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Role of adipose tissue macrophages in
obesity-related disorders
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The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its
molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this
process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for
their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-
related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of
the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose
tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types
constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in
obesity.

Introduction
Obesity has become a global epidemic, with its occurrence
nearly tripling since 1975. In 2016, >1.9 billion adults, accounting
for 39% of the world’s adult population, were considered over-
weight, and >650 million were obese (World Health Organization,
2021). This has simultaneously led to an increase in obesity-linked
diseases such as insulin resistance, type 2 diabetes (T2D), cardi-
ovascular disease, nonalcoholic fatty liver disease, and cancer.
Indeed, obesity and related disorders have long been considered
metabolic diseases, but more recently, they have been associated
with low-grade chronic inflammation and are starting to be re-
garded as inflammatory diseases driven by metabolic dysregula-
tion (Dandona et al., 2004; Gonzalez et al., 2018; Johnson et al.,
2012).

Considering such disorders as inflammatory in nature has
many implications other than semantic issues, as it implies that
their causes require reconsideration, and there is a need for a
better comprehension of the underlying biological pathways.
Inflammation is an immune response triggered by a wide vari-
ety of stimuli and involves the coordinated action of different
immune cells (Medzhitov, 2008; Medzhitov, 2021). Among these
cells, resident tissue macrophages (RTMs) have a central role as
initiators of the process by sensing the initial immune assaults
and, in response, producing a variety of inflammatorymediators

such as cytokines and chemokines (Medzhitov, 2008). Macro-
phage biology is complex and modulated by several determi-
nants that are briefly discussed below, including ontogeny, local
environment/subtissular niches, and their niche-specific in-
flammatory status (Bleriot et al., 2020). Notably, macrophage
origin can vary depending on conditions. It was assumed for
decades that all RTMs derive from circulating monocytes (van
Furth et al., 1972), but many studies have now revealed that the
vastmajority of RTMpopulations are actually established during
embryonic development and subsequently self-maintained
(Epelman et al., 2014; Ginhoux et al., 2010; Guilliams et al.,
2013; Hoeffel et al., 2015; Schneider et al., 2014; Schulz et al.,
2012). After birth, as tissues grow, circulating bone marrow
(BM)–derived monocytes are recruited and contribute to the
RTM pool in some tissues (Bleriot et al., 2020; Ginhoux and
Guilliams, 2016; Liu et al., 2019; Scott et al., 2016). Therefore,
every tissue contains a mix of RTMs that are either embryoni-
cally or BM derived. In addition to their ontogeny, the local
environment—the so-called niche of residence—plays a part in
influencing RTM diversity (Bleriot et al., 2020; Guilliams and
Scott, 2017; Guilliams and Svedberg, 2021; Guilliams et al., 2020;
Okabe and Medzhitov, 2014). However, the current niche con-
cept often considers tissues as uniform units, and we have re-
cently demonstrated that within each tissue type, subtissular
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niches exist that are populated by specific interstitial macrophage
subpopulations—chemokine receptor CX3CR1+ and MHCII+ mac-
rophages being in close contact with nerves and lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE1)+ macrophages associ-
ated with blood vessels containing smooth muscle cells (Chakarov
et al., 2019; Lim et al., 2018).

Adipose tissue (AT), as the main body energy storage site, is
impacted by obesity and has adapted to quickly respond to both
caloric deprivation and excess (Rosen and Spiegelman, 2006). In
healthy conditions, white adipose tissue (WAT) stores excess
energy in the form of fat in a manner that is nontoxic to the cell
(Rosen and Spiegelman, 2006). However, when energy intake
consistently exceeds energy expenditure, the AT expands,
mostly resulting from an increase in cell size (hypertrophy) but
also from the recruitment of adipocyte precursors (hyperplasia;
Ghaben and Scherer, 2019). These responses place demands on
AT to dynamically react to the changing nutrient environment, a
process generally referred to AT remodeling.

The regulation of energy uptake and fatty acid release by
adipocytes are well understood at the molecular and cellular
levels (Ghaben and Scherer, 2019). These actions require a
supporting network of non-adipocyte cells, especially macro-
phages, but interactions within this supporting network, in-
cluding those among macrophages and adipocytes, remain ill
defined. Although the accumulation of macrophages in obese AT
has been clearly described (Weisberg et al., 2003; Wellen and
Hotamisligil, 2003; Xu et al., 2003), the precise functions in the
development of the disease is less characterized, and a greater
understanding is more necessary than ever. Herein, we discuss
AT macrophage (ATM) heterogeneity and notably how this is
modulated during obesity. We explore the cross talk that occurs
between ATM and adipocyte/adipocyte precursors within sub-
tissular niches and the changes in both cell subtypes during
metabolic challenges.

ATM heterogeneity in steady state and obesity
In addition to their so-called primary functions of tissue sur-
veillance and dead-cell and debris clearance, RTMs perform
several “accessory” functions in tissue homeostasis (Bleriot
et al., 2020; Okabe and Medzhitov, 2016). These functions are
believed to be specific to the tissue of residence and are driven
by specific “master-regulator” transcriptional factors imprinted
by tissue cues (Lavin et al., 2014). Notably, in the early 1980s,
macrophages were hypothesized to play a role in energy me-
tabolism in fat tissue (Kawakami et al., 1982; Pekala et al., 1983a;
Pekala et al., 1983b). Here, we summarize the current under-
standing of ATM heterogeneity and their roles during obesity.

