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Although the mechanism of the occurrence and development of heart failure has been continuously explored in the past ten years, 
the mortality and readmission rate of heart failure is still very high. Modern studies have shown that gut microbiota is associated 
with a variety of cardiovascular diseases, among which the study of gut microbiota and heart failure attracts particular attention. 
�erefore, understanding the role of gut microbiota in the occurrence and development of heart failure will help us further understand 
the pathogenesis of heart failure and provide new ideas for its treatment. �is paper introduced intestinal flora and its metabolites, 
summarized the changes of intestinal flora in patients with heart failure, clarified that intestinal barrier damage and bacterial 
translocation induced inflammation and immune response aggravated heart failure, and altered intestinal microflora affected various 
metabolic pathways including trimethylamine/TMAO, SCFA, and Bile acid pathway leads to heart failure. At the same time, regulating 
intestinal microflora through diet, probiotics, antibiotics, fecal transplantation and microbial enzyme inhibitors has grown up to be 
a potential treatment for many metabolic disorders.

1. Introduction

Heart failure is a severe and terminal stage of many cardiovas-
cular diseases and is an important part of the global prevention 
and treatment of chronic cardiovascular diseases. 
Epidemiological data show that the prevalence of heart failure 
in adults is 1% to 2% and increases to more than 10% of people 
over the age of 70 [1, 2]. With the ageing of the population, 
the incidence of chronic diseases such as coronary heart dis-
ease, hypertension, diabetes, obesity is on the rise, and the 
improvement of medical level, the survival time of patients 
with heart disease is prolonged, resulting in a continuous 
increase in the prevalence of heart failure. Heart failure is a 
difficult clinical syndrome caused by a variety of causes of 
abnormal changes in cardiac structure and function, resulting 

in ventricular systolic and/or diastolic function disorders [3]. 
Currently, heart failure is considered as a chronic, spontaneous 
and progressive disease, and the activation of the neuroendo-
crine system leads to pathological myocardial remodelling, 
which is the crucial factor in the occurrence and development 
of heart failure [4]. In the field of modern medical treatment, 
many drugs are being used, including beta-blockers, angio-
tensin-converting enzyme inhibitors and angiotensin receptor 
blockers (ARB), aldosterone antagonists, and combination of 
ARB/neprilysin blockers, ivabradine [5]. However, current 
treatments target only a fraction of the putative pathophysio-
logical pathways, the overall prognosis of heart failure remains 
poor, readmission rates and mortality rates remain high, and 
even in the PARADIGM study, the 2-year mortality rate in the 
trial group was as high as 20% [6]. In addition, patients with 
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heart failure are under a low quality of life, and long-term 
medication imposes a heavy financial burden on patients. 
�erefore, prevention of heart failure, timely diagnosis and 
early treatment are key to successful mortality reduction and 
prognosis. Gut microbiota is a unique ecosystem, and it func-
tions as an endocrine organ, produces a plethora of metabo-
lism dependent and metabolism-independent signals that play 
regulatory roles in cardiovascular disease development in the 
host [7]. More and more studies have shown that gut micro-
biota is closely related to the occurrence and development of 
heart failure, so microbiota is expected to become an essential 
target for intervention of heart failure.

2. Gut Microbiota and Its Metabolites

Intestinal micro-ecosystem is composed of gastrointestinal 
tract lumen, epithelial cell secretion, gut microbiota and sub-
stances entering the intestinal tract. Gut microbiota is the most 
important active ingredient in intestinal microecosystem [8]. 
�e human body harbors 10–100 trillion microbes, mainly 
bacteria in our gut, which greatly outnumber our human cells 
[9]. �e gut microbiota in the human body is mainly composed 
of Bacteroides, Firmicutes, Actinobacteria, Proteobacteria and 
Verrucomicrobia. Among them, Firmicutes and Bacteroides are 
dominant, accounting for more than 90% of the total intestinal 
microflora, and the remaining bacteria are less than 1% of the 
total gut microbiota [10, 11]. Owing to differences in host genes 
and external environmental factors (e.g., use of antibiotics, diet 
structure, lifestyle), the proportion of this flora is different in 
different individuals or different organs of the same individual 
[12, 13]. Flora can not only participate in the food digestion 
and nutrient uptake, providing energy for the host but also 
secrete metabolites, which can be viewed as hormone-like fac-
tors by dedicated receptor systems in the human host [14].

