical results: If n = 400, m = 250, P =
10000, Gw = 10, x = 10, ord = 4, the total number of links
is around 800. Evaluating Formula 3, we obtain that nk ∼ 6.

Formula 5 shows that the average number of nodes to re-
deploy every generation converges. This function is plotted in
Figure 6. With the previous settings, the function converges to
the value 72.
The distribution of the age of a node can be evaluated via
Formula 9, plotted in Figure 7.
The expected age (Formula 10) is 2.5, while the expected age
of the oldest between two random nodes (Formula 17) is 3.6.
Using Formulas 12 and 18, we obtain that plcRKP(15) ∼ 0.75,
plcRKP(30) ∼ 0.993 and plcRKP(50) ∼ 0.9999. Furthermore,
plcRoK(10, 30, 50) ∼ 0.10 (and 83 links are directly com-
promised). These results demonstrate that the RoK scheme
reduces the numbers of compromised channels by a factor of
10. They also show that, with RoK, the ratio of compromised
channels remain constant with time. In contrast, the number
of compromised channels increases with RKP, i.e. security
degrades with time.

Figure 8 compares the results obtained analytically with
formulas 12 and 18 with the results obtained by simulations.
This figure demonstrates that the results obtained analytically
and by simulations are very similar. Note that in the simula-
tions, it is assumed that the attacker corrupts nodes regularly
within a generation. In the analytical model, we assume, for
simplicity, that the attacker corrupts all the nodes at once i.e.
at the beginning of each generation. This explains why the
oscillations that are visible in the simulation results do not
appear in the analytical results.

D. Discussions

1) Counterfeiting protection: Our scheme not only im-
proves the security of deployed nodes but also makes node

1 Remember that a link is indirectly corrupted when none of its end-points
have been corrupted, but the adversary collected all the keys used to establish
the link, recovering those keys form compromised nodes
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counterfeiting very difficult. Counterfeiting happens when an
attacker generates a new node from the sub-keys it has
compromised. With the RKP scheme, the attacker has to find
an id such that it has compromised all the corresponding sub-
keys (or at least the sub-keys it has in common with the nodes
it wants to establish a secret channel with). If the attacker has
compromised enough nodes, it will know many sub-keys and
this operation might not be too difficult.

With our scheme, since sub-keys have limited lifetimes,
node generation is much more difficult. As explained in section
II-D, two sensors A and B, deployed respectively at generation
i and generation j, compute their secret key as follows:

kAB = h(fkj
t1 || bki+Gw−1

t1 ||fkj
t2 ||bki+Gw−1

t2 || . . .
. . . ||fkj

tz
||bki+Gw−1

tz
)

If the attacker wants to generate a new node X , let’s say
deployed at generation x, where x < j, in order to establish
a secure link with B, it can only use the nodes corrupted in
j − x generations (i.e. from generation x to generation j) to



perform his attack. The lifetime of the established link will
then be Gw− (j−x). There is a clear trade-off here between
the time at disposal of the attacker to perform his attack and
the benefit it gains (i.e. the lifetime of the resulting established
channels).

If j − x is small, then the attacker has very limited time to
collect the correct sub-keys, but the lifetime of the link might
be large i.e. Gw − (j − x). However if the attacker needs
more time, i.e. if it decreases x, the duration of the established
lifetime will be smaller. We believe that this is a nice feature
of our scheme. An attacker needs to be very aggressive and
corrupts many nodes very quickly if it wants to benefit from its
attacks. Performing such aggressive attacks might not always
be possible and requires very strong attackers.

2) Controlling the Security of a WSN: Formula 18 clearly
shows that the security provided by our scheme depends on the
value of Gw, or in order words, the refresh period of the sub-
keys. This formula can be used to evaluate the security of a
WSN that has predefined parameters. On the other hand, it can
also be used to specify the network parameter Gw according
to the administrator security goals and the attacker model. For
example, the above example shows that if the attacker can
corrupt up to 10 nodes per period (period being the unit of
time), the network is composed of 400 nodes, each configured
with 250 sub-keys out of 10000 sub-keys, and that the security
goal is to make sure that less than 33% of the network is
corrupted, then Gw must be set to 10 periods. In order words,
the maximum lifetime of each node must be set to 10 periods
(and the average lifetime will be 5) and new nodes must be
regularly deployed in order to replace dying nodes. Similarly,
if the security goal is less than 20% of corruption, Gw must
be set to 5 periods. Equation 5 shows that, with the previous
parameters, ∼ 80 nodes die at every period and need to be
replaced. An idea of the impact of the parameter Gw can be
had from the Figures 9 and 10, where we compared the ratios
introduced in Section III-A, for a fixed and constant rate of
corruption and varying Gw.

