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Abstract

Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people 

globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the 

host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to 

SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-

CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital 

platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge 

for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment 

options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurpos-

ing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma 

isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In 

this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 

patients. For this, we used “Boolean Operators” such as AND, OR & NOT to search relevant research articles/reviews from 

the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like 

Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favi-

piravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have 

been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/

anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active 

immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy 

and repurposed drugs are the most viable option against SARS-CoV-2.
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COVID-19 and SARS-CoV-2 virus

 An infectious disease COVID-19 caused by a virus belongs 

to the Coronaviridae family was first reported in Decem-

ber 2019 in the Wuhan city of China. Several other lethal 

viruses such as Severe Acute Respiratory Syndrome-related 

Coronavirus (SARS-CoV) and Middle Eastern Respiratory 

Syndrome coronavirus (MERS-CoV) also belong to this 

family. The SARS-CoV is a single-stranded, enveloped pos-

itive-sense strand RNA virus with a genome size between 

27 and 34 kilobases that is comparatively larger than other 

RNA viruses. SARS-CoV-2 driven endemic unfurled into 
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a pandemic on 11th of March 2020 by the World Health 

Organization (WHO). So far, a total of seven human coro-

naviruses (hCoVs) types have been identified as shown in 

Fig. 1. The newest coronavirus strain that caused the current 

pandemic is known as severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The latest member SARS-

CoV-2 has similarity close to 70% with SARS novel coro-

navirus. The SARS-CoV-2 infection is being characterized 

by severe clinical manifestations of the respiratory tract with 

a highly complex pathogenesis. Among targets of the virus 

are the epithelial cells of respiratory tract, which upon infec-

tion result to diffuse alveolar damage and severe lung injury. 

After entry into the cells, the virus propagates in the cyto-

plasm, which is also the site for formation and budding of 

the virus containing vesicles. The destruction of cells occurs 

upon release of vesicles [1].

Structure of SARS-CoV-2 virus

SARS-CoV-2 RNA codes for four types of significant pro-

teins: specific spike (S), membrane (M), nucleocapsid (N), 

and envelope (E) [2]. The detailed structure of the virus has 

been shown in the Fig. 2. The S protein is a transmembrane 

glycoprotein, which facilitates the virus entry into the host 

cell by using the signal sequence of N-terminal to have 

access to the endoplasmic reticulum [3]. Due to its gigantic 

size, it creates distinct spikes on the viral surface. The N 

protein helps in viral RNA synthesis, while E and M proteins 

are instrumental in viral assembly.

Mechanism of entry into the host cells, RAAS, 
and replication of SARS‑CoV‑2

The S protein consists of two subunits: S1 & S2 by a pro-

tease Transmembrane Serine Protease 2 (TMPRSS2). 

TMPRSS2 is a furin-like protease that contains a single 

transmembrane domain and single domain for SR TRYPSIN 

and LDLA domains as well [4]. The gene encoding for this 

protein is located on 21q22.2. The primary localization of 

TMPRSS2 is restricted to the plasma membrane. TMPRSS2 

is a secretory protein as its presence has been reported in 

biological fluids like semen [5] and urine [6]. The protein 

architecture of TMPRSS2 is shown in Fig. 3.

The priming of the S protein for pathogenicity is carried 

out by TMPRSS2 in coronaviruses like SARS-CoV, and 

MERS-CoV [7]. S protein consists of two subunits: S1 and 

S2. Among these, S1 subunit contains the receptor-binding 

Fig. 1  Classification of RNA-based viruses and flow-chart show-

ing the belongingness of Coronavirus and other closely related RNA 

viruses. This schematic classification of the Coronaviridae family 

shows how the members are divided based on sense and anti-sense 

strands. SARS-CoV-2 falls in category of single stranded sense 

strand RNA virus that is enveloped and possesses helical capsid. The 

α-coronaviruses are: 229E and NL63. Except SARS-CoV-2, there are 

other members of the β-coronavirus types are: OC43, HKU1, SARS-

CoV, and MERS-CoV
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domain (RBD), which binds to the SARS-CoV-2 viral recep-

tor angiotensin-converting enzyme II (ACE2). ACE2 is a 

carboxypeptidase that contains one transmembrane domain 

and also one signal peptide [4, 8]. The gene encoding for 

this protein is located on Xp22. The primary localization 

of ACE2 is membranous and the secondary localization is 

extracellular. ACE2 is a secretory protein as its presence 

has been reported in biological fluids like plasma [5], and 

urine [6]. The protein architecture of ACE2 protein has 

been shown in Fig. 3. Further, mRNA expression levels 

of ACE2 in normal tissues are quite heterogeneous [9] as 

shown in RNAseq derived data in Fig. 4. The descend-

ing order of mRNA expression level was as follows: small 

intestine (93.7 ± 16.1), duodenum (69 ± 6.29), gall bladder 

(32.6 ± 14.37), kidney (30.8 ± 17.14), testis (26.9 ± 8.99), 

heart (12.3 ± 10.95), thyroid (1.39 ± 0.928), liver 

(1.29 ± 0.38), stomach (1.18 ± 0.937), and lung (0.345 ± 0.3). 

SARS-CoV-2 exploits S protein for binding to its receptors 

ACE2 or DPP4 (dipeptidyl peptidase 4, in bronchial epithe-

lial cells) [10].

The mechanisms of entry and replication of SARS-CoV-2 

have been shown in Fig. 5. The gene encoding for this pro-

tein is located on 2q24.3. The primary localization of CD26 

is a plasma membrane and the secondary localization is 

extracellular. CD26 is a secretory protein as its presence has 

been reported in biological fluids like plasma [11], serum 

[12], semen [5], tears [13], and urine [14]. The protein archi-

tecture of CD26 protein has been shown in Fig. 3.

The N protein, which is phosphorylated, binds to SARS-

CoV-2 genome are like a bead on a string fashion. The E 

protein is a transmembrane protein found in lower concen-

tration and play an important role in assembly & releasing 

of the virus, and therefore crucial for pathogenesis. The M 

protein is a dimer and most abundant one among M, N, S 

and E protein.