At present, gut microbiota interacts with the host through 
metabolism-independent pathways, such as lipopolysaccha-
ride (LPS) and peptidoglycan, which are bacterial cell wall 
products, and metabolite-driven pathways, such as short-chain 
fatty acid (SCFA), trimethylamine (TMA)/trimethylamine 
N-oxide (TMAO) and bile acid (BA) [7]. Intestinal flora pro-
duces SCFAs by decomposing dietary fiber, mainly including 
acetic acid, propionic acid and butyric acid. �e proportion 
of them in the colon is about 60 : 25 : 15 [15]. SCFAs can pro-
vide energy for intestinal epithelial cells and can also be 
involved in metabolic, immune and inflammatory responses 
as signaling molecules [16]. TMAO is only a little molecule 
compound. It is mainly transformed from choline, phosphati-
dylcholine and L-carnitine-rich foods (red meat, poultry, fish 
and eggs) by intestinal microorganisms to TMA, which are 
produced under the action of hepatic and flavin monooxygen-
ase (FMO) [17]. BA is a vital part of bile. Primary bile acid 
changes into secondary bile acid through microbiota, and the 
composition changes of the bile acid pool can also affect the 
distribution of gut flora [18]. BAs can facilitate the absorption 
of dietary fat, fat-soluble molecules and cholesterol [19]. 
Besides, the gut microbiota is involved in the formation and 
regulation of the intestinal mucosal barrier [20], controlling 
nutrient intake, storage and metabolism [21], assisting the 

maturation of immune tissues, and preventing the growth of 
pathogenic microorganisms in the body [22]. Under physio-
logical conditions, the intestinal flora is located in a state of 
balance. Once the balance is broken, pathogenic microorgan-
isms thrive, leading to intestinal related diseases, such as 
inflammatory bowel disease, obesity, allergic diseases, diabe-
tes, autism, colorectal cancer and cardiovascular diseases. In 
recent years, intestinal flora and cardiovascular diseases 
including coronary heart disease, hypertension, and heart 
failure have received sustained attention, and more and more 
evidence indicates that there is a close relationship between 
intestinal flora and heart failure [23–25].

3. Gut Microbiota Dysbiosis in Heart Failure

Exogenous factors such as diet, exposure to bacterial infections 
or taking drugs can reduce the diversity of intestinal flora; 
endogenous factors such as acute humoral imbalance, chronic 
intestinal congestion or ischemia-hypoxia, acid-base imbal-
ance, weakened gastrointestinal motility, and nutritional defi-
ciency can potentially change intestinal flora [26]. With the 
development of heart failure, the community characteristics of 
bacteria have changed. Studies have shown that the intestinal 
flora abundance of chronic heart failure patients decreased, and 
the number of pathogenic bacteria increased significantly with 
the progress of the disease, including Campylobacter, Shigella, 
Salmonella, Yersinia enterocolitica and Candida species [27]. 
According to Luedde et al., heart failure cases showed a signif-
icant decrease in Coriobacteriaceae, Erysipelotrichaceae and 
Ruminococcaceae at the family level and a significant decrease 
in Blautia, Collinsella, unclassifified (uncl.) Erysipelotrichaceae 
and uncl. Ruminococcaceae at the genus level [28]. A 16SrDNA 
analysis based on 22 hospitalized patients with heart failure 
reported a reduction in SCFA producing bacteria such as 
Eubacterium rectale and Dorea longicatena [29]. In addition, 
another study also shows that the gut microbiota signature in 
chronic heart failure is characterized by large compositional 
shi�s with low bacterial richness and depletion of bacteria with 
butyrate-producing potential [30]. Butyrate exerts local anti-in-
flammatory effects in the gut mucosa and stimulates regulatory 
T-cells, also in the periphery [31]. Cui et al. observed that 
microbial genes for LPS biosynthesis and TMAO generation 
were up-regulated and genes for butyrate acetoacetate coen-
zyme A transferases (the key enzyme for the generation of 
butyrate) was down-regulated in chronic heart failure [25]. In 
conclusion, the intestinal flora of patients with heart failure 
changed, beneficial bacteria decreased, and pathogenic bacteria 
increased. �e occurrence and development of heart failure 
may be linked to the decrease of SCFA-producing bacteria and 
the increase of TMAO-producing bacteria, which may become 
a new target for the treatment of heart failure.

