

 Role-Based Access Control (RBAC): Features and Motivations
David F. Ferraiolo, Janet A. Cugini, D. Richard Kuhn

National Institute of Standards and Technology

U. S. Department of Commerce

Gaithersburg MD 20899

 Abstract

The central notion of Role-Based Access Control
(RBAC) is that users do not have discretionary access to
enterprise objects. Instead, access permissions are
administratively associated with roles, and users are
administratively made members of appropriate roles. This
idea greatly simplifies management of authorization while
providing an opportunity for great flexibility in specifying
and enforcing enterprise- specific protection policies.
Users can be made members of roles as determined by their
responsibilities and qualifications and can be easily
reassigned from one role to another without modifying the
underlying access structure. Roles can be granted new
permissions as new applications and actions are
incorporated, and permissions can be revoked from roles as
needed.

Some users and vendors have recognized the potential
benefits of RBAC without a precise definition of what RBAC
constitutes. Some RBAC features have been implemented in
commercial products without a frame of reference as to the
functional makeup and virtues of RBAC [1]. This lack of
definition makes it difficult for consumers to compare
products and for vendors to get credit for the effectiveness
of their products in addressing known security problems.
To correct these deficiencies, a number of government
sponsored research efforts are underway to define RBAC
precisely in terms of its features and the benefits it affords.
This research includes: surveys to better understand the
security needs of commercial and government users [2], the
development of a formal RBAC model, architecture,
prototype, and demonstrations to validate its use and
feasibility. As a result of these efforts, RBAC systems are
now beginning to emerge. The purpose of this paper is to
provide additional insight as to the motivations and
functionality that might go behind the official RBAC name.

1. Introduction

The principal motivations behind RBAC are the ability to
articulate and enforce enterprise-specific security policies
and to streamline the typically burdensome process of
security management. RBAC represents a major
advancement in flexibility and detail of control from the
present-day standards of discretionary and mandatory

access control [2][3][4][5]. In many enterprises within
industry and civilian government, end users do not “own”
the information for which they are allowed access as is
often assumed by traditional discretionary access control
schemes [6][7]. For these organizations, the corporation or
agency is the actual “owner” of system objects and
discretion on the part of the users may not be appropriate.
With role-based access control, access decisions are based
on the roles individual users have as part of an organization.
As such, RBAC is often described as a form of non
discretionary access control in the sense that users are
unavoidably constrained by the organization’s protection
policies. In non-classified environments, such policies are
not focused on solving the multi-level security problem as
is assumed within the existing standard for non
discretionary access control [6]. In contrast, RBAC allows
for the specification and enforcement of a variety of
protection policies which can be tailored on an enterprise-
by-enterprise basis. The policies enforced in a particular
stand-alone or distributed system are the net result of the
precise configuration of the various components of RBAC.
This RBAC framework provides administrators with the
capability to regulate who can perform what actions, when,
from where, in what order, and in some cases under what
relational circumstances.

From a functional perspective, RBAC’s central notion is
that of operations representing actions associated with roles
and users that are appropriately made members of roles.
The relationships between users, roles, and operations is
depicted in Figure 1. As shown in Figure 1, the use of
double arrows indicate a many-to-many relationship. For
example, a single user can be associated with one or more
roles, and a single role can have one or more user members.
Roles can be created for various job positions in an
organization. For example, a role can include Teller or Loan
Officer in a bank, or Doctor, Nurse, or Clinician in a
hospital. The operations that are associated with roles
constrain members of the role to a specified set of actions.
For example, within a hospital system the role of Doctor can
include operations to perform diagnosis, prescribe
medication, and order laboratory tests; the role of
Researcher can be limited to gathering anonymous clinical
information for studies; and the role of Social Worker may

be to review patient profiles to flag possible suicidal
patients or determine possible abuse cases.

.

Roles Users
tions

Opera-

Figure 1. Users, roles, and operations

The association of operations with roles within an
enterprise can be in compliance with rules that are self-
imposed. For example, a health care provider may decide
that the role of Clinician must be constrained to post only
the results of certain tests rather than distribute them where
routing and human errors can result in a violation of a
patient’s right to privacy. Operations can also be specified
in a manner that can be used in the demonstration and
enforcement of laws or regulations. For example, a nurse
can be constrained to adding a new entry to a patient’s
history of treatments rather than being generally able to
modify a patient record. A pharmacist can be provided with
operations to dispense, but not to prescribe, medication.