Hemagglutinin-esterase (HE) exists as a dimer protein 

present in some beta coronaviruses. It binds to sialic acids 

on the surface of glycoproteins, and increase S protein-medi-

ated viral entry into the cells, and eventually the virus spread 

through the mucosa. Unlike other β-coronaviruses, SARS-

CoV-2 infection occurs not only in the mucosal epithelium 

(nasal depression and pharynx) of the upper respiratory tract 

Fig. 2  Structure of the SARS-CoV-2 virus. An RNA virus, SARS-

CoV-2 consists of an envelope (E), membrane (M), spike (S), and 

nucleocapsid (N) proteins. The RNA is single positive-sense strand. 

Among those, M, S and E are glycoproteins in nature. The viral 

nucleo-capsid is made of proteinaceous coat capsid, inside which 

RNA and non-histone protein reside. SARS-CoV-2 also contains 

shorter spikes that possess hemagglutinin-esterase (HE) protein; their 

size is larger in case of Toroviruses

Fig. 3  Protein architecture of ACE2, TMPRSS2, and DPP4. a 

TMPRSS2 is a protease which consists of four domains LDLA, SR, 

TRYPSIN, and TM domain (b) ACE2, an enzyme possess one TM 

domain and one signal peptide, c DPP4 or CD26 is a protease which 

contains one signal peptide
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but also in other organs such as of the gastric tract. Other 

cells types that are infected during the pathogenesis may 

include the neurons in brain, tubular epithelial cells of the 

kidneys, and intestinal mucosa cells. There have been reports 

of infection in sites that may lead to heart injury, failure of 

organs such as liver, intestine, and kidney [15].

SARS‑CoV‑2, cytokine storm syndrome, and organ 
failure

One major issue in COVID-19 cases is the blood upregula-

tion of pro-inflammatory cytokines such as IL-1, IL6, TNF, 

and interferon γ. The major source of cytokine produc-

tion are macrophages, as upon activation they can produce 

cytokines like TNF-a, interleukins including IL6, IL1, IL4, 

IL13, and IL18. Those further activate the cascade reac-

tion of inflammatory factors that eventually lead to the 

cytokine storm syndrome (CSS), an uncontrolled response 

of cytokines. In CSS, an increased and uncontrolled secre-

tion of pro-inflammatory cytokines give rises to acute res-

piratory distress syndrome (ARDS). It is characterized with 

progressive arterial hypoxemia, and breathing difficulties 

[16]. Respiratory failure due to ARDS is a major cause of 

death in COVID-19 patients [17]. CSS has been reported 

not only in avian H5N1 influenza virus, SARS and Middle 

East Respiratory Syndrome (MERS), but also in other dis-

eases like multiple sclerosis and pancreatitis. Role of differ-

ent cytokines in relation to COVID-19 has been well docu-

mented [18]. Dust cells, which are present in the alveolar 

region of lungs, are macrophages that play an important role 

in CSS. Type I IFN low levels are common to COVID-19, 

MERS, and SARS which could suppress Th1, but favor Th2 

responses [19].

Transmission of SARS‑CoV‑2

Transmission of the virus can happen even from a person 

who shows no symptoms for COVID-19 (asymptomatic) 

[20]. The COVID-19 patients starts developing symptoms 

such as mild respiratory issues, and fever with in an incu-

bation period between 5 and 6 days that can get extended 

upto 1–14 days [21]. Mode of COVID-19 transmission 

can be through different routes including contact, saliva, 

droplet, faecal and aerosol transmission [22]. Possibility 

of vertical transmission of COVID-19 has been also sus-

pected, where the virus can be transmitted from parents to 

offspring’s via placental barrier, transcytosis of the cell-

associated virus, during delivery, or through breast-feed-

ing, but vertical transmission in case of COVID-19 was 

not reported until recently [23]. The first case of vertical 

Fig. 4  ACE2 Expression across major normal human organs. The 

RNAseq derived data shows expression of ACE2 transcript across dif-

ferent organs including colon, duodenum, gall bladder, heart, kidney, 

liver, lung, small intestine, stomach, testis and thyroid. The value of 

expression is shown in form of Reads Per Kilobase of transcript, per 

million mapped reads (RPKM), which is a normalized unit for denot-

ing transcript expression
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transmission of SARS-CoV-2 in India was reported from 

Sassoon General Hospital, Pune, Maharashtra (India) 

[24].

SARS-CoV-2 transmission can happen by touching 

contaminated surfaces followed by nose, eyes, or mouth. 

To stop the transmission of SARS-CoV-2 a number of 

Do’s and Don’ts have been recommended by the WHO as 

well as by agencies like NIH and ICMR. The lists of Do’s 

and don’ts required to mitigate COVID-19 transmission 

have been mentioned in the Table 1.

COVID-19 and herd immunity

When a higher percentage of the community becomes 

immune to a disease (that could be due to prior illness or 

vaccination) and makes spreading of the disease improb-

able is known as herd immunity. Even non-vaccinated 

(such as newborns and the immunocompromised one) but 

susceptible individuals offer immune-protection because 

the disease has hardly any possibility to spread within the 

Fig. 5  Major sites of ACE2 expression, Binding of SARS-CoV-2 to 

ACE2 receptor, and involvement of TMPRSS2, and DPP4 in SARS-

CoV-2 entry. The spike protein (S) helps SARS-CoV-2 to enter into 

the host cell via binding to its receptor Angiotensin Converting 

Enzyme 2 (ACE2) that is part of the renin–angiotensin–aldosterone 

system (RAAS). RAAS and its component include angiotensinogen 

(AGT), the enzyme renin, angiotensin converting enzyme (ACE), and 

their hydrolytic products angiotensins I and II. Once SARS-CoV-2 

binds to ACE2, it internalize through the process of endocytosis 

into the cells, which leads to downregulation of membrane-anchored 

ACE2. A decrease in ACE2 levels led to organ damage via activation 

and deactivation of ACE/Ang II/AT1R & ACE2/Ang-(1–7)/Mas-R 

pathways, respectively. There is alternate route of infection of SARS-

CoV-2 is via transmembrane protease serine 2 (TMPRSS2) driven 

cleavage of SARS-CoV-2 escorted through ACE2. Due to this mem-

brane shedding of ACE2 occurs by disintegrin and MMP17. Further-

more, soluble form of ACE2 obstructs SARS-CoV-2 from binding 

to membrane-anchored ACE2 in plasma membrane. An increased 

amount of soluble ACE2 and expression induced due to RAS inhibi-

tors could be advantageous for protecting lungs and other organ 

injury but not infection with SARS-CoV-2
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https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
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community [39]. This is associated with the R0 (R Zero or 