4. The Role of Gut Microbiota in the 
Development of Heart Failure

4.1. Gut Barrier Dysfunction and Inflammation. Recently, 
more and more studies have confirmed that the intestinal 
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tract plays an important role in the pathogenesis of heart 
failure, which is o�en referred to as the “gut hypothesis of 
heart failure”. �e gut hypothesis implies that decreased 
cardiac output and redistribution of systemic circulation 
can lead to a decrease in intestinal perfusion and mucosal 
ischemia, which creates hypoxia and a hypercapnia status 
[32]. Subsequently, a decrease in intestinal mucosal PH and 
diminished activity of passive carrier-mediated transport 
occurs [32, 33], leading to a “leaky gut,” which describes 
increased gut permeability as well as intestinal barrier 
dysfunction. �is disruption in intestinal barrier function, 
in turn, can lead to increased gut permeability, increased 
bacterial translocation and increased circulating endotoxins 
that can contribute to the underlying inflammation seen in 
patients with heart failure [32]. Sandek et al. proved that 
patients with chronic heart failure had increased thickness 
of the intestinal wall, intestinal permeability, and intestinal 
insufficiency [33]. A study also found that patients with 
moderate to severe congestive heart failure had increased 
intestinal permeability that observed a 78% increase via 
a sugar cellobiose test compared to the healthy controls, 
with a correlation between high right atrial pressure and 
increased intestinal permeability [27]. Another study by 
Sandek et al. showed that a higher concentration of juxta 
mucosal anaerobic bacteria in the sigmoid colon in patients 
was correlated with a higher systemic concentration of anti-
LPS IgA antibodies and above a certain threshold, the more 
bacteria there are in the biofilm, the higher the LPS antibodies 
[34]. More definitive investigations have identified increased 
concentrations of endotoxin, specifically LPS, in edematous 
patients with heart failure [35]. Besides, during acute heart 
failure, a higher LPS concentration was found in the hepatic 
vein compared with the le� ventricle, suggesting that bacteria 
migrated from the intestine to the systemic circulation [36]. 
�e circulating endotoxins generated by bacteria refer to 
the main structural components of bacteria, including LPS, 
peptidoglycans, and so on. LPS and peptidoglycans interact 
with host mucosal surface cells through pattern recognition 
receptors such as toll-like receptors (TLRs) and nucleotide 
oligomerization domain-containing receptors (NODs) to 
recognize microbe-associated molecular patterns (MAMPs), 
stimulate and direct host immune responses [7, 37]. It is 
currently believed that low levels of gut-derived bacteria 
can appear in the circulation , leading to chronic low-grade 
inflammation, known as “metabolic endotoxemia”, which 
has been found in many chronic metabolic diseases such as 
obesity, type 2 diabetes and atherosclerosis [38]. Of course, 
this chronic low-grade inflammation can undoubtedly 
accelerate the development of heart failure. LPS-induced 
TLR4 activation induces the release of inflammatory 
cytokines like tumour necrosis factor-α (TNF-α), interleukin 
(IL)-1 and IL-6 [39]. However, these inflammatory mediators 
are associated with cardiac apoptosis, hypertrophy, and 
fibrosis [33]. Additionally, LPS itself can continue to promote 
deterioration of the mucosal barrier function. When LPS was 
up-regulated, the expression of ZO-1(Zonulaoccludens-1) 
and Occludin decreased [40, 41], and intestinal permeability 
increased. �erefore, the assessment of future intestinal 

barrier function may help us gain a better understanding of 
the occurrence and development of heart failure.

4.2. Intestinal Mucosal Immunity. Recent studies have shown 
that the immune activation mechanism marked by elevated 
inflammatory cytokines plays a vital role in the development of 
chronic heart failure. �e interaction between gut microbiota 
and mucosal immunity is related to the occurrence of heart 
failure. �17 cells are a subtype of CD4