In developmental and healthy conditions
ATM ontogeny. In lean steady-state AT, ATMs represent

5–10% of stromal cells (Weisberg et al., 2003) and appear as a
heterogeneous population with diverse origins and functions
(Chakarov et al., 2019; Cox et al., 2021; Hassnain Waqas et al.,
2017; Jaitin et al., 2019; Silva et al., 2019; Fig. 1 A). The first ev-
idence that ATMs can derive partially from embryonic progen-
itors came from observations of primitive epididymal WAT
(eWAT) in neonatal mice. Those seminal studies reported the

existence of a macrophage population expressing LYVE1 as early
as 1 d after birth, when eWAT starts to form (Cho et al., 2007;
Han et al., 2011; Wang et al., 2013). Interestingly, their presence
in neonatal eWATwas stromal cell-derived factor 1 (SCF-1/CXCL12)–
dependent but C-C chemokine receptor type 2 (CCR2)–independent,
supporting their independence from circulating monocytes (Cho
et al., 2007), which require CCR2 to egress from the BM (Kuziel
et al., 1997; Serbina and Pamer, 2006). Later, using fate-mapping
and parabiotic models, we and others confirmed the heterogeneity
of ATMs by reporting two ontogenically distinct populations in
steady-state murine tissues (Chakarov et al., 2019; Hill et al., 2018;
Jaitin et al., 2019) based on LYVE1, MHCII, and CX3CR1 expression.
These populationswere found to derive fromembryonic progenitors
and are slowly replaced by monocyte-derived cells in adults
(Chakarov et al., 2019). Of note, we also obtained evidence of a
subtissular-specific localization for these subpopulations (Chakarov
et al., 2019), with CX3CR1+MHCII+ ATMs being in close contact with
nerves and LYVE1+ ATMs associated with blood vessels containing
smooth muscle cells (Fig. 1 A).

Others studies have described four phenotypically different
ATM populations, similar to the ones introduced above, in-
cluding three vasculature-associated ones, based on T cell
immunoglobulin- and mucin-domain-containing molecule
(TIM4)–expressional variation in WAT (Silva et al., 2019) and
MHCII and CX3CR1 expression in brown adipose tissue (BAT;
Wolf et al., 2017). Given the relationship between TIM4 ex-
pression and the longer residency time of murine liver RTMs
(Scott et al., 2016) or a specific population of embryonic-derived
gutmacrophages (De Schepper et al., 2018), it is likely that TIM4+

corresponds to long-lived embryonic ATMs. Indeed, recent
studies have suggested there are three populations of ATM in
subcutaneous WAT (scWAT) and eWAT based on the expression
of TIM4, LYVE1, and CD11c (Cox et al., 2021; Magalhaes et al.,
2021). Two TIM4− populations with differential CD11c expression
were decreased in Ccr2−/− mice, suggesting their monocyte de-
pendence. On the other hand, TIM4+ ATMs were labeled in both
scWAT and eWAT using a yolk sac fate-mapping model based on
the macrophage-specific expression of the colony-stimulating
factor-1 receptor gene (Csf-1r; Cox et al., 2021) confirming their
embryonic origin. In a similar approach using an inducible
Cx3cr1-based fate-mapping model (Parkhurst et al., 2013), two
independent studies concluded that murine perivascular ATMs
were embryonically derived (Hassnain Waqas et al., 2017; Silva
et al., 2019). The approach also revealed the tissue specificity of
the cells by showing the different degrees of monocyte contri-
bution toward WAT and BAT macrophages (Wolf et al., 2017).
More recently, using a mouse model in which all monocyte-
committed progenitors were labeled based on their specific ex-
pression of membrane-spanning 4-domains subfamily A mem-
ber 3 (Ms4a3; Liu et al., 2019), we assessed the ontogeny of
various ATM populations (Jaitin et al., 2019; Fig. 1 B). Notably, a
population of triggering receptors expressed on myeloid cells
2 (Trem2)–expressing monocyte-derived ATMs recruited during
obesity and harboring unique metabolic properties was identi-
fied (Jaitin et al., 2019).

Impact of ATM depletion. During eWAT development, LYVE1+

ATM recruitment provides a microenvironment with high levels
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of vascular endothelial growth factor α (VEGFα), matrix metal-
loproteinases (MMPs), and CXCL12, thus initiating angiogenesis
and eWAT formation (Cho et al., 2007; Han et al., 2011). Deple-
tion of VEGFα or whole-body macrophages using an injection of
clodronate or CSF-1–blocking antibodies interferes with eWAT
formation (Han et al., 2011) and adipocyte morphology (Wei
et al., 2005). More interestingly, physical excision of the prim-
itive eWAT and its inhabiting embryonic ATMs at postnatal day
4 impairs the development of mature AT in adults (Han et al.,
2011), suggesting a fundamental role for these embryonic ATMs
in eWAT formation, although the evidence is correlative. It was
also shown that tribbles-homolog-1–deficient mice lacking sev-
eral populations of macrophages, including BM, spleen, lung,
and ATMs, develop metabolic syndrome and lipodystrophy
(Satoh et al., 2013). Finally, the role of ATMs in AT development
was also evidenced in Csf-1r mutant rats, supporting the afore-
mentioned mouse-based discoveries (Cox et al., 2021; Pridans
et al., 2018; Satoh et al., 2013). Taken together, these different
knockout animal models have revealed that the presence of
ATMs was required for AT development and homeostasis.

Despite the above findings, information on the precise
mechanisms at play in such processes is still scarce. Using a
Tnfrsf11aCreCsf-1rflox/flox mouse model, in which yolk sac

macrophages are specifically depleted, the key roles of ATM-
secreted platelet-derived growth factor cc (PDGFcc) were re-
cently unraveled (Cox et al., 2021). The specific depletion of
PDGFcc in macrophages during embryogenesis, or even sys-
temically using blocking antibodies, inhibited eWAT develop-
ment and lipid storage in adult mice (Cox et al., 2021). However,
it is probable that other RTM populations, such as brain mi-
croglia, skin Langerhans cells, bone osteoclasts, or liver Kupffer
cells (KCs), would also be affected in such a model. This high-
lights the importance of designing innovative tissue-specific
model systems to avoid potential bystander and systemic ef-
fects. That aside, PDGFcc secretion by ATMs constitutes an ex-
perimental validation of the cell-circuit theory, which states that
fibroblasts and macrophages form a stable two-cell circuit in
which the density of each population is controlled by that of the
other by way of the exchange of growth factors such as PDGF
members (Zhou et al., 2018). In addition, in the healthy liver,
liver RTMs, also named KCs, highly express Pdgfc, a gene that
was gradually up-regulated when naive monocytes differenti-
ated into mature KCs after depletion of embryonic KCs
(Bonnardel et al., 2019). Recently, we added another layer to this
complexity by showing that KCs do not actually form a homo-
geneous population: two subpopulations can be distinguished,