Although RBAC does not promote any one protection
policy, it has been shown to support several well-known
security principles and policies that are important to
commercial and government enterprises that process
unclassified but sensitive information[2][8][9]. These
include: the specification of competency to perform
specific tasks; the enforcement of Least Privilege for
administrators and general users; and the specification, as
well as the enforcement, of conflicts of interest rules, which
may entail duty assignment and dynamic and static
separation of duties. These policies can be enforced at the
time operations are authorized for a role, at the time users
are authorized as members of a role, at the time of role
activation (e.g., when a role is established as part of a user’s
active session), or when a user attempts to perform an
operation on an object.

To demonstrate the importance of such policies, consider
the unconstrained actions of Nicholas Leeson which lead to
the bankruptcy of England’s oldest investment firm in 1995.
In particular, Leeson was allowed to run both the financial
derivatives trading operation in Singapore as well as back-
office functions where trades were settled. This is a mix of
roles that can be − and in this case was − disastrous. In any
firm serious about preventing fraud in its operations, this
arrangement is flawed. Management at Barings PLC should
never have had the same person making and settling trades.
Such a conflict of interest policy can be specified centrally
by management, administratively implemented, and
enforced effectively using the RBAC framework.

In addition to RBAC’s commercial relevance, RBAC has
the potential to support policies that are essential within
classified environments. Such policies can include one-
directional information flow by the specification and
enforcement of the Simple Security property and the Star
property1[3][9].

One of RBAC’s greatest virtues is the administrative
capabilities it supports [3][5][9]. The administration of
authorization data is widely acknowledged as an onerous
process with a large and reoccurring expense. Under the
RBAC framework, users are granted membership into roles
based on their competencies and responsibilities. User
membership into roles can be revoked easily and new
memberships established as job assignments dictate. With
RBAC, users are not granted permission to perform
operations on an individual basis, but operations are
associated with roles. Role association with new operations
can be established as well as old operations deleted as
organizational functions change and evolve. This basic
concept has the advantage of simplifying the understanding
and management of privileges: roles can be updated without
having to update the privileges for every user on an
individual basis.

Another administrative advantage of RBAC is that
system administrators control access at a level of
abstraction that is natural to the way enterprises typically
conduct business. This is achieved by statically and
dynamically regulating users’ actions through the
establishment and definition of roles, role hierarchies,
relationships, and constraints. Thus, once an RBAC
framework is established, the principal administrative
actions are the granting and revoking of users into and out
of roles. This is in contrast to the more conventional and
less intuitive process of attempting to administer lower
level access control mechanisms directly (e.g., access
control lists (ACLs), capabilities, or type enforcement
entities) on an object-by-object basis.

For distributed systems, another benefit is that RBAC
administrator responsibilities can be divided among central
and local protection domains, that is, central protection
policies can be defined at an enterprise level while leaving
protection issues that are of local concern at the

1. The Simple Security Property states that a sub
ject (i.e., a process executing on a user’s behalf)
must not be allowed to read from storage reposito
ries that are at a higher sensitivity level than the
subject’s current sensitivity level. The Star Prop
erty states that a subject must not be allowed to
write to storage repositories that are at a lower sen
sitivity level than the subject’s maximum sensitiv
ity level allowed for reading.

organizational unit level. For example, within a distributed
health care system, operations that are associated with
health care providers may be centrally specified and pertain
to all hospitals and clinics, but the granting and revoking of
memberships into specific roles may be specified by
administrators at local sites.

2. RBAC features and supporting policies

RBAC policies are described in terms of users, subjects,
roles, role hierarchies, operations, and protected objects. To
perform an operation on an object controlled under RBAC,
a user must be active in some role. Before a user can be
active in a role, that user must first have been authorized as
a member of the role by a security administrator.

RBAC provides administrators with the capability to
place constraints on role authorization, role activation, and
operation execution. These constraints have a variety of
forms. Constraints include cardinality and mutual
exclusivity rules which can be applied on a role-by-role
basis. In addition, constraints can be placed on the
authorization of an operation to a role and on operations
being performed on objects (i.e., time and location
constraints).

The following subsections define RBAC entities and
provide a precise definition for several representative
constraints.