+ helper T cells, which 
is critical to the body to resist bacterial and fungal infections. 
�17 cells play a role in the development of autoimmune 
diseases by secreting inflammatory factors such as IL-17,  
IL-22, IL-21 and recruiting neutrophils. Studies have 
demonstrated that sectional filamentous bacteria can promote 
the differentiation of �17 cells in mice. �e mechanism 
may be that sectional filamentous bacteria can induce the 
expression of serum amyloid A a�er colonisation into host 
epithelial cells, which can stimulate the secretion of IL-6 and 
IL-23 by dendritic cells in the lamina propria of the intestine, 
thereby promoting the differentiation of �17 cells [42].  
Clinical studies showed that �17 cells in Acute Viral 
Myocarditis patients were hyperfunction and helped B cells 
to generate anti-myocardial antibodies [43]. Necessary studies 
have shown that IL-17 can promote myocardial inflammation 
and myocardial ischemia reperfusion injury [44, 45]. �ese 
results suggest that gut microbiota can encourage the 
development of chronic heart failure by influencing intestinal 
mucosal immunity. Polysaccharide A secreted by Bacteroides 
fragilis can induce CD4

+ T cells to transform into Foxp3+ Treg 
cells, and Foxp3+ Treg cells can secrete anti-inflammatory factor 
IL-10 to regulate intestinal mucosal immune tolerance [46].  
Treg cells control the abnormal expression of T cell receptors 
and CD4

+ T cell proliferation, inhibit intestinal inflammation, 
and secrete inflammatory inhibitors TGF-β and IL-10, 
which mediate intestinal mucosal immune stability [47]. 
In addition, the research found that Treg cells can reduce 
ventricular remodelling a�er infarction by reducing apoptosis 
of myocardial cells and myocardial fibrosis [48]. �erefore, it 
is expected to improve heart failure by mediating intestinal 
mucosal immunity, thus providing a novel target for the 
treatment of heart failure.

4.3. �e Gut Microbiota Metabolite-TMAO. Compared with 
patients with no heart failure, TMAO levels were higher in 
patients with chronic heart failure and associated with NYHA 
(New York Heart Association) grades, ischaemic aetiology and 
adverse outcomes [49]. A meta-analysis of 19 prospective 
studies in 19256 subjects showed that elevated plasma TMAO 
levels were associated with an increased relative risk of major 
adverse cardiovascular events, and the increase in relative risk 
did not change with BMI, diabetes, history of cardiovascular 
disease, renal dysfunction and other variables [50]. �e TMAO 
level was significantly correlated with unfavourable outcomes 
(mortality and re-hospitalisation) in 2234, new or worsening 
heart failure patients, but guideline-based drug therapy did not 
affect the level of TMAO [51]. Besides, the study has shown 
that TMAO levels are associated with high BNP (B-type 
natriuretic peptide) levels and late le� ventricular diastolic 
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�erefore, there is further optimism about the discovery of 
receptor-mediated TMAO effects.

4.4. �e Gut Microbiota Metabolite-SCFA. SCFA signal 
via G-protein-coupled-receptors(GPCRS) such as GPR41, 
GPR43, and GPR109A and are essential regulators of gut 
homeostasis and epithelial barrier maintenance [64, 65]. 
Accumulated evidence indicates that SCFAs play a role in 
mediating the host immune system. For example, butyric acid 
regulates gene expression by inhibiting histone deacetylase 
(HDAC), thus increasing the number of Treg cells and 
enhancing their functions, to achieve anti-inflammatory 
purpose [66]. In addition, SCFAs could modulate host blood 
pressure. Propionate increases blood pressure by inducing 
renin secretion by binding to Olfr78, an olfactory receptor 
expressed in the glomerular paracycles of the kidney. However, 
propionate can also lower blood pressure by guaranteeing to 
GPR41 [15]. Moreover, SCFAs play a gut barrier-protective 
role. Butyrate can promote the proliferation and differentiation 
of intestinal epithelial cells, repair damaged intestinal mucosa, 
maintain the integrity of the intestinal mucosa, and reduce 
inflammation caused by exogenous substances such as 
bacteria and their metabolites entering the blood circulation 
[67]. SCFAs can also promote post infarction cardiac repair 
through inducing infiltration of CX3CR1+ monocytes in 
the peri-infarct zone [68]. In conclusion, SCFA can inhibit 
the occurrence and development of inflammation through 
multiple mechanisms, which are expected to improve the 
occurrence and development of heart failure.