Figure 1. ATmacrophage subsets at steady state and obesity. scRNA-seq, phenotypic, and functional studies identified specific subpopulations of ATMs at
steady state and obesity. (A) In lean mice, three major populations of ATMs have been described. LYVE1+ ATMs are the first to populate the primitive AT. They
are closely associated with vasculature and were reported to be of embryonic origin and slowly replaced by monocytes in adults. In addition, studies identified
one or two CD63+ monocyte-derived ATM subpopulations based on differential expression of MHCII, CD11c, and CX3CR1. CX3CR1hiMHCIIhi were found
predominantly associated with nerve bundles. However, the separation of the two monocyte-derived ATMs is still unclear, and CD11c expression can be
attributed to both of them. (B) During obesity it was suggested that LYVE1+TIM4+ ATMs were implicated in control of lipid storage; however, their precise
localization and origin during disease are still uncertain. In addition, the fate of the monocyte-derived ATMs from steady-state condition to obesity is not clear.
With our current stage of knowledge, we placed LAMs, characterized with TREM2 and CD9 expression, as a separate population, as it is still under investigation
if they are recruited during disease or acquire the LAM profile with obesity.
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one of which has a unique functional metabolic phenotype and
expresses Pdgfd, another PDGF family member (Bleriot et al.,
2021; De Simone et al., 2021). Thus, while we are still far from
a global understanding, it is clear that macrophage-derived
PDGF acts differentially in distinct niches depending on local
signals.

During obesity
Obesity induces a drastic increase in the proportion of ATMs,
which reaches ≤40–50% of stromal cells in mouse (Weisberg
et al., 2003) and human (Harman-Boehm et al., 2007) AT. To
understand the role of this obesity-associated ATM accumula-
tion, pioneering studies using osteopetrotic Csf-1op/op mice car-
rying a homozygous missense mutation in the Csf-1 gene
(Weisberg et al., 2003; Wiktor-Jedrzejczak et al., 1990; Yoshida
et al., 1990) and BM chimeras suggested that such obesity-
associated ATMs were of monocytic origin (Weisberg et al.,
2003). In addition, it was determined that Ccr2−/− mice were
protected from obesity-associated complications but not weight
gain (Weisberg et al., 2006). Moreover, ATM number can also
increase as a result of local proliferation (Kanda et al., 2006;
Weisberg et al., 2006; Weisberg et al., 2003). The recruited
monocyte-derived ATMs are often found forming crown-like
structures (CLSs), in which they act as debris and lipid-droplet
scavengers (Cinti et al., 2005; Sun et al., 2011). CLSs are sug-
gested to preserve tissue integrity in the face of massive adi-
pocyte cell death (McNelis and Olefsky, 2014) and are a potential
niche for local ATM proliferation (Amano et al., 2014; Fig. 2 A).

Obesity-induced inflammation. ATM recruitment is linked to
the chronic low-grade inflammation, also referred to as “meta-
inflammation,” related to many of the comorbidities of obesity
(Lumeng and Saltiel, 2011). Obesity-associated hypoxia was
proposed as a key initiator of AT dysregulation (Trayhurn, 2013)
and meta-inflammation, through up-regulation of proin-
flammatory mediators in adipocytes and macrophages, such as
TNFα, IL-1, IL-6, CCL2, inducible nitric oxide synthase (iNOS),
and others (Quintero et al., 2012; Wood et al., 2009; Ye et al.,
2007). These various cytokines in turn amplify and sustain
meta-inflammation by further recruiting, activating, and in-
ducing macrophage proliferation and thereby driving glucose,
lipid, and energy metabolic dysregulation (Hotamisligil, 2017;
Reilly and Saltiel, 2017). The two main mechanisms implicated
in monocyte recruitment to AT are pattern-recognition re-
ceptors on ATMs and chemokine secretion (Fig. 2 B). Free fatty
acids (FFAs) are able to bind to both TLR4 and TLR2 (Lee et al.,
2004; Nguyen et al., 2007), which in turn promote CCL2 se-
cretion by adipocytes. TLR2 triggering by FFAs also induces
cyclo-oxygenase-2 and iNOS expression by macrophages (Lee
et al., 2004). Accordingly, TLR4−/− and TLR2−/− mice are pro-
tected from the inflammatory response and insulin resistance
induced by obesity (Himes and Smith, 2010; Shi et al., 2006).

Dead and dying adipocytes are another contributing factor
to meta-inflammation and monocyte recruitment (Fischer-
Posovszky et al., 2011; Strissel et al., 2007). Damage-associated
molecular patterns originating from damaged adipocytes are
sensed by NOD-like receptors (NLRs; Jin and Flavell, 2013),
which in turn activate NLRP3 inflammasomes in ATMs,

inducing their secretion of IL-1β and IL-18 (Vandanmagsar et al.,
2011). In addition, iNOS-driven NO secretion increases IL-
1β production through NLRP3 inflammasome activation (Zhou
et al., 2010; Fig. 2 B). As a consequence, NLRP3−/− and iNOS−/−

animals are protected from obesity-related insulin resistance,
macrophage infiltration, and extracellular matrix (ECM) depo-
sition and are enriched in metabolically healthy adipocytes
compared with WT mice (Becerril et al., 2018; Perreault and
Marette, 2001; Stienstra et al., 2010). The high amount of NO
produced by iNOS acts with reactive oxidative species, forming
reactive nitrogen species and subsequently inducing nitrosative
stress, which is a hallmark of inflammation (Foster et al., 2009;
Furukawa et al., 2004; Kaneki et al., 2007). Not surprisingly,
iNOS-induced nitrosative stress of the insulin-signaling path-
way has emerged as a potent modulator of insulin resistance in
obesity (Carvalho-Filho et al., 2005; Charbonneau and Marette,
2010; Perreault and Marette, 2001).