2.1 Users, roles, and operations

Within the RBAC framework, a user is a person, a role
is a collection of job functions, and an operation represents
a particular mode of access to a set of one or more protected
RBAC objects. As shown in Figure 2, a subject represents
an active user process with the single arrow denoting a one
to-many relationship.

User Subjects

Figure 2. User and subjects

The following functions describe the mappings among
users, subjects, and roles:

subject-user(s:subject) = the user associated with subject
“s.” (eq. 1)

authorized-roles(s:subject) = {the roles associated with
subject “s”}. (eq. 2)

role-members(r:role) ={theusersauthorizedforrole“r”}.(eq. 3)

user-authorized-roles(u:user) = {the roles associated with
user “u”}. (eq. 4)

Note that the user associated with a subject is determined
by a unique user identifier. Each subject is mapped to one
individual user and possibly many roles. 2 RBAC also
requires that if authorized-roles(s) = R and subject-user(s)
= u, then “u” must be associated with the set of roles “R.”
This is better described as follows:

Assumption 1 (Consistent Subject) The consistent
subject assumption is satisfied only if :

∀ s:subject, u: user, R, r:roles:
subject-user(s) = u ∧ authorized-roles(s) = R ∧

u ∈ role-members(r) ⇒ r ∈ R. (eq. 5)

The type of operations and the objects that RBAC
controls is dependent on the type of system in which it will
be implemented. For example: within an operating system,
operations might include read, write, and execute; within a
database management system, operations might include
insert, delete, append, and update; and within a transaction
management system, operations would take the form of and
exhibit all the properties of a transaction. The set of objects
covered by the RBAC system include all of the objects
accessible by the RBAC operations. However, not all file
system and system objects need to be included in an RBAC
scheme. For instance, access to infrastructure objects such
as synchronization objects (e.g., semaphores, pipes,
message segments) and temporary objects (e.g., temporary
files and directories) may not necessarily be controlled
within the RBAC protected object set.

An operation represents a unit of control that can be
referenced by an individual role that is subject to regulatory
constraints within the RBAC framework. It is important to
note the difference between a simple mode of access and an
operation. An operation can be used to capture security-
relevant details or constraints that cannot be determined by
a simple mode of access[2]. These details can be in terms of
both method and granularity of access.

To demonstrate the importance of an RBAC operation,
consider the differences between the access needs of a teller
and an accounting supervisor in a bank. An enterprise
defines a teller role as being able to perform a savings

2. The user identifier is relevant for auditing, but
with an RBAC authorization scheme the role iden
tifier(s) are what determine access.

n
h

i

r
i
t

deposit operation. This requires read and write access to
specific fields within a savings file. An enterprise may also
define an accounting supervisor role that is allowed to
perform correction operations. These operations require
read and write access to the same fields of a savings file as
the teller. However, the accounting supervisor may not be
allowed to initiate deposits or withdrawals but only perform
corrections after the fact. Likewise, the teller is not allowed
to perform any corrections once the transaction has been
completed. The difference between these two roles is the
operations that are executed by the different roles and the
values that are written to the transaction log file.

To demonstrate the importance of granularity of control,
consider the need of a pharmacist to access a patient’s
record to check for interactions between medications and to
add notes to the medication section of the patient record.
Although such operations may be necessary, the pharmacist
should not be able to read or alter other parts of the patient
record.

As shown in Figure 3, operations are administratively
associated with objects as well as with roles.

Objects
Oper
ations

Figure 3. Operations and objects

When authorizing user membership into a role, the user
is implicitly provided with the potential to execute the
operations that are associated with the role. Each operation
is referenced by a unique identifier. The notion of an
operation, as well as the relationships between roles,
operations, and objects are described by the following
functions:

role-operations(r:roles) = {the operations that are associ
ated with role “r”}. (eq. 6)

operation-objects(op:operation) = {the authorized objects
for which the operation “op” can be applied}. (eq. 7)