4.5. �e Gut Microbiota Metabolite-BAs. BAs are currently 
recognized as signalling molecules, and emerging evidence 
suggests that BAs affect cardiovascular function. �e 
understanding of bile acid physiology was greatly expanded 
by the discovery of bile acid-responsive receptors, such as the 
farnesoid X receptor (known as FXR) and G-protein coupled 
bile acid receptor 1 (also known as TGR5). According to a cross-
sectional study, an increased ratio of secondary to primary BAs 
in serum was found in patients with chronic heart failure, and 
this ratio was revealed to be associated with reduced overall 
survival in univariate analysis [69]. However, FXR can increase 
the imbalance of bile acid ratio, inhibit NF-kb, thereby reducing 
inflammation and improving myocardial function [70]. Bile 
acids, specifically TGR5 agonists, induce cytoprotective changes 
in the heart and improve myocardial response to physiologic, 
inotropic, and hemodynamic stress in mice [71]. �erefore, 
TGR5 agonists and FXR may be novel targets for the treatment 
of heart failure in the future (Figure 1).

4.6. Gut Microbiota and Hepatic Health. Numerous 
physiological processes in the body are accomplished 
through two-way interaction between the intestine and 
the liver. �rough the portal vein system, intestinal flora 
transports various metabolic or immune substances, 
bacterial components or products to the liver [72], and the 
liver can also affect the intestinal function by secreting bile or 
immune factors, making the intestine and liver closely linked, 
known as the intestinal-hepatic axis. When intestinal flora 
is misregulated , the portal vein can be used as the channel 

dysfunction, and can predict significant clinical adverse 
reactions for five years [52].

We have mentioned that TMAO levels are raised in chronic 
heart failure patients, but the mechanism of their increase is 
multifactorial. Changes in the composition of intestinal bac-
teria have turned out to be the principal drivers of TMAO 
levels [53]. Of course, TMAO levels are likewise primarily 
affected by TMAO substrate intakes, such as choline and 
betaine. Moreover, chronic heart failure patients have impaired 
intestinal mucosal barrier and increased permeability, which 
makes TMAO easier to enter the bloodstream through the 
intestinal mucosal barrier, leading to elevated levels. When 
mice with normal intestinal flora were fed a choline-rich diet, 
circulating TMAO levels increased, causing foam cell aggre-
gation and promoting atherosclerotic plaque formation [17]. 
Mechanistic studies demonstrate that TMAO acts to potentiate 
platelet reactivity through alterations in stimulus-dependent 
calcium signaling [54]. �erefore, TMAO can increase ather-
osclerosis and thrombosis, which are entwined in the upstream 
aetiologies that assist in heart failure of ischaemic or non-is-
chaemic origin. Additionally, TMAO can induce cardiac 
hypertrophy and myocardial fibrosis in rats with aortic con-
striction, stimulate the increase of cardiac cell area and the 
expression of atrial natriuretic peptide and β-myosin heavy 
chain [55]. In addition, TMAO can activate NLRP3 (nucleo-
tidebinding oligomerization domain–like receptor family 
pyrin domain-containing-3) inflammatory bodies to induce 
vascular inflammation through SIRT3-SOD2-mtROS (sirtu-
in-3-superoxide dismutase 2-mitochondrial reactive oxygen 
species) pathway [56], and also induce the expression of 
inflammatory genes in primary human aortic endothelial cells 
and vascular smooth muscle cells by activating nuclear fac-
tor(NF)-kB pathway [57]. TMAO can also up-regulate vascu-
lar cell adhesion molecule-1 expression, promoted monocyte 
adherence, activated protein kinase C and NF-kB [58]. �ese 
results demonstrate that TMAO may encourage the develop-
ment of chronic heart failure by accelerating endothelial dys-
function, including decreasing endothelial self-repair and 
activating the inflammatory response. Studies in animal mod-
els have shown that TMAO pathway can directly lead to con-
frontational myocardial remodelling and the development of 
heart failure phenotypes. In the experiment of heart failure 
rats induced by transverse aortic arch constriction model, 
TMAO can promote ventricular remodelling, decrease le� 
ventricular pump function, myocardial interstitial cells and 
perivascular fibrosis [59]. In mice fed a high choline diet, 
severe adverse ventricular remodelling and fibrosis were 
observed to be significantly increased, and the profibrotic 
TGF-β-Smads pathway was activated [60]. Savi and colleagues 
[61] observed that it worsened cardiomyocyte contractility in 
the presence of TMAO in vitro. Most importantly, the nature 
of the TMAO receptor remains unknown. TMAO is consid-
ered to act as a small molecule (a protein chaperone mimetic) 
that alters the conformation of the protein [62]. �erefore, 
TMAO may affect signalling pathways not only through clas-
sical receptor-ligand interactions but also as allosteric modi-
fiers. TMA is observed through the GPCR trace 
amine-associated receptor 5 (TAAR5). TAAR5 has a high 
affinity with TMA but does not recognise TMAO [63]. 
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heart-kidney interaction usually results in accelerated 
deterioration of two organs [77]. In the intestine, urea is 
hydrolysed by microorganisms to form a large amount of 
ammonia, which is then converted to ammonium hydroxide. 
Ammonia and ammonium hydroxide can destroy the tight 
junction of the intestinal epithelium, leading to the destruction 
of intestinal epithelial barrier function, make intestinal 
bacteria DNA and endotoxin into the systemic circulation, 
leading to the systemic inflammatory response [78]. Also, 
gut microbiota ferments tryptophan and tyrosine in food to 
generate uremic toxin indole sulfate and p-cresol sulfate. �ey 
can activate downstream mitogen-activated protein kinase 
(MAPK) and NF-kB by activating apoptotic signal regulator 
enzyme (ASK) −1, which mediates cardiac hypertrophy and 
cardiorenal fibrosis [79].

