
INTRODUCTION

The incidence rate of prostate cancer is increasing 
and is highest in Japan and the United States. In the 
1940s, Charles Huggins found that patients with meta-
static prostate cancer could be treated by androgen-
ablation therapy, which was the beginning of prostate 
cancer therapy [1]. Currently, a new generation of anti-
androgen drugs are available, and further new drugs 
are under clinical study to test their effectiveness 
in patients with castration-resistant prostate cancer 

(CRPC). Androgen exerts its various functions by bind-
ing to androgen receptor (AR). Chang et al [2] first 
cloned human and rat AR cDNAs in 1988. This article 
reviews AR in regard to prostate cancer.

ANDROGEN RECEPTOR STRUCTURE 
AND FUNCTION

AR is a member of the nuclear receptor superfam-
ily and has a similar structure to estrogen receptor, 
progesterone receptor, glucocorticoid receptor, and 
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Androgen receptor (AR) is a steroid receptor transcriptional factor for testosterone and dihydrotestosterone consisting of four 
main domains, the N-terminal domain, DNA-binding domain, hinge region, and ligand-binding domain. AR plays pivotal 
roles in prostate cancer, especially castration-resistant prostate cancer (CRPC). Androgen deprivation therapy can suppress 
hormone-naïve prostate cancer, but prostate cancer changes AR and adapts to survive under castration levels of androgen. 
These mechanisms include AR point mutations, AR overexpression, changes of androgen biosynthesis, constitutively active 
AR splice variants without ligand binding, and changes of androgen cofactors. Studies of AR in CRPC revealed that AR was 
still active in CRPC, and it remains as a potential target to treat CRPC. Enzalutamide is a second-generation antiandrogen ef-
fective in patients with CRPC before and after taxane-based chemotherapy. However, CRPC is still incurable and can develop 
drug resistance. Understanding the mechanisms of this resistance can enable new-generation therapies for CRPC. Several 
promising new AR-targeted therapies have been developed. Apalutamide is a new Food and Drug Administration-approved 
androgen agonist binding to the ligand-binding domain, and clinical trials of other new AR-targeted agents binding to the 
ligand-binding domain or N-terminal domain are underway. This review focuses on the functions of AR in prostate cancer 
and the development of CRPC and promising new agents against CRPC.
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thyroid hormone receptor. The AR gene is located on 
chromosome X (Xq11-12) and consist of 8 exons coding 
about 11 kDa protein. AR has four regions: from the 
N-terminal, an NH2 terminal transactivation domain 
(NTD) encoded by exon 1, a DNA-binding domain (DBD) 
encoded by exons 2–3, a hinge region encoded by exon 4, 
and a ligand binding domain (LBD) encoded by exons 
5–6 (Fig. 1A). The NTD has glutamine repeats (CAG 
repeats), and these glutamine repeats vary (most men 
have 19–25 repeats), which results in the variation of 
all amino acids in AR. AR has approximately 919 ami-
no acids, which have been registered at the AR gene 
mutation database [3]. Shorter glutamine repeats are 
associated with high transcriptional activity of AR [4]. 
Men with shorter glutamine repeats have a higher risk 
of prostate cancer [5]. In contrast, patients with Kenne-
dy disease have long CAG repeats (>40), which results 
in low AR-transcriptional activity with gynecomastia, 
erectile dysfunction, testicular atrophy, and muscu-
lar atrophy [6]. Testosterone and dihydrotestosterone 
(DHT) bind to the LBD, followed by the conformational 
change of AR. After ligand binding in the cytoplasm, 
AR translocates into the nucleolus, forms a dimer, and 
binds to the androgen-response element of the pro-
moter and the enhancer of targeted genes through the 
zinc-finger of the DBD. The NTD includes the tran-
scriptional regulatory region, activation function-1 (AF-
1), and the LBD includes activation function-2 (AF-2) 
[7]. Upon DNA binding, the AR dimer forms a complex 
with coactivator and coregulatory proteins at the AF-1 
and AF-2 regions. These proteins include SRC1, SRC2, 
SRC3, p300/CBP, and AEA54, among many others. AR 

regulates the gene expressions with diverse functions 
located downstream of the androgen-response element, 
including secreted proteins (KLK3, KLK2), fusion 
genes (TMPRSS2-ERG), growth stimulators (IGF1R, 
APP), PI3K modulation (FKBP5), transcription factors 
(NKX3.1, FOXP1), metabolic enzyme (CAMKK2), cell 
cycle regulators (UBE2C, TACC2), and glucuronidation 
(UGT1A1) [8].

AR also represses transcription. The formation of an 
activation complex involves AR, coactivators, and RNA 
polymerase II recruitment to both the enhancer and 
promoter, whereas the formation of a repression com-
plex involves factors bound only at the promoter and 
not at the enhancer [9].