2.2 Roles and role hierarchies

Roles can have overlapping responsibilities and
privileges, that is, users belonging to different roles may
need to perform common operations. Furthermore, within
many organizations there are a number of general
operations that are performed by all employees. As such, it
would prove inefficient and administratively cumbersome
to specify repeatedly these general operations for each role
that gets created. To improve efficiency and provide for the
natural structure of an enterprise, RBAC includes the

concept of role hierarchies. A role hierarchy defines roles
that have unique attributes and that may “contain” other
roles, that is, that one role may implicitly include the
operations, constraints, and objects that are associated with
another role. Role hierarchies are a natural way of
organizing roles to reflect authority and responsibility, and
competency. An example of a role hierarchy is shown in
Figure 4. In this example, the role Specialist “contains” the
roles of Doctor and Intern. This means that members of the
role Specialist are implicitly associated with the operations,
constraints, and objects of the roles Doctor and Intern
without the administrator having to explicitly list the Doctor
and Intern attributes. The most powerful roles are
represented at the top of the diagram with the less powerful
roles being represented at the bottom, i.e., the roles on the
top of the diagram contain the greatest number of
operations, constraints, and objects. As shown in Figure 4,
not all roles have to be related. The roles Cardiologist and
Rheumatologist are not hierarchically related but they can
contain some or all of the same roles.

Role hierarchies can be represented as ancestor
relationships. The immediate parent relationship can be
represented as an ordered pair ((Ri+1,Ri), >), where Ri+1 is
the immediate parent and Ri the child and “>” is a transitive
relation “contains.” Thus, Ri+1 > Ri, implies, Ri+1 contains
Ri. As shown in Figure 4, the role Specialist is the
immediate parent of the role Doctor, and the role Intern is
an ancestor of the role Specialist (i.e., the role Specialist
“contains” the role Intern). However, the role Cardiologist
is not an ancestor of the role Rheumatologist. Because roles
are contained by other roles through the “contains”
relationship, granting membership in a role implies
membership to all the roles that role “contains.”

Cardiologist Rheumatologist

contains contains

Specialist

contains

Doctor
e

contains

Intern
a
n Figure 4. Example of a role hierarchy

This role hierarchy can be described as:

Rule 1 (Role Hierarchy) If a subject is authorized to
access a role and that role contains another role, then the
subject is also allowed to access the contained role:

∀ s:subject, ri,j:roles :
rj ∈ authorized-roles(s) ∧ rj > ri ⇒

ri ∈ authorized-roles(s). (eq. 8)

2.3 Role authorization

The association of a user with a role can be subject to the
following:

• the user can be given no more privilege than is
necessary to perform his/her job;

• the role in which the user is gaining membership is not
mutually exclusive with another role for which the user
already possesses membership; and

• the numerical limitation that exists for role membership
cannot be exceeded.

The first property in intended to ensure adherence to the
principle of Least Privilege [2]. The principle of Least
Privilege requires that a user be given no more privileges
than necessary to perform his/her job function. Ensuring
least privilege requires identifying the user’s job functions,
determining the minimum set of privileges required to
perform that function, and restricting the user to a domain
with those privileges and nothing more. In non-RBAC
implementations, this is often difficult or costly to achieve.
For example, in a capability-based system, someone
assigned to a job category may be allowed more privileges
than one needs because of the inability of capability-based
systems to tailor access based on various attributes or
constraints. Since many of the responsibilities overlap
between job categories, maximum privilege for each job
category could cause unlawful access. RBAC can be
configured so that only those operations that need to be
performed by members of a role are granted to the role, and
these operations and roles can be subject to organizational
policies or constraints. In the cases where operations
overlap, hierarchies of roles can be established. In the past,
careful auditing has been used to justify the granting of
greater access. For example, it may seem sufficient to allow
physicians to have access to all patient data records if their
access is monitored sufficiently. However, this would entail
much more auditing and monitoring than would be
necessary with a better defined access control mechanism.
With RBAC, constraints can be placed on physician access
so that, for example, only those records that are associated
with a particular physician can be accessed.

The second property listed above is intended to preserve

a policy of Static Separation of Duty or conflict of interest.
This means that by virtue of a user being authorized as a
member of one role, the user is not authorized as a member
of a second role. For example, a user that is authorized to be
a member of the role Teller in a bank may not be allowed to
be a member of the role Auditor of the same bank. That is,
the roles Teller and Auditor are mutually exclusive.