4.8. Gut Microbiota and Normal Cardiovascular 

Health. Typically, the intestinal flora is in balance and 
protects the cardiovascular system through metabolites. For 
example, enterolactone is produced primarily by intestinal 
digestion of fibre-rich foods.A study shows that a high serum 
enterolactone level is associated with reduced cardiovascular 
diseases mortality [80]. Protocatechuic acid is one of the main 
metabolites of complex polyphenols such as anthocyanins and 
procyanidins that are normally found in high concentrations 

between the intestinal tract and liver, so that endotoxin and 
peptidoglycan from intestinal tract continue to enter the liver. 
Many liver cells express innate immune cell receptors, such 
as toll-like receptors, which respond to intestinal microbial 
products and activate the immune response of the liver, 
leading to liver injury [73]. Current research shows that heart 
failure is closely connected with the liver and can lead to liver 
damage when heart failure occurs. We have previously known 
that enterotoxin metabolites leak into the systemic circulation 
during heart failure. Since the liver is the first organ to come 
into contact with toxic intestinal molecules, the interaction 
between the intestine and the liver during heart failure has 
become an exciting new field of research [74].

4.7. Gut Microbiota and Renal Health. Intestinal flora is closely 
related to the kidney. It was found that there were significant 
differences in the types and quantity of intestinal flora between 
patients with end-stage renal disease and healthy people [75]. 
In patients with chronic kidney disease, dominant intestinal 
flora can usually induce local or systemic inflammation, 
damage the intestinal mucosal barrier function and cause an 
inflammatory response, and translocate LPS and intestinal 
bacterial components into systemic blood circulation by 
increasing �17/Treg ratio [76]. Cardiovascular diseases are 
closely linked to kidney diseases. In cardiorenal syndrome, 
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factors, and so on. It has a favourable effect on the host by 
selectively stimulating the growth and activity of bacteria. A 
recent study has shown that prebiotic oligofructose reduces 
infiltration of inflammatory cells in rats [94].

5.3. Fecal Microbiota Transplantation (FMT). FMT is a 
method of treating intestinal microecological imbalance and 
reconstructing normal intestinal function by introducing 
bacteria or metabolites from donor faeces into diseased 
receptors. At present, FMT is mostly used to treat Clostridium 
difficile infection. Most of the treatment cases have few side 
effects, but the application of FMT to other diseases is still 
unknown [95]. Many studies are examining the effectiveness of 
FMT in the treatment of chronic diseases and have found that 
there may be super-donor phenomena, that is to say, faeces 
from specific donors are more likely to make FMT successful 
than those from other donors [96]. Clinical studies have shown 
that autologous faecal transplantation can quickly restore the 
gut microbiota diversity of healthy people a�er the use of 
antibiotics [97]. In a randomised double-blind controlled trial 
involving 20 patients with metabolic syndrome, it was found 
that faecal flora of vegetarians a�er single transplantation 
could change the intestinal flora structure of some patients, 
but could not change the parameters related to vasculitis 
[98]. Also, when faecal bacteria are transplanted, viruses are 
transplanted [99]. �erefore, FMT has both advantages and 
disadvantages in the treatment of diseases. How to balance it 
is still a problem to solve. For patients with heart failure risk 
factors or existing heart failure, it is possible to reduce TMAO 
by transplanting low-yield TMAO gut microbiota, but there 
is no such clinical study.