R naught or basic reproductive number), which represents 

the infectivity of an infectious agent like SARS-CoV-2. 

The R0 value has been estimated in different studies on the 

SARS-CoV-2 virus ranged from 2 to 6. Between the two 

cohorts, the R0 observed was 2.2 [40], and 5.7, respec-

tively [41]. In a recent study, with an R0 value of 3 for 

SARS-CoV-2, the threshold for herd immunity was ~ 67% 

which means that the decline in the incidence of SARS-

CoV-2 infection will begin in the population when it 

surpasses 0.67 [42]. To develop herd immunity against 

SARS-CoV-2 there are two ways i.e. first, we vaccinate 

at a massive scale, but it’s not possible without the avail-

ability of a safe and efficacious vaccine. The second option 

is via natural immunization of the world population with 

the virus but has seriously implication, as a large propor-

tion of the population must be infected with SARS-CoV-2.

Here, we present a systematic review cum meta-analysis 

conducted to evaluate the significance of currently used 

treatment options for COVID-19, associated issues, and 

future challenges in dealing with infection and management 

of SARS-CoV-2. To achieve this goal, we carried out this 

study to evaluate the repurposing drug agents so far used 

for the treatment of COVID-19. For this, we used “Boolean 

Operators” search criteria in PUBMED to get relevant search 

outcome [43]. The schema for fetching the data and further 

filtering of the articles has been shown in Fig. 6.

We used keywords such as:

 I. COVID-19 OR coronavirus = 48,139

 II. COVID-19 AND repurposing drugs = 234

 III. COVID-19 AND repurposing drugs = 232

 IV. COVID-19 AND repurposing drugs = 02

We have searched the literature and screened published 

research articles to further dig-down to list which molecule 

the repurposed drug targets and their route of administra-

tion whether oral, cutaneous, subcutaneous or in the form 

of injection, through which those have been given to the 

patients. Next, we corroborated the additional information 

by visiting the https ://clini caltr ials.gov/ to get additional 

information on the clinical trials where the repurposed 

drugs have been used. The protein architecture of some of 

the important proteins such as ACE2, TMPRSS2, and DPP4 

was extracted from the human protein reference database 

(HPRD) freely accessible at https ://hprd.org [4]. Further, 

the structures of the repurposed drugs were drawn using 

ChemDraw Professional Version 16.0 software. The rest of 

the figures were made using Adobe Illustrator CS5 version 

15.0.0.

There had been many treatment options adopted world-

wide to treat COVID-19 patients. Among those: convales-

cent plasma therapy, and repurposing the drugs are taking 

the lead in the absence of a vaccine or unavailability of a 

neutralizing antibody for coronavirus.

Convalescent plasma as a potential therapy 
for COVID‑19

The plasma derived from COVID-19 patients those success-

fully overcome its infection is referred to as convalescent 

plasma (CP). CP had been used in the past for treatment of 

deadly viral diseases such as Severe Acute Respiratory Syn-

drome (SARS), H1N1, Spanish flu, Ebola, and the MERS. 

Fig. 6  Schema for screening of the articles reporting drugs repur-

posed for COVID-19 The NCBI search engine was searched using 

Boolean operators such as AND, NOT, & OR. The articles were 

fetched for repurposing drugs, synergism or convalescent plasma in 

combination with COVID-19. The articles were further segregated 

based on the agent used for drug repurposing

https://clinicaltrials.gov/
https://hprd.org
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The German scientist Emil von Behring got the noble prize 

in 1901 for the usage of CP in the treatment of diphthe-

ria. The CP provides neutralizing antibodies to the patient 

against infectious agents [39]. A must to do task is to get a 

measurement of titer of the neutralizing antibody in advance 

prior to giving the plasma to the COVID-19 patients. A titer 

of > 1:320 must be there for the neutralizing antibody [40]. 

The patients who recovered from COVID-19 can be identi-

fied as potential donors if they have: (i) prior diagnosis of 

COVID-19, (ii) complete resolution of symptoms at least 

14 days prior to donation, (iii) a negative RT-PCR result 

for COVID-19, and (iv) desired SARS-CoV-2 neutralizing 

antibody titers (optimally > 1:320). Although, the donor titer 

varies in current CP based trials from > 1:40 (NCT04374487 

from India) to > 1:320 (USA:NCT04377672, NCT04373460, 

NCT04344535, Hungary:NCT04345679), the higher the 

better. There are more specifics coming up on the criteria 

for exclusion and inclusion for a donor as well as for a recipi-

ent in CP therapy. These are listed based on different clinical 

trials from NIH, USA as well as trials from other countries 

in Supplementary Table 1. Though only a handful of studies 

are there on the usage of CP therapy on COVID-19 patients, 

those have been summarized in Table 2. The exclusion and 

inclusion criteria for donors and acceptor have been men-

tioned in Supplementary Table 1.