IV. RELATED WORK

Key management is one of the core mechanism to provide
security to WSN. Even though public key based solutions
are being investigated in the literature ([6], [7], [8]), these
solutions suffer from the CPU, memory and energy limitations
of sensors. As a result, most of the existing proposals consider
only the use of symmetric key cryptography.

One of the most popular approach, referred as random key
pre-distribution approach, was proposed by Eschenauer and
Gligor [2]. In this scheme, each node is configured with a key
ring randomly selected from a larger pool of symmetric keys:
they propose a model that relies on probabilistic key sharing
among the nodes of a random graph. In [9], Di Pietro et al.
provide some new results to study the scheme, providing a new
model instead of the traditional one based on the Erdös-Rényi
random graphs. The Random Key Pre-distribution Scheme [3]
of Chang, Perrig and Song is an extension of [2] and presents
three proposals to strengthen security and improve resilience of
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the established link keys. In [10], [11], a cooperative pair-wise
key establishment protocol is proposed, where a link between
two nodes is reinforced using the cooperation of the common
neighborhood.

While random key pre-distribution schemes are efficient
and promising, the security that they provide degrades with
time. Our proposal, RoK, solves this problem by periodically
refreshing the key pool.

One work that takes in account the challenge to protect
wireless sensor networks that can be deployed in different
phases is [1]. The considered model is very similar to the one
considered in this paper: sensors are deployed in successive
generations, when previously deployed sensors fail or when
the capability of the existing network is determined to be
insufficient. All the deployed nodes are able to establish secure
channels with nodes of the next n generations. Unlike the
previous works, this protocol is not based on a random pre-
distribution of the keys. Every node is deployed with exactly



one generation key that binds them to a specific generation;
for all the other generations it can communicate with, it
maintains a secret derived from an own unique random value
and the corresponding generation key. Formally, if node A
is deployed at generation j, it is configured with a unique
random value RA, the generation key gkj and a set of
secrets SA,j+1, SA,j+2, . . . , SA,j+n, one for every of the n
following generations; each secret is constructed as follows:
SA,i = Ggki

(RA), where G is a keyed one-way hash function
and gki is the generation key of generation i. Clearly sensor A
cannot recover gki from SA,i and RA. A node B of generation
j′ ≤ j +n, upon receiving RA will be able to construct SA,j′ ,
since it knows the key gkj′ . Nodes A and B, then, share
the secret SA,j′ that can use to establish a session key. Since
each node only knows the generation key corresponding to
its own generation, it is not able to construct the secrets for
an arbitrary generation. Moreover, it cannot tamper with the
communication between nodes of a different generation, and
cannot impersonate a node Z of generation i, since it cannot
compute Ggki

(Rz).
The security of the whole protocol is based on the as-

sumption that it takes time for an adversary to physically
compromise sensors and get the stored keys. Since the whole
security of the scheme relies on the generation key gkj , all
sensors of generation j must erase this key as soon as the
key-establishment protocol is over.

The security provided by this protocol is rather weak: since
all the nodes of generation j have a copy of gkj , it is sufficient
for the adversary to compromise one of those nodes to corrupt
all the communications of that generation.

With the RoK scheme, discovering the whole traffic of the
network is a very difficult task, since the adversary needs
to reconstruct the whole key pools. Moreover, RoK is more
secure since the corruption of a single node has only a very
limited impact on the security of the whole network.

V. CONCLUSION

This paper describes a new key pre-distribution scheme
that allows sensors of different generations, i.e. deployed at
different times, to establish secure channels. In the proposed
scheme, the predistributed keys have limited lifetimes and are
refreshed periodically.

We show that a network that is temporarily attacked au-
tomatically self-heals, i.e. recovers its initial state when the
attack stops. In contrast, with existing schemes, an attacker
that corrupts a certain amount of nodes compromises a given
fraction of the total number of secure channels. This ratio
remains constant until the end of the network, even if the at-
tacker stops its action. Furthermore, we show that a RoK based
network that is constantly attacked is much less affected than
a network that uses existing key pre-distribution protocols.

Our analysis and simulation results demonstrate that our
RoK scheme outperforms the RKP scheme proposed by Es-
chenauer and Gligor [2]. The number of active compromised
nodes can be reduced by a factor of 10. The security of our
proposal is based on the assumption that it takes time for

an adversary to physically compromise sensors and get their
keys. Since in our proposal, the key vulnerability period, i.e.
the time that attacker has to corrupt useful keys, is reduced,
security is improved significantly.

This paper shows that it is possible to control the security
of wireless sensor networks by limiting the lifetime of sensors
and by deploying new ones periodically. The analytical model,
derived in this paper, can be used to compute, according to
the security objectives and the attacker model, the network
parameters, i.e. the sensor lifetime and re-deployment period.
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