Androgens are synthesized in the testis and adrenal 
glands. Testosterone is synthesized by Leydig cells in 
the testis, and androstenedione and dehydroepiandros-
terone (DHEA) are synthesized in the adrenal glands. 
Most testosterone in the serum binds to sex hormone 
binding globulin, whereas the remaining 1% to 2% ex-
ists as free testosterone, which is converted into DHT 
by 5-alpha-reductase in the prostate cells. DHT has a 
high binding affinity to AR. Adrenal androgen is con-
verted to testosterone by 17-beta-hydroxysteroid dehy-
drogenase in the cytoplasm of prostate cells. In normal 
prostate, immunohistochemical analysis showed strong 
staining for AR in luminal cells, fibromuscular stro-
mal cells, and endothelial cells but weak staining in 
basal cells [10]. In normal prostate, epithelial AR acts 
to supply secretory proteins to the prostate gland, such 
as prostate-specific antigen (PSA). Stromal AR plays 
roles in prostate growth. In mice, selective knock-out 
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Fig. 1. Structure of androgen receptor 
(AR). (A) Full-length AR is composed of 
8 exons. (B) AR splice variants are trun-
cated at DNA-binding domain (DBD) or 
ligand-binding domain (LBD). NTD: N-
terminal domain, HR: hinge region,  AF-
1: activation function-1, AF-2: activation 
function-2, CE: cryptic exon.
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of stromal AR (fibroblasts and smooth muscle cells) 
inhibited normal development of the prostate [11]. In 
prostate cancer, the actions of AR are synthesis of PSA, 
regulation of lipid metabolism, promotion of growth, 
and several other functions [12]. Gene fusions between 
the transmembrane protease serine 2 gene (TMPRSS2) 
and E twenty-six (ETS) in prostate cancer cells were 
first discovered in 2005 [13]. The most frequent gene in 
the ETS gene family fusing with TMPRSS2 was the 
ERG gene (present in approximately 85% of all ETS 
fusion-positive samples). The prevalence of TMPRSS2-
ERG was 30% to 50% in patients with localized prostate 
cancer. Stromal AR plays a Transcription of TMPRSS2 
gene was regulated by AR. Loss of stromal AR also 
suppressed the development of prostatic intraepithelial 
neoplasia by modulating pro-inflammatory cytokines/
chemokines in a mouse model of prostate cancer [11].

CHANGES OF ANDROGEN RECEPTOR 
IN PROSTATE CANCER

Androgen deprivation therapy can suppress most 
prostate cancers, but some high-risk prostate cancers 
gradually progress to CRPC, which can grow under 
castrated levels of androgen. AR is the most frequently 
aberrant gene in metastatic CRPC (62.7%) [14]. Several 
mechanisms underlie the development of CRPC.

1. Point mutations in androgen receptor
Point mutations in the AR gene were found in 15% 

to 30% of CRPC patients [15,16], most frequently in the 
LBD, followed by the NTD [3]. These point mutations 
can activate AR by losing the specificity of the ago-
nist. For example, the point mutation of T878A results 
in the loss of specificity for the agonist. Progesterone, 
estrogen, flutamide, bicalutamide, and enzalutamide 
can activate AR with the T878A point mutation [17-
19]. T878A was the first identified point mutation of 
AR driven by flutamide, but T878A also exerts resis-
tance to second-generation AR agonists [20]. The F876L 
point mutation changes the LBD domain and confers 
resistance to enzalutamide [21,22]. T878A or L702H 
mutations were found in the plasma of 13% of CRPC 
patients with abiraterone resistance [23]. These muta-
tions can be detected in plasma DNA and may help 
physicians in choosing the appropriate drugs for CRPC 
patients [24]. AR L701H and AR L701H/T877A are 
somewhat less sensitive to androgens but are highly 

responsive to the glucocorticoids cortisol and cortisone 
[25].

2. Androgen receptor amplification
AR gene amplification was found in 30% to 50% of 

CRPC patients, resulting in the overexpression of AR 
[26,27]. Even under androgen deprivation therapy, low 
levels of androgen still exist. AR overexpression en-
ables prostate cancer to progress to castration levels 
of androgen. Prostate cancer cells with AR amplifica-
tion can survive under androgen deprivation therapy, 
progressing to CRPC. AR amplification was more com-
mon in patients resistant to enzalutamide than to abi-
raterone [20].