The policy of Static Separation of Duty can be centrally
specified and can then be uniformly imposed on specific
roles. The mutually exclusive roles for a given role and the
Static Separation of Duty property can be specified as
follows:

mutually-exclusive-authorization(r:roles) = {the list of
roles that are mutually exclusive with role “r”}. (eq. 9)

Rule 2 (Static Separation of Duty) A user is authorized
as a member of a role only if that role is not mutually
exclusive with any of the other roles for which the user
already possesses membership:

u:user, ri,j:roles : i j :∀ ≠
u ∈ role-members(ri) ∧ u ∈ role-members(rj)
⇒ ri ∉ mutually-exclusive-authorization(rj) (eq. 10)

The third property listed above which can be preserved
under the granting of user membership to roles is the
Cardinality property. Some roles can only be occupied by a
certain number of employees at any given period of time.
For example, consider the role of Manager. Although other
employees may act in that role, only one employee may
assume the responsibilities of a manager at any given time.
A user can become a new member of a role as long as the
number of members allowed for the role is not exceeded.
The number of users allowed for a role and the existing
number of users associated with a role is specified by the
following two functions:

membership-limit (r: roles) = the membership limit
(≥ 0) for role “r.” (eq. 11)

number-of-members(r:roles) = N (≥ 0) the number of
existing members in role “r.” (eq. 12)

Role capacity can now be described as:

Rule 3 (Cardinality) The capacity of a role cannot be
exceeded by an additional role member:

∀ r :roles :

membership-limit(r) ≥ number-of-members(r). (eq. 13)

2.4 Role activation

Each subject is a mapping of a user to one or possibly
many roles. A user establishes a session during which the
user is associated with a subset of roles for which the user
has membership. A user’s role authorization (which is a
consequence of role membership) is a necessary but not
always sufficient condition for a user to be permitted to
perform an operation. Other organizational policy
considerations or constraints may need to be taken into
account that pertain to authorizing users to perform
operations.

Role activation provides the context for which these
organizational policies can be applied. As such, RBAC
requires a user to first be authorized as being active in a role
before a user can perform an action.

Depending on the organizational policy under
consideration, checks are applied in terms of the role which
is being proposed for activation, the operation which is
being requested for execution, and/or the object which is
being accessed. That is, a role can be activated if:

• the user is authorized for the role being proposed for
activation;

• the activation of the proposed role is not mutually
exclusive with any other active role(s) of the user;

• the proposed operation is authorized for the role that is
being proposed for activation;

• the operation being proposed is consistent within a
mandatory sequence of operations; and

The following functions enable subjects to execute
RBAC operations and define the active roles for a subject:

exec: (s: subject, op: operation) = {TRUE iff subject “s”
can execute operation “op,” otherwise it is

FALSE}. (eq. 14)

active-roles(s:subject) = {the current list of active roles for
subject “s”}. (eq. 15)

The specification that a subject’s proposed active role
must be in the authorized role set for that subject is stated
by the following property:

Rule 4 (Role Authorization) A subject can never have
an active role that is not authorized for that subject:

∀ s:subject, op: operation :
active-roles(s) ⊆ authorized-role(s). (eq. 16)

Once it is determined that a role is part of the authorized
role set for the subject, the operation can be executed
provided that the role is active. Even though a role may be
in the role set, there may be certain organizational policies
(such as dynamic separation of duty described below) that
precludes the role from being activated. This provides the
context from which other checks are made and is specified
by the following rule:

Rule 5 (Role Execution) A subject can execute an
operation only if the subject is acting within an active role:

∀ s:subject, op: operation :
exec(s,op) ⇒ active-roles(s) ≠ ∅ . (eq. 17)

RBAC also provides administrators with the capability to
enforce an organization-specific policy of Dynamic
Separation of Duty. Static Separation of Duty provides an
enterprise with the capability to address potential conflicts
of interest issues at the time a user’s membership is
authorized for a role. However, in some organizations it is
permissible for a user to be a member of two roles which do
not constitute a conflict of interest when acted in
independently, but introduce policy concerns when allowed
to be acted in simultaneously.

For example, a static policy could require that no
individual who has the role of Payment Initiator can also
have the role of Payment Authorizer. Although such an
approach may be adequate for some organizations, for
others it may prove too rigid, making the cost of separation
greater than the loss that might be expected. The objective
behind Dynamic Separation of Duty is to allow more
flexibility in operations. Dynamic Separation of Duty
places constraints on the simultaneous activation of roles,
so for example, an individual user can be authorized for
both the roles Payment Initiator and Authorizer, but can
dynamically assume only one of these roles at the same
time.