Although the studies cited above provided the framework for
partially describing ATM-related functions during obesity, they
have limitations stemming from their use of the outdated “M1/
M2”macrophage classification proposed >20 yr ago (Mills et al.,
2000). According to the model, M2 ATMs are associated with
suppression of the immune response and ECM remodeling, are
found in all AT depots, and are the dominant population in lean
states (Lumeng et al., 2007). In contrast, a subtype of CD11c+ M1
ATMs was thought to be induced during obesity and to be as-
sociated with tissue damage and proinflammatory signaling
(Lumeng et al., 2007; Lumeng et al., 2008). However, some
studies have found evidence that remodeling capacity can be
attributed more to the CD11c+ ATM subset than the resident
ATM subset (Bourlier et al., 2008; Shaul et al., 2010). These
contradictory observations are not surprising, given that the
M1/M2 paradigm is an in vitro oversimplification, and we now
know that these two polarizations represent only the extremes
of a full spectrum of macrophage activation states (Ginhoux and
Guilliams, 2016; Ginhoux et al., 2016). More recently, in addition
to the M1/M2 ATM status, a “metabolic activated” ATM was
proposed (Kratz et al., 2014), in which a metabolic layer can be
added to the activation spectrum of ATMs.

ATM diversity during obesity. Single-cell RNA-sequencing
(scRNA-seq) recently clarified the roles of different ATM sub-
populations in obesity progression (Burl et al., 2018; Hildreth
et al., 2021; Hill et al., 2018; Jaitin et al., 2019; Weinstock et al.,
2019), describing ATM heterogeneity in a more unbiased man-
ner. Thus, based on Ly6C and the tetraspanin CD9 expression,
three ATM populations were described with variable CD11c ex-
pression (Hill et al., 2018). CD9+ ATMs, with a high intracellular
lipid load, were found in CLSs and shown to induce inflamma-
tory gene expression in AT of lean mice after adoptive transfer
(Hill et al., 2018). Similarly, three ATM clusters were described
(Jaitin et al., 2019), one of which, identified as CD9−CD63− res-
ident ATMs (or Mac1), comprised cells expressing genes asso-
ciated with perivascular macrophages, such as Retnla, Lyve1,Mrc1
(CD206), Cd163, and Cd209f, and were present in lean and obese
animals (Chakarov et al., 2019; Jaitin et al., 2019; Lim et al.,
2018). The other two CD9+ Mac2 and Mac3 clusters, which
were more specific to the obese condition, were identified as
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infiltrating monocyte-derived ATMs using theMs4a3model and
were associated with CLSs (Jaitin et al., 2019; Figs. 1 and 2 A). Of
note, similar populations were also found in human WAT
(Hildreth et al., 2021). Further analysis of the differences be-
tween these three clusters identified Mac3 as the ATM impli-
cated in lipidmetabolism and phagocytosis and expressing genes
such as Trem2, Lipa, Lpl, and Cd36, and thus named lipid-
associated macrophages (LAMs; Jaitin et al., 2019). Impor-
tantly, LAMs were absent in Trem2−/− mice, indicating that
TREM2 may promote LAM program acquisition in ATMs (Figs.
1 and 2 A). Notably, in Trem2−/− mice fed a high-fat diet (HFD),
ATMs had a lower lipid content and failed to form CLSs, a
phenotype correlated with adipocyte hypertrophy and increased
weight gain. Interestingly, the LAM profile has been found by
others in WAT (Burl et al., 2018; Hill et al., 2018), and in Alz-
heimer’s disease (Keren-Shaul et al., 2017), non-alcoholic

steatohepatitis (Remmerie et al., 2020; Xiong et al., 2019), and
fibrotic liver (Ramachandran et al., 2019), linking LAMs to a
phenotype related to lipid uptake and storage, rather than spe-
cifically associated to obesity.

In addition, a population of murine ATMs involved in adi-
pocyte-to-macrophage mitochondria transfer through heparan
sulfate expression was recently reported (Brestoff et al., 2021).
Interestingly, this axis was decreased during obesity, and mye-
loid cell-specific deletion of the heparan sulfate synthetic en-
zyme (Ext1) impaired mitochondrial uptake by macrophages,
leading to dysregulated energy homeostasis and a susceptibility
to diet-induced obesity in Lyz2cre-Ext1flox/flox mice (Brestoff et al.,
2021; Fig. 2 C).

In summary, beyond the M1/M2 paradigm, ATMs form a
heterogeneous population of cells with distinct ontogeny,
localizations, and function during tissue development,

Figure 2. eW-ATM subpopulations’ cross talk with their respective niches. eWAT is populated by different subtypes of eW-ATM, with specific function
and subtissue localization at steady state and obesity. (A) Crowning and LAMs are located surrounding dead or dying adipocytes, which release lipids and/or
damage-associated molecular patterns (DAMPs), which in turn induce inflammation. Recruitment of LAMs also induces inflammation and ECM deposition and
remodeling. The adipogenetic microenvironment created by cell death and macrophage recruitment in turn induces proliferation of both eW-ATM and AP,
subsequently enhancing an inflammatory environment. (B) Hypoxia and adipocyte hypertrophy increase proinflammatory cytokine secretion in both mac-
rophages and adipocytes through FFA release and DAMPs. These proinflammatory cytokines in turn increase obesity-associated meta-inflammation and
monocyte recruitment/differentiation to macrophages. In addition to cytokines, adipocytes secrete adipokines such as Leptin and Adiponectin. Meta-
inflammation dysregulation of Leptin and Adiponectin secretion is associated with increased recruitment of monocytes sustaining meta-inflammation.
(C) A population of eW-ATMs involved in adipocyte-to-macrophage mitochondria transfer through heparan sulfate expression was identified. At steady state,
this axis ensures maintenance of glucose and lipid homeostasis and is dysregulated during obesity in response to inflammation such as induces IFN-I and LPS.
(D) Nerve bundles and sympathetic neuron-associated macrophages characterized with high CX3CR1 and MHCII expression are able to regulate lipolysis by
capturing and degradation noradrenalin (NA) through monoamine oxidase A (MAOA). (E) LYVE1- and TIM4-expressing, embryonic derived eWAT-ATMs are
found in contact with the eWAT vasculature. In response to hypoxia, they are able to produce angiogenic factors such as PDGF, MMP, and VEGF. (E) The
supportive ECM-rich septum and fascia are endowed with distinct subpopulations of AP. However, to date it is still not known whether this specific subniche is
endowed with specific eW-ATM subtypes controlling AP proliferation, differentiation, and recruitment.
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homeostasis, and disease. Ontogenically independent macro-
phage waves colonize fat tissue at different stages of develop-
ment and in different states (including obesity) and end up
localized to different subtissular niches that confer on them
unique phenotype and functions (Bleriot et al., 2020; Guilliams
and Scott, 2017; Guilliams and Svedberg, 2021; Guilliams et al.,
2020). Thus, considering the niche as an important factor in
ATM biology should provide a better understanding of AT
anatomy and its changes during obesity.