3. Changes of androgen biosynthesis
During androgen deprivation therapy, low levels of 

androgen are found in the serum. Cytochrome P450 
enzymes CYP11A1 and CYP17A1 in the adrenal gland 
synthesize DHEA and androstenedione. Normal pros-
tate cells can convert these weak adrenal androgens 
into testosterone and DHT. CRPC overexpresses these 
converting enzymes, such as the aldo-keto reductase 
family 1 member C3 (AKR1C3) [27]. CRPC also ex-
presses a gain-of-stability mutation leading to a gain-
of-function in 3β-hydroxysteroid dehydrogenase type 
1 (HSD3β1). HSD3β1 catalyzes a rate-limiting step for 
DHT synthesis from the adrenal DHEA. CRPC ex-
pressing mutated HSD3β1 can produce enough DHT 
to activate AR [28]. Abiraterone, a CYP17A1 inhibitor, 
can stop this supply from the adrenal glands. However, 
CRPC can also synthesize significant levels of andro-
gens de novo from cholesterol and become indepen-
dent of the circulating adrenal androgens. Metastatic 
prostate cancers obtained by warm autopsies express 
transcripts encoding androgen-synthesizing enzymes 
(HSD3β1, CYP17A1, and AKR1C3) and maintain in-
tratumoral androgens at concentrations capable of 
activating AR target genes and maintaining tumor 
cell survival [29]. Intratumoral expression of CYP17A1 
was markedly increased in tumor biopsies from CRPC 
patients after abiraterone [30]. CRPC resistance to abi-
raterone may still remain androgen dependent.

4. �Changes in androgen receptor receptor 
cofactor in prostate cancer

AR coactivator interacts directly with AR and 
stimulates transcriptional activity of AR function. 
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The formation of AR coactivator complexes enhances 
the opening of the chromatin structure at AR-binding 
sites, which results in the recruitment of transcription-
al machinery to target the genes. The SRC family is a 
p160 group consisting of three evolutionary conserved 
coregulators of transcription: SRC-1 (NCOA [nuclear 
receptor coactivator]-1), SRC-2 (NCOA-2), and SRC-3 
(NCOA-3) [31].

SRC-1 expression is associated with prostate cancer 
aggressiveness, and suppression of SRC-1 expression 
reduced growth and altered AR target gene regulation 
in prostate cancer cells [32]. However, in a murine pros-
tate cancer model, the role of SRC-1 is nonessential for 
carcinogenesis and different from the essential contri-
bution of SRC-3, which is required for prostate cancer 
progression and metastasis in mice [33].

AR coactivator NCOA2, or SRC-2, is amplified in 
primary and metastatic prostate cancer [34]. Androgen 
deprivation induces NCOA2, which activates PI3K 
signaling and promotes prostate cancer metastasis 
and the development of CRPC [35]. NCOA2 stimulates 
reductive carboxylation of alpha-ketoglutarate to pro-
mote lipogenesis and the reprograming of glutamine 
metabolism. The SRC-2-driven metabolic signature 
is strongly increased in metastatic prostate cancers. 
NCOA2-dependent transcriptional reprogramming may 
play a role in resetting the tumor metabolic pathways 
to support uncontrolled growth and survival [36].

SRC-3 expression is increased in advanced prostate 
cancer. It is elevated in CRPC and negatively correlates 
with PTEN expression and recurrence-free survival 
of prostate cancer patients. SRC-3 is necessary for the 
development of CRPC by enhancing Akt activity and 
S6K1 expression [33]. Normal SPOP (speckle-type POZ 
protein) plays important roles in tumor suppression in 
prostate cancer by promoting SRC-3 turnover by ubiq-
uitination and suppressing AR transcriptional activity. 
The prostate cancer-associated SPOP mutant cannot in-
teract with SRC-3 protein or promote its ubiquitination 
[37]. CBP (cyclic adenosine monophosphate response 
element binding protein binding protein) and p300 are 
known coactivators of AR and play an oncogenic role 
in prostate cancer. Androgen deprivations caused the 
upregulation of CBP/p300 proteins in prostate cancers 
[38]. Inhibition of the CBP/p300 bromodomain blocked 
AR activity at the chromatin level, resulting in the 
suppression of proliferative gene expressions and tu-
mor growth of CRPC in vitro and in vivo [39].

Another coactivator involved in prostate cancer pro-
liferation is Tip60, which promotes AR translocation 
into the nucleus [40]. Four-and-a-half LIM protein 2 
(FHL2) is a coactivator promoting the proliferation of 
prostate cancer cells. Deregulation of the FHL2-filamin 
complex promotes constitutive, ligand-independent ac-
tivation of AR variants such as ARV7 [41]. The expres-
sion of nuclear FHL2 in prostatectomy specimens was 
associated with prostate cancer recurrence [42].

Finally, Hic-5/ARA55 coactivator is expressed in 
prostate stromal cells and is necessary for androgen 
induction of the stromal paracrine factor, keratinocyte 
growth factor [43].