The mutually exclusive roles for the proposed active role
is specified by the following function:

mutually-exclusive-activation(r:roles) = {the list of active
roles that are mutually exclusive with the proposed role

“r”}. (eq. 18)

The RBAC Dynamic Separation of Duty rule is defined

as:

Rule 6 (Dynamic Separation of Duty) A subject can
become active in a new role only if the proposed role is not
mutually exclusive with any of the roles in which the
subject is currently active:

∀ s:subject, r i,j:roles :i ≠ j :

ri ∈ active-roles(s) ∧ rj ∈ active-roles(s)

⇒ ri ∉ mutually-exclusive-activation(rj). (eq. 19)

The specification that a subject can perform an operation
only if the operation is authorized for the subject’s proposed
active role is provided by the following property:

Rule 7 (Operation Authorization) A subject can
execute an operation only if the operation is authorized for
the role in which the subject is currently active:

∀ s:subject, op: operation ∃ r:roles :
exec(s,op) ⇒ r ∈ active-roles(s) ∧

op ∈ role-operations(r). (eq. 20)

2.5 Operational separation of duty

RBAC can be used by a system administrator to enforce
a policy of Operational Separation of Duty. Operational
Separation of Duty can be a valuable approach at deterring
fraud [14]. This is based on the idea that fraud can occur if
collaboration exists between various job-related
capabilities within a critical business function. For
example, the function of purchasing an item might involve
the following operations: authorizing the purchase order;
recording the arrival of the invoice; recording the arrival of
the item; and, finally, authorizing payment [14]. 3 If each of
these operations is performed by different roles, the
likelihood of fraud can be diminished. By allowing one user
to perform all operations, fraud may occur.

Operational Separation of Duty requires that for all the
operations associated with a particular business function, no
single user can be allowed to perform all of these
operations. Therefore, the failure of one role to perform as
expected can be detected by the organization. In RBAC
terms, the Operational Separation of Duty policy can be
enforced when roles are authorized for individual users and
when operations are assigned to roles.

3. Execution of a single operation of a business
function proceeds only upon the successful com
pletion of the previous operation.

Operational Separation of Duty can be specified with the
following function and property:

function-operations(f:function) = {the set of all operations
required for a business function “f”}. (eq. 21)

Rule 8 (Operational Separation of Duty) A role can be
associated with an operation of a business function only if
the role is an authorized role for the subject and the role had
not been assigned previously to all of the other operations:4

∀ s:subject, r:role, f:function :
¬ (function-operations(f) ⊆

role-operations(r)). (eq. 22) ∪
∈ ur u r ()

2.6 Accessing objects

To ensure enforcement of enterprise policies for RBAC
objects, subject access to RBAC objects must be controlled.
The following function is used to determine if a subject can
access an RBAC object:

access (s: subject, o: object) = {TRUE iff the subject can
access the object, otherwise it is FALSE}. (eq. 23)

With the Role Authorization and Role Execution
properties defined above (Rules 4 and 5), the Operation
Access Authorization property defined below ensures that a
subject’s access an RBAC object can only be achieved
through authorized operations by authorized active roles.

Rule 9 (Object Access Authorization) A subject can
access an object only if the role is part of the subject’s
current active role set, the role is allowed to perform the
operation, and the operation to access the object is
authorized:

∀ s:subject, o: object :
access(s,o) ⇒ ∃ r: roles, op:operation :

r ∈ active-roles(s) ∧ op ∈ role-operations(r)
∧ o ∈ operation-objects(op). (eq. 24)

3. Conclusion

The principal motivations behind RBAC are the ability to
express and enforce enterprise-specific security policies
and streamline the typically burdensome process of security
management. As shown above, RBAC is a framework of

4. For this property, user-authorized-roles(u) is
represented by ur(u).

policy rich mechanisms, and its configuration is dependent
on organizational policies. This allows RBAC to be
adaptable to any organizational structure and means of
conducting business. Also, the policies implemented under
RBAC can evolve over time as enterprise and
organizational structure and security needs change. RBAC
provides greater productivity on the part of security
administrators, resulting in fewer errors and a greater
degree of operational security.