Dynamism of the AT niche during obesity
AT is a term encompassing heterogenous tissues with different
functions that are distributed in specific anatomic locations
across the body. Therefore, the different ATs constitute distinct
environments and should potentially harbor different ATMs
with unique identities and functions (Guilliams and Scott, 2017).
Thus, in this section, we discuss AT anatomic differences and
their specific ATM populations. We also discuss AT subtissular
niches, proposing categorizations of eWAT subtissular niches
and the changes occurring during obesity.

Anatomically distinct niches
In mammals, AT extends over the whole body and within dis-
tinct anatomic locations of fat deposition that confer distinct
metabolic features on the tissue (reviewed in Chun [2021]; Fig. 3
A). Previous studies have typically considered WAT to be a ho-
mogeneous tissue, and scRNA-seq profiling has mostly been
performed on visceral AT, i.e., eWAT (Hill et al., 2018; Jaitin
et al., 2019; Weinstock et al., 2019) and scWAT (Burl et al.,
2018). Therefore, the inherent complexity of the distinct AT
depots has been widely overlooked in many immunologically
focused studies so far.

AT ontogeny. From the developmental perspective, scWAT
and BAT emerge perinatally, whereas most intra-abdominal
depots appear after birth (Wang et al., 2013). In addition,
scWAT and eWAT emerge from distinct mesenchymal lineages
(Chau et al., 2014; Hepler and Gupta, 2017), whereas brown
adipocytes and muscle cells share a common somatic origin,
which is consistent with the finding that brown adipose cells
express certain muscle-specific genes (Kajimura et al., 2015).
Craniofacial, but not peripheral, scWAT depots originate from
neuroectodermal rather than mesodermal structures (Billon and
Dani, 2012). Moreover, the main difference between visceral
WAT and scWAT is their draining system: scWAT and visceral
WAT drain blood into the vena cava and hepatic portal vein,
respectively (Shen et al., 2003). It has been suggested that this
direct anatomic connection between visceral WAT and the liver
explains the deleterious impact of visceral WAT in the promo-
tion of liver steatosis and insulin resistance (Bjorntorp, 1990).

Major AT depot. Molecular and cellular studies have indi-
cated that anatomically distinct depots are functionally and
phenotypically different (Lee et al., 2013a; Macotela et al., 2012;
Morgan-Bathke et al., 2015; Wu et al., 2012). Themain difference
between BAT and WAT is their function, i.e., the capacity to
burn glucose and fat to produce heat in BAT versus energy
storage in the form of intracellular triglycerides inWAT (Hepler
and Gupta, 2017). It is interesting to consider also that the

manner by which the AT expands is of great clinical significance
during obesity (Hepler and Gupta, 2017). The preferential ex-
pansion of scWAT is associated with protection against cardio-
vascular diseases (Karpe and Pinnick, 2015; Lee et al., 2013a),
whereas the expansion of visceral depots correlates with an
increased risk of insulin resistance and T2D. Moreover, expan-
sion through adipocyte hyperplasia is more favorable than that
through hypertrophy (Lee et al., 2010), with hyperplasia being
associated with adipose health and the delayed onset of insulin
resistance (Gustafson et al., 2009). Interestingly, almost com-
plete remodeling and adipocyte death can be observed in eWAT,
but not scWAT, during HFD (Nishimura et al., 2008; Strissel
et al., 2007). One explanation for this difference could be the
preferential expansion of eWAT and scWAT by hyperplasia and
hypertrophy, respectively (DiGirolamo et al., 1998). Accordingly,
less macrophage infiltration and CLS formation is observed in
scWAT compared with eWAT (Grove et al., 2010; Strissel et al.,
2007), probably as a result of the local WAT depot–specific en-
vironments (Jeffery et al., 2016). Indeed, CCL2 was found to be
released at higher levels in scWAT compared with eWAT in
humans and mice (Bruun et al., 2005), suggesting there are
different pathways of monocyte recruitment between these two
AT depots. Finally, obesity-associated adipogenesis in male mice
occurs specifically in eWAT, whereas in females, both gonadal
WAT and scWAT undergo adipogenesis in a sex hormone–
dependent manner (Jeffery et al., 2016). It is noteworthy to add
that beyond its role in energy storage, eWAT, but not scWAT, is
proposed to play a role in reproduction. Accordingly, excision of
eWAT virtually eliminated spermatogenesis in male hamsters
(Chu et al., 2010). Moreover, leptin—a hormone specifically
secreted by AT—was associated with fertility (Donato et al.,
2011). In addition to obesity and obesity complications, mice
deficient in leptin (ob/ob; Zhang et al., 1994) or its receptor (db/
db; Tartaglia et al., 1995) and humans deficient in the leptin
receptor do not reach sexual maturity (Barash et al., 1996;
Chehab et al., 1996; Farooqi et al., 2002). These examples add to
the evidence of AT functional diversification.

Distinct ATM in distinct AT depots
Considering the strong niche dependence of RTMs and the AT
heterogeneity within an organism, a logical question arises: Do
functionally and phenotypically distinct ATMs inhabit the dif-
ferent fat depots? Many hints to the answers have already been
discovered. For example, as scWAT emerges during embryonic
development, its ATM population unsurprisingly comprises
more embryonic macrophages (Wang et al., 2013). In contrast,
most eWAT appears after birth, and the monocyte contribution
to ATMs is more pronounced (Wang et al., 2013). In obesity, the
preferential expansion of scWAT is associated with protection
against cardiovascular diseases, whereas the expansion of vis-
ceral depots correlates with an increased risk of insulin resis-
tance and T2D, but the underlying roles of ATMs in these
processes remain to be deciphered (Hepler and Gupta, 2017; Lee
et al., 2013a).