In a small study on COVID-19 patients in Guangdong 

(China), after the 12th day of hospitalization of patients with 

severe condition CP was given. Three out of four patients 

discharged, and the last one was found negative using RT-

PCR, two out of four patients were able to produce anti-

SARS-CoV-2 IgG ~ 14 days post-transfusion [41]. A high 

titer antibody present in the recovered COVID-19 patients 

must be sufficient enough to bind SARS-CoV-2 and neutral-

ize it to avoid access to normal cells. One of the major chal-

lenges is that CP is not used alone but in combination with 

other agents like corticosteroids. The neutralizing antibodies 

present in the CP are capable to accelerate the clearance of 

infected cells as well. CP constituents are capable of acti-

vating the effector mechanisms such as complement activa-

tion and phagocytosis [49]. A combination of CP and cor-

ticosteroids can reduce the viral load as well as reduce the 

excess of inflammatory response [47]. The initial findings 

from all around the world are encouraging from CP therapy 

supporting the evidence that the human anti-SARS-CoV-2 

plasma could be able to modulate the virulence exerted by 

the SARS-CoV-2 via neutralization [50].

Drug repurposing as an alternative therapy 
for COVID-19

Drug repurposing or drug repositioning (which is some-

times also defined as drug re-profiling or drug re-tasking) 

is an approach for exploring the new maneuver of already 

approved drugs, which have been used for the treatment of 

other diseases [51]. In contrast, synergism is an interaction 

between two or more drugs that leads to overall effect to be 

cumulatively more than the sum of individual effect. Drug 

synergism is measured by calculating the combination index 

(CI) using freely available software CompuSyn [52]. The 

CI value > 1, = 1 and < 1 represents antagonistic, additive, 

and synergistic interaction between two or more drugs [53]. 

Based on the literature survey, we divided the repurposed 

drugs that can be used for the trials to treat COVID-19 into 

Table 2  Titer ratio among different studies where Convalescent plasma has been used as a treatment option for COVID-19 patients

Region/country Titer Patient 

received 

CP

Patient outcome References

Dongguan, Xiangtan, 

Xiaolan cities of 

China

 > 1:320 06 The patients treated with CP did not require 

mechanical ventilation and 11 days post-

CP treatment were transferred to a general 

ward

Zhang et al. [41]

Shenzhen, China Antibody against anti-SARS-CoV-2 

AB > 1:1000, and neutralization titer > 40

05 Anti-SARS-CoV-2 antibody titers ranged 

between 1:800 and 16:200, NAbs titers 

from 80 to 480, reduced the viral load

Shen et al. [44]

Wuhan, China Neutralizing Anti-SARS-CoV-2 

AB >  ~ 1:640

10 Reduced the viral load Duan et al. [45]

Wuhan, China Not mentioned 06 An instant accretion in titer of anti‐SARS‐
CoV‐2 AB titers in patients #2 and #3

Ye et al. [46]

South Korea Not mentioned 02 Convalescent plasma therapy was given to 

two COVID-19 patients. Both showed a 

favorable outcome

Ahn et al. [47]

Italy  ≥ 1:160 46 Primary outcome was 7-days hospital 

mortality and 6.5% patients died within 

7 days

Perotti et al. [48]
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five categories: (I) Anti-malarial drugs (II) Drugs used for 

Rheumatoid arthritis (III) Cytokine modulators (IV) Pro-

tease Inhibitors (V) Others. Additionally, the details of the 

currently going on clinical trials are summarized in Sup-

plementary Table 2.

The drug repurposing offers benefits in terms of time and 

costs required as compared to the development of a new drug 

from the beginning. The repurposed drugs are approved by 

the Food and Drug Administration (FDA), for their pharma-

cological properties, safety, and clinical efficacy for a differ-

ent indication [54]. Therefore when used for the COVID-19 

treatments, the toxicity or safety profiles of the repurposed 

drugs are already known. Therefore, a number of drugs have 

been proposed for the repurposing to treat the COVID-19 

patients across the world. We are presenting basic proper-

ties of these drugs, their target and study outcome or at least 

observations reported in studies globally. We have summa-

rized the information on repurposed drugs, their target, and 

diseases information for which those were made in Table 3.

Anti‑malarial/anti‑protozoan drugs

The structures of anti-malarial or anti-parasitic drugs have 

been shown in Fig. 7.

Chloroquine phosphate

Primarily chloroquine phosphate had been used for the treat-

ment of malaria. It is a quinolone that possesses anti-inflam-

matory properties, and some time for amoebiasis as well. It 

is also known as chloroquine (CQ). CQ offers an advantage, 

as it does not pose complications associated with infectious 

complications exerted by drugs like methotrexate and leflu-

nomide. Evidence-based on different studies showed that CQ 

possesses broad-spectrum anti-viral activities [80, 81]. Both 

anti-viral as well as anti-inflammatory activities of CQ pos-

sibly responsible for CQ’s efficacy in treating the pneumonia 

of COVID-19 patients [82].

Hydroxychloroquine (HCQ)

HCQ has other names/synonyms such as Oxychlorochin, 

Plaquenil, and Oxichloroquine. An in vitro activity against 

anti-SARS-CoV of HCQ was found to be superior as com-

pared with CQ [83], and the HCQ clinical profile is also 

superior to CQ [84]. In terms of side effects when compared 

CQ with HCQ, it was found that CQ treated patients have 

some side effects like circular defects or Bull’s eye macu-

lopathy, retinopathy, diametric retina defects and cardiomy-

opathy, but patient treated with HCQ have reduced tissue 

accumulation that could be responsible for lesser adverse 

events of HCQ as compared with CQ. A high dose for > 5 

years of HCQ led to retinopathy development, which is in 

concordance with the HCQ as a therapy [85, 86].

Emetine

Emetine is an alkaloid isolated from the flowering plant 

Carapichea ipecacuanha a member of the family Rubiaceae. 

Emetine has been used against protozoan infections and also 

to induce vomiting. Emetine is a translation-inhibiting drug 

that had been used in amoebiasis treatment. It is capable 

of inhibiting translation machinery of the malaria parasite 

(Plasmodium falciparum) by binding to the E ribosomal site. 