5.4. Antibiotics. �e antibiotic treatment destroys the balance 
of intestinal flora, leading to the decrease of flora abundance 
and changes in composition. Studies have shown that NSAIDs 
can alter intestinal flora composition in elderly patients and 
have adverse effects [100]. Other studies have shown that 
when antibiotics are injected to eliminate intestinal bacterial 
translocation, it can alleviate systemic inflammation and 
myocardial cell damage in mice with myocardial infarction 
[101]. In addition to bactericidal and bacteriostasis, rifaximin 
can also reduce the toxicity and translocation of bacteria, 
has an anti-inflammatory effect and positively regulates the 
composition of intestinal flora [102], and promotes the growth 
of bifidobacteria and lactobacillus [103]. Polymyxin B and 
Tobramycin can reduce the LPS in the intestine and faeces, and 
the contents of IL-1β, IL-6 and TNF-α in vivo in patients with 
heart failure [104]. However, improper use of antibiotics can 
kill beneficial bacteria in the body, making pathogens resistant 
and causing various adverse reactions. �erefore, we should 
weigh the side effects of antibiotics and their clinical effects.

5.5. Microbial TMA-Lyase Inhibitors and Intestinal Mucosal 

Barrier Protectant. Some scholars have used choline analogues 
(compounds similar to choline) to inhibit the key enzyme 
CutC/D in the synthesis of TMA, thereby reducing the risk 
of cardiovascular disease by reducing the plasma TMAO level 
in mice [105]. Another recent study shows that resveratrol can 
stimulate the growth of beneficial bacteria in the intestinal 

in vegetables and fruit [81]. �e study concluded that 
protocatechuic acid has an anti-atherosclerotic effect by 
promoting reverse cholesterol transport [82].

5. Gut Microbiota Interventions for Heart 
Failure

At present, the improvement or reversal of intestinal micro-
flora has become a hot spot for heart failure, which contains 
the dietary intervention, prebiotic and probiotic therapy, faecal 
microbiota transplantation, antibiotic intervention, TMA-
lyase inhibitors and so on.

5.1. Dietary Interventions. Diversity of gut microbiota was 
substantially correlated dietary habits, which confirmed the 
effect of long-term dietary patterns on gut microbiota. Studies 
have shown that adjusting diet for five days (short-term) can 
change the number and species of gut microbiota and produce 
corresponding changes to be adapted to dietary changes [83]. 
Dietary Approaches to Stop Hypertension (DASH) eating 
plan is a diet that is rich in fruit, vegetables, whole grains, 
and low-fat dairy foods. It includes meat, fish, poultry, nuts, 
and beans, and is bounded in sugar-sweetened foods and 
beverages, red meat, and added fats. �e study has shown 
that the DASH diet can decrease the incidence of heart failure 
[84, 85]. Compared with patients receiving conventional heart 
failure management guidelines, patients receiving the DASH 
diet had better 6-minute walking test performance, quality of 
life, and tended to increase arterial elasticity a�er a 3-month 
intervention [86]. �e Mediterranean diet refers to the eating 
styles of vegetables, fruit, fish, cereals, beans and olive oil 
in the southern European countries of the Mediterranean 
coast. �is diet has been proven to prevent cardiovascular 
disease and reduce mortality from cardiovascular disease 
[87]. Studies have shown an increase in urinary TMAO levels 
in patients who do not comply with the Mediterranean diet 
[88]. Also, a high-fibre diet can improve the growth of acetate-
producing bacteria, reduce blood pressure, and inhibit cardiac 
hypertrophy and fibrosis [89].