At another level, the differential labeling of BAT and WAT
macrophages in Cx3cr1Cre-ERT2-RosatdTom mice suggested that
BAT has a higher proportion of CX3CR1+ nerve-associated ATMs
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(Chakarov et al., 2019) and slower monocyte turnover (Wolf
et al., 2017). In addition, targeted deletion of the nuclear tran-
scription regulator methyl-CpG-binding protein 2 gene in
CX3CR1+ BAT ATMs induced spontaneous obesity linked to an
altered homeostatic energy expenditure and impaired thermo-
genesis (Wolf et al., 2017). Similarly, the CX3CR1+ sympathetic
neuron-associated macrophage population controls WAT
browning through norepinephrine clearing, subsequently con-
trolling weight gain and thermogenesis (Pirzgalska et al., 2017;
Fig. 2 D). In WAT, obesity-associated hypertrophy and adipocyte
progenitor (AP) proliferation were shown to be under the con-
trol of LAMs and the total ATM population, respectively (Jaitin
et al., 2019; Nawaz et al., 2017). Inhibiting or blocking PDGFcc
expression resulted in embryonicmacrophages failing to support
lipid storage and synthesis during obesity-associated weight gain
(Cox et al., 2021), while in BAT, monocyte recruitment controls
tissue expansion through podoplanin engagement (Gallerand
et al., 2021). In wound beds, dWAT AP proliferation is specifi-
cally supported by distinct CD206+CD301b+ wound-associated
macrophages during healing (Shook et al., 2018).

In conclusion, the simple designation of WAT as “subcuta-
neous” or “visceral” tissue might be too simplistic, and as a
consequence, the designation of macrophages as “adipose tissue
macrophages” is then also an oversimplification. Different
macrophage populations and depot-specific macrophage sub-
populations with distinct functions and metabolic properties
exist and need to be further defined and explored. Here, we

propose a change to the terminology, with the designation of
specific names for the anatomically distinct ATMs. In this model,
eWAT macrophages are called eW-ATMs, scWAT macrophages
are scW-ATMs, BATmacrophages are B-ATMs, and so on, as this
terminology will facilitate the identification and functional
characterization of ATMs.

Intra-AT niche and its remodeling during obesity? The example
of eWAT
Abdominal WAT is composed of six different fat depots sur-
rounding specific anatomically distinct regions of the abdomen
(Chun, 2021; Fig. 3 A). Because of its abundance, eWAT is the
most broadly studied intra-abdominal WAT. In its position at-
tached to the testicles and epididymis in males and gonads in
females, eWAT then extends toward the diaphragm (Chun,
2021), and it is virtually subdivided into two—distal and
proximal—(Tirard et al., 2007) or three zones—medial, caudal,
and rostral—using spermatic blood vessels as a hallmark
(Altintas et al., 2011; Fig. 3, A and B).

eWAT zonation. In vertebrates, AT is the only tissue able to
change its mass by a substantial amount even after it reaches its
adult size, which plays a crucial role in controlling energy
storage and release (Hausman et al., 2001; Spiegelman and Flier,
1996). Interestingly, during long-termHFD-induced obesity, CLS
formation is increased in the apical or rostral part of the eWAT
(Altintas et al., 2011), indicating the occurrence of eWAT zone–
dependent monocyte recruitment during HFD (Fig. 3 B). Similar

Figure 3. Potential AT niches. (A) Anatomic location of major ATs in mouse. The dotted line virtually indicates the peritoneal cavity. (B) eWAT was virtually
subdivided in two zones, distal and proximal. During obesity, CLSs and adipokines were found enriched in the proximal zone. (C) eWAT is endowed with a well-
organized stromal network and plastic architecture. eWAT plasticity is in part due to its organization into lobules, where mature adipocytes reside, and is
delimited by bundles of ECM, or septa. Finally, the whole ATmass is surrounded by a capsule (also called the fascia or reticular interstitium [RI]) formed from an
uninterrupted sheet of connective tissue that extends throughout the body.
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eWAT zonation has been proposed in other reports, where it is
subdivided into the distal zone (corresponding to the rostral
zone described in Altintas et al. [2011]) and the proximal zone
(which is in close contact with the testicles and epididymis; Lee
and Kim, 2019; Tirard et al., 2007). There were differences found
in aldo-keto reductase 1B7 detoxification enzyme between the
distal and proximal eWAT (Tirard et al., 2007) and specific age-
associated increased expression of adipocyte-related genes such
as Fabp4, Lpl, Dlk1, Pparg, Lep, and Adipoq in distal eWAT (Lee and
Kim, 2019; Tirard et al., 2007), suggesting that possible zone-
associated eW-ATM niches may exist which need to be further
characterized (Fig. 3 B).

At the microscopic level, eWAT is endowed with well-
organized stromal, nerve, and immune networks. The main
tissue mass is composed of white adipocytes; however, they
represent only ∼20% of the total cellularity of eWAT (Eto et al.,
2009; Rondini and Granneman, 2020). The remaining 80% of
the tissue includes well-defined fibroblasts, vascular cells, im-
mune cells, and APs (Eto et al., 2009; Prunet-Marcassus et al.,
2006; Rondini and Granneman, 2020), each of which contrib-
utes to the synthesis of and changes to the ECM, which is im-
plicated in eWAT remodeling in response to nutrient excess or
deficiency. This is in part due to the eWAT plastic architecture,
which is organized into lobules, or stroma, where mature adi-
pocytes reside (Esteve et al., 2019) and is delimited by bundles of
ECM, or septa, composed of collagen, fibronectin, elastin, and
hyaluronan (also known as hyaluronic acid or HA;Esteve et al.,
2019; Grandl et al., 2016; Kang et al., 2013; Spiegelman and Ginty,
1983). Finally, the whole AT mass is surrounded by a capsule
(also called the fascia or reticular interstitium) formed from an
uninterrupted sheet of connective tissue that extends through-
out the body (Benias et al., 2018; Su et al., 2016; Fig. 3 C).