This shows anti-viral activity against a wide range of viruses 

(both DNA and RNA based) including Zika, rabies, cyto-

megalovirus, Ebola, and HIV-1 virus. Emetine also showed 

anti-viral activity against hCoV-OC43, SARS-CoV, hCoV-

NL43, MHV-A59, and MERS-CoV in an in vitro condition. 

The viral polymerase enzyme and some host proteins are the 

targets of Emetine [18]. It has been recently reported that 

emetine inhibits the replication of SARS-CoV-2 at ~ 0.5 μM 

concentration. The in vivo achievable concentration of eme-

tine in plasma is 0.075 μg/mL (0.156 μM), lower than the 

in vitro  EC50 against SARS-CoV-2 [19].

Anti‑viral drugs

These drugs work against different viruses including retro-

viruses like HIV-1 and have been proposed to use for the 

treatment of COVID-19. The structures of selected anti-

retroviral/anti-viral drugs have been shown in Fig. 7.

Favipiravir

Favipiravir is an oral anti-viral drug used for the treatment of 

influenza. It came into limelight for Ebola treatment during 

the 2014 epidemic in West Africa as there was no standard 

of care (SOC) was available. Effectiveness of favipiravir was 

also observed for prophylaxis and infectious animal mod-

els of lethal Ebola virus [87]. It is a purine analogue and 

also known as 6-fluoro-3-hydroxy-2-pyrazinecarboxamide 

or T-705 or Avigan as a brand name, which targets viral 

RdRp (RNA dependent RNA Polymerase). On an urgent 

basis, favipiravir had been approved for the clinical trial in 

adult COVID-19 patient’s treatment (2020L00005). SARS-

CoV-2 also possess RdRp gene similar to other members 

of the family (SARS-CoV and MERS-CoV), which makes 

favipiravir eligible to be tested against SARS-CoV-2 virus. 

It is a pro-drug which upon ribosylation and phosphorylation 

form an active metabolite intracellularly called T-705RTP or 

favipiravir ibofuranosyl-5′-triphosphate (T-705RTP), which 

interfere with the replication of the virus by competing with 

the naturally occurring purine nucleosides and inhibits the 

viral RdRp of SARS-CoV-2.
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In Shenzhen (China), a clinical trial of favipiravir on 

COVID-19 patients was conducted for evaluation of safety 

and efficacy (ChiCTR2000029600). A total of 35 patients 

in the favipiravir arm showed significantly a shorter viral 

clearance duration in contrast with the control arm contain-

ing 45 patients. Further, these findings were corroborated 

with chest X-rays showing improvement in the favipiravir 

arm (91.43% vs 62%) [88]. In another multi-centric rand-

omized study (ChiCTR200030254), favipiravir treatment of 

COVID-19 patients led to an improved recovery at 7th day 

from 55.86 to 71.43% [89].

Remdesivir

Remdesivir (also known as GS-5734) is a 1′-cyano-sub-

stituted adenosine analogue. It is a pro-drug that inhibits 

viral RNA polymerases, has shown in vitro activity against 

coronaviruses like SARS-CoV-2, CoV-229E, SARS-CoV, 

CoV-OC43, and MERS-CoV [90]. It is a mono phospho-

ramidate pro-drug possessing wide anti-viral spectrum cov-

ering filoviruses, coronaviruses, pneumoviruses, and para-

myxoviruses. It has been observed that remdesivir inhibits 

humans as well as animal coronaviruses in vitro, including 

SARS-CoV-2. Remdesivir proved to be a superior drug in 

a lethal murine MERS model as compared with a regimen 

of IFN-b, and lopinavir-ritonavir combination. An  EC50 of 

remdesivir was 0.77 μM against SARS-CoV-2 virus [91]. It 

has been documented mutations such as F476L and V553L 

in the nsp12 polymerase gene of murine hepatitis virus con-

fer remdesivir resistance [92].

Alovudine

Alovudine (also known as fluorothymidine) a DNA poly-

merase inhibitor developed by Medivir is an anti-viral agent. 

Due to toxicity issues, in 2005 after phase II clinical trial, 

it was discontinued. Alovudine is a nucleoside reverse tran-

scriptase inhibitor analog of thymidine [93]. Alovudine is 

able to terminate the RNA synthesis SARS-CoV-2 virus, 

but more work is required before it makes an entry into a 

clinical trial.

Drug used for rheumatoid arthritis

The structures of drugs used for rheumatoid arthritis, but 

now repurposed for treating the COVID-19 patients are 

shown in Fig. 7.

Baricitinib

Baricitinib is an orally available agent used for rheuma-

toid arthritis. It is sold with the brand name Olumiant. 

It inhibits the response of inflammatory molecules and Ta
b

le
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cytokine production via modulation of JAK-STAT path-

way [94]. It is an active ingredient of olumiant. Baricitinib 

is a reversible inhibitor of JAK1/JAK2. According to the 

EU Clinical Trials Register there are already phase-II, and 

III (2020–001854-23), and phase-IV (2020–001354-22) 

clinical trials using Baricitinib on COVID-19 patients. 

Modulation of cytokine dysregulation could affect the host 

inflammatory response and entry of viruses into the cells. 