Currently, the National Institute of Standards and
Technology (NIST) is conducting research in the area of
RBAC. To date three independently developed efforts on
RBAC are underway at NIST: a Small Business Innovation
Research (SBIR) program with Dr. Ravi Sandhu of George
Mason University and Seta Corporation to help define
RBAC and its feasibility, an effort with NSA’s R23
Research and Engineering group and Dr. Virgil Gligor of
the University of Maryland to create a formal model and
implement RBAC on a policy-independent Mach
microkernel-based operating system being developed by
R23 called Synergy [6][10], and a Advanced Technology
Program (ATP) effort being led by John Barkley of NIST to
demonstrate how RBAC can be used for a health care
system. Although these research efforts have shown great
promise and continues to generate enthusiasm within the
research and vendor communities, RBAC remains a long
way from reaching its full potential as a commercially
viable technology. This could only be achieved through
further research and consensus on the part of researchers,
vendors, and the user community.

Acknowledgments

The authors would like to thank Dr. Virgil Gligor, NSA
R23 group, Dr. Ravi Sandhu, and the Seta Corp. for their
efforts in making RBAC a reality. The authors would also
like to thank Bruce Aldridge and John Barkley of NIST for
their assistance in reviewing this paper.

4. References
[1]	 Oracle Corporation, ORACLE7 Server SQL Language

Reference Manual, 778-70-1292, December 1992.
[2]	 David F. Ferraiolo, Dennis M. Gilbert, Nickilyn Lynch, “An

Examination of Federal and Commercial Access
Control Policy Needs,” Proceedings of the 16th NIST
NSA National Computer Security Conference,
Baltimore, MD, 20-23 September 1993.

[3]	 Ravi S. Sandhu, et al., Role-Based Access Control Models,
unpublished journal article.

[4]	 Imtiaz Mohammed and David M. Ditts, “Design for
Dynamic User Role-Based Security,” Computers and
Security, 1994.

[5]	 David F. Ferraiolo and Richard Kuhn, “Role-Based Access
Control,” Proceedings of the 15th NIST-NSA National
Computer Security Conference, Baltimore, MD, 13-16
October 1992.

[6]	 Department of Defense, Trusted Computer Security
Evaluation Criteria, DoD 5200.28-STD, 1985.

[7]	 National Computer Security Center, A Guide to
Understanding Discretionary Access Control in Trusted
Systems, NCSC-TG-003, September 1987.

[8] Deborah Hamilton, “Application Layer Security
Requirements of a Medical Information System,”
Proceedings of the 15th NIST-NSA National Computer
Security Conference, Baltimore, MD, 13-16 October
1992.

[9]	 Hal L. Feinstein, et al., Final Report: Small Business
Innovation Research (SBIR): Role-Based Access
Control: Phase 1, McLean, VA, SETA Corporation,
January 20, 1995.

[10]	 Virgil Gligor, RBAC Security Policy Model, Preliminary
Draft Report, R23 Research and Development
Department of the National Security Agency, April
1995.

[11]	 Daniel F. Stern, “A TCB Subset for Role-Based Access
Control,” Proceedings of the 15th NIST-NSA National
Computer Security Conference, Baltimore, MD, 13-16
October 1992.

[12]	 T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, W.R.
Shockley, The Seaview Formal Security Policy Model,
Final Report, Rome Air Development Center, Volume
2, February 1989.

[13] R. W. Baldwin, “Naming and Grouping Privileges to
Simplify Security Management in Large Databases,”
Proceedings of the IEEE Symposium on Computer
Security and Privacy, 1990.

[14] D. D. Clark and D. R. Wilson, “A Comparison of
Commercial and Military Computer Security Policies,”
Proceedings of the IEEE Symposium on Computer
Security and Privacy, April 1987.

[15]	 Virgil Gligor, J. Huskamp, S. Welke, C. Linn, and W. T.
Mayfield, Traditional Capability-Based Systems: An
Analysis of Their Ability to Meet the Trusted Computer
Security Evaluation Criteria, IDA Paper P-1935,
October 1986.

[16]	 D. E. Bell and L. J. LaPadula, Secure Computer Systems:
Mathematical Foundations, Technical Report. ESD
TR-73-278, Volume 1, The MITRE Corporation,
Bedford, MA, March 1973.

[17]	 S. H. von Solms and Isak VanderMerve, “The Management
of Computer Security Profiles Using a Role-Oriented
Approach,” Computers and Security, 1994.