Vascular niche. All AT depots including eWAT are
highly vascularized (Hausman and Richardson, 2004). During
eWAT development, angiogenesis precedes adipogenesis (Han
et al., 2011; Hausman and Richardson, 2004), and LYVE1+

vasculature-associated macrophages are recruited to primitive
eWAT, even before adipocyte development, supporting the for-
mation of a dense vascular network that is induced by VEGFα
andMMP expression (Cho et al., 2007; Han et al., 2011; Lim et al.,
2018). During adulthood, a population of blood vessel–associated
macrophages with high endocytic functions is present (Fig. 2 D;
Chakarov et al., 2019; Silva et al., 2019). It was recently proposed
that the recruitment of eW-ATMs can control vascular integrity
during HFD (Chen et al., 2021). Indeed, obesity is characterized
by rapid adipocyte expansion and accumulation, thereby dras-
tically affecting AT vascularization, leading to hypoxia and poor
vascular system maintenance and growth (Hodson et al., 2013).
Subsequently, a drastic drop in AT oxygenation was observed in
rodents and patients (Gonzalez-Muniesa et al., 2015), leading to
the activation of hypoxia-inducible factor (HIF) signaling (Wood
et al., 2009). In turn, HIF1α increases the production of angio-
genic factors such as VEGFα and angiopoietin-2 (Tahergorabi
and Khazaei, 2013) and induces inflammation (Murdoch et al.,
2005), drastically affecting the ATM vascular niche (Fig. 2 E). As
a consequence, deletion of HIF1α in adipocytes prevents obesity-
associated inflammation and complications (Lee et al., 2014).

Regarding macrophages, HIF signaling in eW-ATMs increases
their PDGF secretion, which in turn stimulates capillary forma-
tion (Pang et al., 2008), probably by stimulating the related re-
ceptor expressed by endothelial cells (Greenberg et al., 2008).
HIF1α also stimulates NO production by inducing iNOS expres-
sion in macrophages (Takeda et al., 2010), thereby promoting
angiogenesis (Fig. 2 D).

ECM niche. eWAT blood vessel development/maturation and
ECM deposition are tightly linked processes. Dense connective
tissue contains immature capillary beds and few adipocytes,
whereas loose connective tissue contains mature capillary beds
surrounded by more adipocytes (Crandall et al., 1997). In addi-
tion, the density of the ECM gradually increases with age from
birth to adulthood (Hausman and Kauffman, 1986). Accordingly,
in obesity, the angiogenic capacities of AT decrease in a manner
linked to obesity-associated metabolic dysfunction (Spencer
et al., 2011), which correlates with dense ECM depositions of
material such as HA and collagen VI (Kang et al., 2013; Khan
et al., 2009) and fibrosis (Sun et al., 2011). Therefore, putative
ECM and blood vessel eW-ATM subtissular niches are highly
plastic, and during obesity, eW-ATMs are implicated in ECM
remodeling itself. Thus, macrophage-enriched CLSs surround-
ing dying adipocytes are associated with ECM deposition (Cinti
et al., 2005). It has been suggested that elastin-associated
LYVE1+ eW-ATMs are the main cells producing MMP-12 and
MMP-9 and, thus, play an active role in elastin remodeling
(Lim et al., 2018; Martinez-Santibanez et al., 2015). Moreover,
macrophage-derived proinflammatory signals may activate
ECM-related genes in APs (Keophiphath et al., 2009). In addition,
low-grade inflammation induces the upregulation of macrophage-
inducible C-type lectin (Mincle) and is implicated in macrophage-
dependent ECM deposition. Accordingly, Mincle−/− mice are
protected from obesity-associated CLS formation. Moreover,
eW-ATMs participate in collagen uptake involving CD206, uro-
kinase plasminogen activator receptor-associated proteins
Endo180 and Mrc2, or MFGE8 (Atabai et al., 2009; Madsen et al.,
2013; Tanaka et al., 2014).

Mature adipocytes and CLSs. Approximately 10% of adipo-
cytes are renewed annually by continuous turnover from APs,
and decreased regeneration rates are associated with AT hy-
pertrophy (Arner et al., 2010; Spalding et al., 2008). To maintain
homeostasis, old apoptotic adipocytes are removed by macro-
phages (Duvall et al., 1985; Keuper et al., 2011; Suganami et al.,
2007). During obesity, necrosis of adipocytes driven by hyper-
trophy is a prominent phagocytic stimulus that regulates ATM
infiltration, which is gradually increased (Cinti et al., 2005), and
macrophage–adipocyte interaction was proposed to aggravate
meta-inflammation (Wellen and Hotamisligil, 2003; Fig. 2, A
and B).

CLSs are hallmarks of obesity, and ≤90% of macrophages are
localized within CLSs in obese Leptin-deficient (db/db) mice and
obese patients (Cinti et al., 2005). The microenvironment cre-
ated by CLSs contributes to macrophage proliferation during
HFD feeding (Haase et al., 2014), and in later stages of obesity,
AT expansion was associated with increased CLS formation and
adipocyte death (Coats et al., 2017; Geng et al., 2021). Meanwhile,
eW-ATM accumulation correlates with CLS formation,
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implicating CLSs as a possible contributing event to eW-ATM
accumulation (Weisberg et al., 2003). CLSs metabolically re-
program eW-ATMs through their lipid-rich microenvironment,
thereby increasing eW-ATM lipid content (Fig. 2, A and B). This
process ismediated via upregulation of surfacemolecules such as
ABCA1, very low-density lipoprotein receptor, perilipin, macro-
phage receptor with collagenous structure, and class B scavenger
receptor CD36 (Brunner et al., 2020; Huang et al., 2014; Kratz
et al., 2014). Moreover, FFAs increase the uptake of lipids
through lysosomal exocytosis detected by increased LAMP1 and
LAMP2 in eW-ATMs from obese mice (Coats et al., 2017).

Basal levels of FFAs increase during obesity, and in addition
to TLRs, as discussed above, FFAs bind CD36 receptor, also ex-
pressed by macrophages (Fig. 2 B). FFA-bound CD36 triggers
eW-ATM activation, and accordingly, CD36−/− mice display im-
proved insulin sensitivity and reduced AT inflammation upon
HFD (Kennedy et al., 2011; Kuda et al., 2011; Fig. 2 B). Moreover,
macrophage-targeted silencing of lipid handling genes—
lipoprotein lipase and CD36—decreases lipid load in eW-ATMs,
correlating with an increase of circulating FFAs (Aouadi et al.,
2014). On the contrary, enhancing the lipid storage capability of
ATMs by depletion of lysosomes with chloroquine treatment
decreases basal lipolysis and serum FFAs in obesemice (Xu et al.,
2013; Fig. 2 A). Accordingly, a lipid-buffering subset of eW-
ATMs was described by Jaitin et al. (2019), interacting with
adipocytes within CLS and facilitating lipid droplet phagocytosis
throughout TREM2 engagement. CLS-associated, lipid-laden
eW-ATMs are also characterized by the high expression of
CD11c and are defined as monocyte derived. It is suggested that
CLS-associated eW-ATMs facilitate adipocyte progenitor dif-
ferentiation and/or proliferation through osteopontin secretion
(Lee et al., 2013b; Nawaz et al., 2017; Fig. 2 A).