S

O

O

N

N

N N

N

N
H

N

O

H
N

O

N

O

S

N

H2N

CH3

CH3

CH3

N

O

O OH

O

S

Remdesivir

HN N

H

N

N

H

O

O

OH

O

O

Lopinavir

N

H

H

N

N

H

O

O

OHO

Ritonavir

S

N

N

O

S

N

O N

H

O
O

O

N

S

OH

OO

NH2

H

H

H

Darunavir

N

N

P

N

N

O

O

O

O

O

O

O

O

O

O

NH2

Tenofovir disoproxil

HO

HO

OH

O

N

N

O

NH2

N

Ribavirin

O

O

O

HN

O

NH2

N

O

O

S

N

HO

Br

ArbidolOseltamivir Favipiravir

 

NH

N

N

Cl

N

OH

HN

NCl

Anakinra Baricitinib

Hydroxychloroquine EmetineChloroquine

D. Anti-Rheumatic Drugs

C. Antiviral or Anti-retroviral drugs

A. Anti-malarial drugs

N

O

O

H
N

O

O

O

HO

O

Naproxene

N

N

abs

N

O

O

O

OH

S

abs

F

F

H

Baloxavir

O

O

OHHO

HO

H

H

H

Methylprednisolone

B. Anti-myelofibrosis

N

N N

H
N

N

N

Ruxolitinib

O

N

N

N

N

N H
N

Tofacitinib

O

O

NH

O

O

O

P

O

HO OH

N

N

N

NH2

N

N

N
F

O

NH2

OH

Fig. 7  The chemical structure of the repurposed drugs for treatment 

of the COVID-19 patients. A number of drugs including anti-malar-

ial/anti-parasitic (Chloroquine, hydroxychloroquine, and emetine), 

anti-myelofibrosis (Ruxolitinib), anti-viral/anti-retroviral (Tenofovir, 

Lopinavir, Ritonavir, Baloxavir, Remdesivir, Ribavirin, Darunavir, 

Oseltamivir, Arbidol, and Favipiravir), and anti-rheumatoid arthritis 

(Anakinra, Barcitinib, Methylprednisolone, Naproxene, and Tofaci-

tinib) are the drugs that have been extensively in use for the treatment 

of COVID-19 patients
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This makes it an ideal agent to be tested in COVID-19 

patients [95, 96].

Tofacitinib (oral)

Baricitinib and tofacitinib are first-generation JAK inhibi-

tors. Tofacitinib is a small molecule inhibitor of Janus 

Kinases particularly JAK1/JAK3 [97]. It is sold with the 

brand name Xeljanz. It had been used for the treatment of 

RA (moderate to severe form). Tofacitinib is N-acylpiper-

idine compound. Tofacitinib inhibits STAT also, but in a 

reversible manner. Tofacitinib subjects to hepatic metabo-

lism through cytochrome CYP3A4 mainly which means 

a combination of CYP3A4 inhibitors could be tested first 

in vitro to see if there is a synergistic impact [98].

Ruxolitinib (oral)

It has been used for the treatment of moderate to high-risk 

myelofibrosis. It is sold in the market with the trade name 

Jakafi or Jakavi. Ruxolitinib is an oral kinase inhibitor that 

inhibits JAK1 and JAK2. It is also known as INCB01842. 

Metabolism of ruxolitinib is facilitated by CYP3A4. The 

chemical constituent of Ruxolitinib belongs to the pyrrolo 

[2, 3-d] pyrimidines class of organic compound.

Cytokine modulators

Tocilizumab

An anti-IL6 blocker targets the IL6 receptor proved to be 

effective in rheumatoid arthritis treatment [99], and later for 

juvenile idiopathic arthritis [100], giant cell arteritis [101]. 

IL6 is a bonafide marker for inflammation. It is also known 

by another famous name Actemra and recently approved by 

the FDA for testing in a clinical trial for COVID-19 patients. 

It is a recombinant antibody humanized and of IgG1 class. 

Actemra is capable of disrupting inflammatory response 

exerted by IL6 is known as cytokine release syndrome 

(CRS). The efficacy of Actemra was tested on COVID-19 

patients at The First Affiliated Hospital of the University of 

Science and Technology, China. Among 21 patients tested, 

the body temperature returns to normal in all the cases. An 

improvement in respiratory function was seen in 100% of 

the patients and the recovery rate was ~ 95% as seen in CT 

scan reports, and the patients were discharged within 14 days 

of post-tocilizumab treatment. The findings extrapolated 

on 500 severe or critical patients enrolled in a clinical trial 

(ChiCTR2000029765) [102]. In contrast, the Italian guide-

lines suggest that tocilizumab use is suitable in patients with 

major symptoms including when high viral load is over, and 

patients don’t have any fever (Apyretic) for > 72 h or 7 days 

post-onset of symptoms, and increased IL6 levels [94].

Anakinra

Anakinra is a recombinant human antagonist of IL1R that 

has been used in rheumatoid arthritis. These drugs also play 

an important role in the management of CRS. Due to the 

release of IL1R SARS-CoV-2 causes an advanced form 

of cell death occurs due to inflammation (pyroptosis) and 

mediated by caspase-1. The repurposed drug anakinra in 

case of COVID-19 patients in phase III randomized clinical 

trial able to reduce both requirement of invasive mechani-

cal ventilation in ICU as well as the mortality rate in severe 

COVID-19 cases without serious side-effects [79].

Adalimumab (anti-TNF-α agent)

It has been earlier used for treatment of Rheumatoid arthri-

tis. The mode of adalimumab for patients is subcutane-

ous. FDA approved it long back in 2002 for treatment of 

RH. Biosimilar of adalimumab (Hyrimoz) is also available 

which is available by the name adalimumab-adaz approved 

in Oct 2018 by the FDA. Adalimumab binds to TNFα 

and leads to inhibition of interaction with the receptor of 

TNF by binding with p55 & p75. There is a trial going on 

(ChiCTR2000030089) where one arm includes conven-

tional treatment along with adalimumab [103]. An interest-

ing observation has been mentioned regarding levels TNF-α 

that it was moderately high in SARS but significantly higher 

levels in COVID-19 patients.