5.2. Prebiotic and Probiotic �erapy. Probiotics mainly include 
bifidobacteria, yeasts, lactic acid bacteria, and so on. �ey can 
inhibit inflammation, protect and repair intestinal mucosal 
barrier, and improve intestinal function. A study in rats 
showed that probiotics (Lactobacillus rhamnosus GR-1) could 
significantly improve le� ventricular hypertrophy and ejection 
fraction in rats with acute myocardial infarction a�er six weeks 
of coronary artery occlusion [90]. What's more, probiotics 
can reduce myocardial cell apoptosis and improve ventricular 
remodelling in rats with spontaneous hypertension [91]. 
Saccharomyces boulardii can improve le� atrial diameter and 
le� ventricular ejection fraction in patients with chronic heart 
failure [92], and Lactobacillus Plantarum 299V can reduce 
infarct size and improve le� ventricular function in rats [93]. 
However, probiotics remain at risk of probiotic translocation 
into the bloodstream and associated sepsis, and their safety 
needs additional study. Prebiotics is a dietary supplement, 
including isomalt oligosaccharides, oligosaccharides, Bifidus 
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dominates host genotype in shaping the murine gut 
microbiota,” Cell Host & Microbe, vol. 17, no. 1, pp. 72–84, 
2015.

 [13]  S. Tamburini, N. Shen, H. C. Wu, and J. C. Clemente, “�e 
microbiome in early life: implications for health outcome,”  
Nature Medicine, vol. 22, no. 7, pp. 713–722, 2016.

 [14]  P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, 
E. R. Mardis, and J. I. Gordon, “An obesity-associated gut 
microbiome with increased capacity for energy harvest,” 
Nature, vol. 444, no. 7122, pp. 1027–1031, 2006.

 [15]  F. Z. Marques, C. R. Mackay, and D. M. Kaye, “Beyond gut 
feelings: how the gut microbiota regulates blood pressure,” 
Nature Reviews Cardiology, vol. 15, no. 1, pp. 20–32, 2018.

 [16]  W. H. Tang, T. Kitai, and S. L. Hazen, “Gut microbiota in 
cardiovascular health and disease,” Circulation Research, 
vol. 120, no. 7, pp. 1183–1196, 2017.

 [17]  Z. Wang, E. Klipfell, B. J. Bennett et al., “Gut flora metabolism 
of phosphatidylcholine promotes cardiovascular disease,” 
Nature, vol. 472, no. 7341, pp. 57–63, 2011.

 [18]  S. I. Sayin, A. Wahlstrom, J. Felin et al., “Gut microbiota 
regulates bile acid metabolism by reducing the levels of tauro-
beta-muricholic acid, a naturally occurring FXR antagonist,” 
Cell Metabolism, vol. 17, no. 2, pp. 225–235, 2013.

 [19]  D. W. Russell, “�e enzymes, regulation, and genetics of bile 
acid synthesis,” Annual Review of Biochemistry, vol. 72, no. 1, 
pp. 137–174, 2003.

 [20]  M. K. Hamilton, G. Boudry, D. G. Lemay, and H. E. Raybould, 
“Changes in intestinal barrier function and gut microbiota 

tract through the reconstitution of intestinal microflora, thus 
decreasing the production of TMAO [103]. Urol is a metabolite 
of intestinal microflora derived from berries and pomegranate 
polyphenol. In vitro and mice, Urol and its synthetic analogue 
UAS03 can activate the pathways of aromatic hydrocarbon 
receptor (AhR) and nuclear factor red blood cell two related 
factor 2 (Nrf2) to enhance epithelial tight junction protein and 
enhance intestinal barrier function [106].

6. Conclusion

In conclusion, there are increasing shreds of evidence that gut 
microbiota disorders, intestinal barrier dysfunction and 
metabolites of gut microbiota are associated with heart failure. 
Intestinal barrier dysfunction and changes in the gut micro-
biota of composition may lead to abnormal production and 
absorption of gut microbiota metabolites in patients with heart 
failure. �is imbalance can be expected to result in other com-
plications such as heart dysfunction, inflammation, and so on. 
�e composition of intestinal microflora in patients with heart 
failure is different from that in a healthy state. Reduction of 
SCFA-producing bacteria in patients with heart failure may 
be a noteworthy feature of patients with heart failure. In addi-
tion, the microbial potential for TMAO and LPS production 
increased significantly. More research has focused on the 
mechanism of microbial metabolites, and there is a need for 
clinical application of various therapeutic interventions. 
However, few studies have investigated in depth a direct role 
of the gut microbiota in heart failure and associated compli-
cations at the mechanistic and causal levels.�erefore, we need 
to further understand the role of gut microbiota in heart fail-
ure to better foster the development of diagnosis and treatment 
of heart failure.
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