Adipocytes also link the innate immune system through se-
cretion of cytokines, lipid, and hormones, mediators regrouped
under the name of “adipokines” (Blaszczak et al., 2021; Galic
et al., 2010; Kershaw and Flier, 2004; Tilg and Moschen,
2006). Since the definition of AT as an endocrine organ, >50
adipokines secreted by adipocytes have been described
(Recinella et al., 2020; Rodriguez et al., 2015) that are able to
modulate physiological functions such as body weight, appetite,
glucose homeostasis, and blood pressure, as well as inflamma-
tion and the immune system (Blaszczak et al., 2021; Mancuso,
2016; Trujillo and Scherer, 2006; Wang and Scherer, 2016).
Some of them, such as Leptin, Adiponectin, serum amyloid A
(SAA), HA, FFAs, and many others, play roles in eW-ATM ac-
cumulation andmeta-inflammation (Bai and Sun, 2015; Fig. 2 B).

In particular, obesity is associated with increased levels of
Leptin (Tilg and Moschen, 2006) involved in both innate and
adaptative immunity and macrophage recruitment (La Cava and
Matarese, 2004). In addition, mice deficient in Leptin (ob/ob) or
Leptin receptor (db/db) show a decrease of macrophage re-
cruitment in AT despite increased weight gain and adiposity
(Dib et al., 2014; Xu et al., 2003). Leptin also upregulates
proinflammatory cytokine expression such as TNFα and IL6
(Lopez-Jaramillo et al., 2014), as well as adhesion molecules on
endothelial cells (Curat et al., 2004), both implicated in in-
flammation and macrophage recruitment (Fig. 2 B).

Unlike Leptin, Adiponectin, an adipokine involved in energy
homeostasis, is reduced in obesity (Kern et al., 2003) and pos-
sesses anti-inflammatory properties on macrophages (Ohashi
et al., 2010; Ouchi et al., 2001; Qi et al., 2014). Inversely,
macrophage-derived TNFα during obesity inhibits Adiponectin
levels in AT, whereas in lean state, Adiponectin inhibits mac-
rophage “foam cell” formation as well as endothelial cell acti-
vation and monocyte recruitment (Sikaris, 2004; Fig. 2 B).

Other adipocyte-derived factors, such as SAA and HA, facil-
itate monocyte adhesion through increase of chemotaxis. Thus,
SAA is secreted by adipocytes and macrophages in response to
inflammation (Lindhorst et al., 1997), stimulating intercellular
adhesion molecule 1 expression on endothelial cells and thereby
promoting monocyte recruitment (Mullan et al., 2006; Fig. 2 B).

Concluding remarks
While we extensively discussed macrophage biology, it is obvi-
ously necessary to obtain in the future more detailed profiles of
the other cell types present in ATs, including stromal, vascular,
and other immune cells, such as innate lymphoid cells (ILCs),
T cells, eosinophils, monocytes, or neutrophils. ILC2 cells, for
example, promote the proliferation of eosinophils through IL5
secretion. In turn, the IL4 produced by eosinophils, together
with IL13 from ILC2, imprints an eW-ATM phenotype and
promotes peroxisome proliferator-activated receptor γ expres-
sion, as well as the proliferation of PDGFRα+ stromal cells. This
illustrates the importance of the local microenvironment in
maintaining AT homeostasis and the absolute need to consider
all elements of the microenvironment when attempting to un-
derstand disease development.

Deciphering obesogenic mechanisms will require a similarly
deep understanding of AT biology but also an exploration of the
cross talk that occurs between ATs and other organs harboring
metabolic functions. It would be simplistic to consider obesity
only as a hypertrophy and/or hyperplasia of ATs. Related dis-
orders are observed in several organs, such as the pancreas
(which regulates insulin secretion; de Oliveira et al., 2020),
muscles (Pedersen and Febbraio, 2012), and the liver (Diehl,
2010), and obesity appears, therefore, to be a global condition
rather than a tissue-specific disease (Gesmundo et al., 2021).
Obesity often results in non-alcoholic fatty liver disease, the more
severe non-alcoholic steatohepatitis, or even fibrosis or cirrhosis
(Diehl, 2010). These inflammatory diseases are implicated in
hepatocarcinogenesis (Sun and Karin, 2012), and a strong link
between obesity and liver cancer has been identified (Larsson and
Wolk, 2007). Hence, it appears that extensively studying all
metabolic organs is fundamental to understanding obesity.

Another interesting dimension to consider further is the ef-
fect of maternal imprinting on the AT niche in offspring. Indeed,
according to recent National Health and Nutrition Examination
Survey data (Skinner et al., 2018), a sharp increase in the
prevalence of severe obesity among 2–5-yr-old children has been
observed, and parental dietary habits have been clearly linked to
this. Recent studies demonstrated that maternal HFD-induced
long-term sex-dependent obesity in offspring relates to the
metabolic reprogramming of adipocyte differentiation and hy-
pertrophy (Chang et al., 2019; Liang et al., 2016; Litzenburger

Chakarov et al. Journal of Experimental Medicine 9 of 15

Adipose tissue macrophages in obesity https://doi.org/10.1084/jem.20211948

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/219/7/e20211948/1777529/jem
_20211948.pdf by guest on 22 Septem

ber 2023

https://doi.org/10.1084/jem.20211948


et al., 2020). Conversely, maternal exercise favors the browning
of WAT and BAT during formation, preventing metabolic dis-
function in offspring upon HFD challenge (Son et al., 2020).
Because of the importance of ATMs in diet-induced obesity and
the alarming rise in global cases of obesity, maternal HFD im-
printing in offspring ATMs urgently needs to be investigated.
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