Protease inhibitors anti‑retroviral/anti‑viral drugs

Lopinavir

Lopinavir is an anti-retroviral drug used for the treatment 

of HIV patients. It is a protease inhibitor, which has been 

used for the treatment of SARS-CoV infected patients in 

combination with ritonavir & ribavirin in a non-randomized 

clinical trial. Only few SARS patients progressed to ARDS 

with this treatment as compared with patients receiving only 

ribavirin and corticosteroids. It was sold by the brand name 

Kaletra. It is interesting to note that Lopinavir is exclusively 

given along with ritonavir because lopinavir possesses poor 

oral bioavailability and extensive biotransformation. On the 

other hand, Ritonavir is an inhibitor of the enzymes related 

to lopinavir metabolism, therefore a co-administration 

boosts the lopinavir exposure and significantly improves the 

anti-viral activity [104]. Finding of a randomized control 

trial (ChiCTR2000029308) on SARS-CoV-2 showed no sig-

nificant benefit of lopinavir-ritonavir combination in SARS-

CoV-2 patients as compared with SOC [105]. Combining 

lopinavir with other agents to treat SARS-CoV-2 virus not 

only increased synergism but also decreased the lopinavir 

inhibitory concentration.
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Ritonavir

It is another anti-retroviral drug used against HIV. It’s a 

protease inhibitor that inhibits the productive cycle of the 

HIV virus. It is sold with the trade name Norvir. Ritonavir 

inhibits HIV-1 protease as well as host’s cytochrome P450 

3A4 enzyme that helps in metabolizing lopinavir. The NIH 

panel recommended not using the combination of lopinavir/

ritonavir or other HIV protease inhibitors due to unfavorable 

outcome post-treatment of these agents.

Ribavirin

Ribavirin or tribavirin is an anti-viral drug used for Rous sar-

coma virus infection, viral hemorrhagic fevers and hepatitis 

C. Ribavirin is synthetic guanosine nucleoside that interferes 

with the viral mRNA synthesis. Ribavirin has been used in 

combination with interferon beta-1b, lopinavir-ritonavir in 

a randomized phase-II clinical trial in COVID-19 patients 

and the early results showed that it was superior to alone 

lopinavir-ritonavir combination in reducing the symptoms 

exerted by the virus and shortening shedding of the virus 

[106].

Camostat mesilate

Camostat mesilate (CM) is an inhibitor of TMPRSS2. It 

inhibits the serine proteases like TMPRSS2 [7]. CM proved 

to be effective in blocking the spreading and virulence of 

SARS-CoV in a lethal mouse model [107]. It was observed 

that CM is capable of blocking the entry of SARS-CoV-2 

into the lung cells. Camostat inhibits diverse range of pro-

teases including plasmin, trypsin, kallikrein and thrombin 

[108]. University of Tokyo, Japan planned to conduct a 

clinical trial on the combination of CM and nafamostat on 

COVID-19 patients. CM was approved in Japan for treat-

ment of pancreatic inflammation [109].

Homoharringtonine

Homoharringtonine is also known as omacetaxine mepe-

succinate or HHT. HHT is a cephalotaxine ester. It was 

isolated from the leave of Cephalotaxus fortunei of family 

Taxaceae. Omacetaxine received orphan drug status from 

FDA in March 2006 (according to FDA an orphan drug 

is the one which is intended to treat a rare disease which 

affect < 200,000 persons in the United States) for treatment 

of chronic myeloid leukemia patients particularly those who 

found to be resistant to > 2 tyrosine kinase inhibitors. HHT 

shows anti-cancer activity via inhibition of translation by 

binding to ribosomal site-A. This forces the cells to lose 

proteins like MCL1 and c-MYC (both with short half-life), 

crucial for leukemia cell’s survival. HHT showed activity 

against a large number of viruses including pseudorabies 

virus, rabies virus, hepatitis B virus, Newcastle disease 

virus, and echovirus 1 [110]. In an in vitro screening in Vero 

E6 cells, HHT inhibited SARS-CoV-2 replication at an  EC50 

of < 100 μM [111].

An urgent requirement and challenges for more 
treatment options for COVID‑19

Availability of safe and efficacious vaccine 

against COVID-19

Multiple pharmaceutical companies and academic institu-

tions are joining the hands for the collaborative efforts to 

develop a vaccine against SARS-CoV-2. There are multiple 

candidates proposed for the potential vaccine against SARS-

CoV-2 that include mRNA vaccine, inactivated virus vac-

cine, DNA vaccine recombinant protein vaccine, and viral 

vector-based vaccine. Globally, the experts in vaccine devel-

opment think that it will take around 18 months to develop a 

SARS-CoV-2 vaccine, although it is very optimistic even if 

we consider this to be the fastest created new vaccine in the 

history. In traditional settings, it takes 5 to 6 years to develop 

a vaccine, but the high mutation rate of RNA viruses and 

therefore changing the specific immune response make it 

even harder to develop an efficacious vaccine. Every vaccine 

in human clinical trials goes through three phases: Phase-I is 

the safety trial in a small group of healthy volunteers, where 

a vaccine is tried out with different dosages to find out the 

strongest immune response without serious side effects. The 

phase-II vaccine trials test how well the vaccine works in 

hundreds of people of diverse age and health status. Next, in 

phase three, the vaccine is given to thousands of people who 

are already at the risk of infection, and then wait to see if 

the vaccine reduces the number of people getting sick. Since 

phase-III is tried out in natural disease condition and larger 

population size, it is usually the longest phase. A number of 

potential candidates for vaccines are in pre-clinical studies 

and a few in clinical trials in different parts of the world 

including the USA, Russia, China, UK, and India. Regard-

less which of these countries get success and finally a vac-

cine gets approved, the first challenge is whether the country 

is willing to share it with the rest of the world, and a proper 

storage and distribution system. So, overcoming these chal-

lenges requires close collaboration between pharma giants, 

regulatory bodies like FDA, active involvement and coop-

eration of the scientific community, and healthcare systems.

Development of antibodies neutralizing the virus

Most of the anti-SARS-CoV novel antibodies (nAbs) have 

been targeted against S protein, RBD [112], S2 subunit, and 

S1/S2 proteolytic cleavage sites. Some nAbs like S230.15, 
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m396, S109.8 and S227.14 showed neutralizing activity 

against human, raccoon dog, and palm civet but none of 

these have been evaluated in clinical studies. Antibodies like 

80R (scFv or mAb) is capable of neutralizing the infection of 

SARS-CoV via blockage of RBD-ACE2 interaction [113]. 

There is a high sequence similarity for S protein between 

SARS-CoV-2 and SARS-CoV [114]. This suggests a cross 

neutralizing/cross-reactivity of nAbs between SARS-CoV 

and SARS-CoV-2 infection. The SARS-CoV mAB CR3022 

(RBD-specific) could possibly bind to RBD of SARS-CoV-2 

because RBD of SARS-CoV & SARS-CoV-2 are very simi-

lar [115]. Different fragments like S1-NTD, S2, and RBD 

have been used as a target for the development of nAbs. A 

similar strategy could be adopted for SARS-CoV-2. CP is 

currently in use for the treatment of COVID-19 patients, 

but non-nAbs targeting other regions than RBD of S-protein 

can create antibody-dependent enhancement (ADE) effect on 

virulence as well as on the disease [116].

Mesenchymal stem cell therapy for COVID-19

Stem cell therapy proved to be very useful in treating a num-

ber of diseases including cancer [117], and diabetes [118]. 

Mesenchymal stem cells (MSC) are characterized by low 

invasive nature and high proliferation rate, and addition-

ally devoid of ethical & social issues that makes it as the 

preferred therapeutic option over others [119]. MSCs play 

an important role in immunomodulatory effects via secret-

ing many types of cytokines by paracrine secretion or make 

direct interactions with immune cells. The source of MSCs 

can be peripheral blood (PB), bone marrow (BM), adipose 

tissues [(AT), buccal fat pad, abdominal fat, & infrapatel-

lar fat pad], placenta, umbilical cord, Warton jelly, amni-

otic fluid, and blood cord. Therefore, it seems MSCs-based 

therapy may possibly be an ideal candidate for clinical trials 

or at least the combination of treatment to treat COVID-19 

patients.

MSC therapy was applied in COVID-19 patients on 

seven patients. The levels of peripheral lymphocyte were 

increased, and on day 6 cytokine secreting cells (CXCR3+ 

CD4+ T, CXCR3+ CD8+ T, and NK CXCR3+ cells) were 

disappeared. The Dendritic cell population and IL10 were 

increased, but TNF-α level was decreased. The MSCs were 

found to be negative for ACE2 and TMPRSS2 suggesting 

there was no SARS-CoV-2 infection [120].

In addition, recently a case study was reported in China on 

a female patient with an acute COVID-19 syndrome that the 

results of laboratory tests and CT images provided extremely 

effective results after 21 days of treatment with umbilical 

cord MSCs. Upon treatment with MSCs, an increase in lym-

phocyte and a decrease both in WBCs and neutrophils was 

observed. Some T cell surface markers like CD3, CD4, and 

CD8 were increased. CT scans showed that the pneumonia 

was cleared [121]. Including the ground-glass opacity in the 

lung, the other typical diagnosis characteristic of critically 

ill patients was a significant decrease in lymphocytes along 

with the increase of neutrophils. However, only a handful 

studies on MSCs show promising results in the treatment 

of COVID-19 patients. Though only on a limited number of 

patients, but these studies showed that MSC therapy alone or 

in combination with other drugs can be used to treat SARS-

CoV-2 infected patients.

An unobvious challenge of vaccine nationalism

During COVID-19 pandemic one issue emerged where dif-

ferent countries particularly the USA, Russia, and China are 

in the race of making a vaccine against SARS-CoV-2. At 

the same time, countries like USA and Russia are secur-

ing a large and sufficient number of vaccine doses against 

COVID-19 for their own people and prioritizing their own 

market rather than making available to other countries. This 

is popularly known as ‘vaccine nationalism’. This can be 

executed through pre-purchase agreements between a vac-

cine manufacturer and the government. WHO issued a warn-

ing regarding vaccine nationalism as instead of helping man-

kind, it’s going to help the virus. It’s not a new challenge, 

as a similar scenario was observed during The H1N1 flu 

pandemic in 2009. At that time, among vaccine producers 

for H1N1 flu Australia was the leader and the government 

blocked the exports, but at the same time, the rich countries 

went for the pre-purchase agreements with some pharma 

giants. In the case of COVID-19, US government already 

has shown interest to secure 600,000 doses. Though vac-

cine nationalism is against the principles of global public 

health, unfortunately, there is no law to prohibit the pre-

purchase in pandemic like COVID-19.

Conclusion

The existence of SARS-CoV-2 was reported in 2019. Since 

then it posed a threat to mankind around the world. Hasten-

ing of treatment options for COVID-19 brought nothing so 

far but we have to look at old treatment option as a savior 

because we know convalescent plasma therapy and repur-

posing drugs approaches had been used in the past in crisis 

period. While massive-scale efforts to make a suitable vac-

cine are on the way, time being number of drugs used for 

other diseases have been currently repurposed to tackle the 

COVID-19 pandemic.

Globally, the experts in vaccine development are optimis-

tic to deliver the vaccine in next 12 to 18 months but the time 

frame may vary because from the selection of the suitable 

target to testing in the animals and then different phases 

of clinical trials are time consuming processes and require 
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quality controls. Though, FDA has put vaccine development 

and their approval on the fast track, but there are no short 

cuts for different stages of developments and quality controls 

directly associated with the safety and efficacy. There are 

already concerns raised by different scientists including Dr 

Anthony Fauchi about the COVID-19 vaccine from Russia. 

With all the hopes on the potential vaccine’s progress, the 

strategies are also required to build the infrastructure for 

equitable distribution of the vaccine and to avoid bottleneck 

on the availability as soon as the vaccine successfully com-

pletes the clinical trials. While we wait for a vaccine to come 

into the picture, convalescent plasma therapy, and repur-

posing the drugs treatment options proved to be suitable (if 

not perfect). We need to have suitable vaccine development, 

neutralizing nABs antibody as prophylactic and therapeu-

tic, and mesenchymal stem cell-based treatment options for 

effectively dealing with COVID-19. Until an ideal treatment 

comes, people must follow proper caution such as wearing 

masks, follow social distancing, and as much as possible do 

activities, which could be afforded through online mode/

route.
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