5. Androgen receptor variants
It has been known for more than 2 decades that AR 

has splicing variants [44]. Wild-type full-length AR 
had the NTD domain encoded by exon 1, DBD encoded 
by exons 2 and 3, and LBD encoded by exons 4–8 [45]. 
More than 20 AR variants have been reported, and 
most are missing some C-terminal domain including 
LBDs [46,47] (Fig. 1B). The LBD is the target of enzalu-
tamide, and these AR variants are functionally active 
without androgens. AR-V1 is truncated at the end of 
exon 3 and contains 19 amino acids from cryptic exon 1. 
AR-V7 is truncated at the end of exon 3 and contains 
16 amino acids from cryptic exon 3. AR-V567es has ex-
ons 5–7 spliced out and only contains a small portion of 
the LBD [12]. AR-V1 and AR-V7 were the most abun-
dant variants, with 20-fold higher expression in CRPC 
compared with hormone-naïve prostate cancer [47]. AR-
V7 is located in the nucleus under androgen-depleted 
conditions and is constitutively active in androgen-
responsive genes.

Prostate cancer cell expressing full-length AR and 
AR variants are androgen independent and resistant 
to enzalutamide. However, selective knock-down of AR 
variants in these cells suppressed androgen-indepen-
dent growth and restored the responsiveness to enzalu-
tamide [48]. When human CRPC xenografts were 
treated with abiraterone, the expression of full-length 
AR and AR variants (AR-V567es and AR-V7) were 
increased in CRPCs. The resistance to abiraterone may 
occur through the induction of AR and AR variants 
[49]. Expression of AR variants AR-V1 and AR-V7 was 
increased in CRPC compared with hormone-naïve bone 
metastases. AR-V567es was detected in CRPC bone 
metastasis but not in hormone-naïve bone metastasis. 
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Expression of AR-V567es and/or AR-V7 was associated 
with poor survival [50]. Thirty-nine percent of enzalu-
tamide-treated patients and 19% of abiraterone-treated 
patients with metastatic CRPC had detectable AR-V7 
in their circulating tumor cells. AR-V7-positive patients 
treated with enzalutamide or abiraterone had a lower 
PSA response rate and a poorer prognosis than AR-V7-
negative patients [51]. However, the circulating tumor 
cells in AR-V7-positive CRPC patients were not resis-
tant to docetaxel or cabazitaxel. In AR-V7-positive men, 
taxanes were more efficacious than enzalutamide or 
abiraterone therapy, whereas there were no differences 
in efficacy between chemotherapy and enzalutamide or 
abiraterone in AR-V7-negative CRPC patients [52]. AR-
directed therapies such as androgen deprivation thera-
py, enzalutamide, and abiraterone could induce AR-V7 
expression in circulating tumor cells, whereas chemo-
therapy such as docetaxel and cabazitaxel diminished 
the expression of AR-V7 [53]. These changes of AR-
V7 in circulating tumor cells may reflect the selective 
pressures on prostate cancer cells by the treatments. 
Immunohistochemical detection of AR-V7 in newly di-
agnosed hormone-naïve prostate cancer was associated 
with a lower PSA response rate by androgen depriva-
tion therapy and lower overall survival. The detection 
AR-V7 was also a significant predictor of progression 
to CRPC in hormone-naïve prostate cancer [54].

NEW ANDROGEN RECEPTOR-
TARGETED THERAPIES

Anti-androgens such as bicalutamide and flutamide 
bind to the LBD of AR, resulting in the inhibition of 
androgen binding to LBD. In the progression of pros-
tate cancer to CRPC, prostate cancer survives and re-
sumes its growth under castration levels of androgen 
by the above-mentioned mechanisms. Enzalutamide is 
a second-generation nonsteroidal antiandrogen with 
greater affinity for the LBD of AR [55]. The AFFIRM 
trials confirmed that enzalutamide significantly pro-
longed the overall survival of patients with metastatic 
CRPC after chemotherapy by 4.8 months [56]. CYP17A1 
plays key roles in adrenal and intratumoral de novo 
biosynthesis of androgens, and abiraterone is an in-
hibitor of CYP17A1 [57]. The COU-AA-301 trial showed 
that combination therapy of abiraterone acetate with 
prednisone significantly prolonged overall survival of 
patients with metastatic CRPC after chemotherapy 

by 3.7 months [58]. The efficacy of enzalutamide and 
abiraterone was also confirmed in patients with meta-
static CRPC before chemotherapy [59,60]. However, 
patients with CRPC will eventually gain resistance to 
enzalutamide or abiraterone. Several new AR-directed 
drugs are undergoing clinical trials in patients with 
CRPC.

Apalutamide (ARN-509) is a nonsteroidal anti-
androgen with greater efficacy than enzalutamide. 
Apalutamide binds to the LBD and in contrast to 
bicalutamide, lacks agonist activity. Apalutamide in-
hibits nuclear localization and DNA binding of AR in 
prostate cancer cells [61]. The SPARTAN study showed 
that metastasis-free survival was significantly length-
ened by 24.3 months with apalutamide versus placebo 
in patients with non-metastatic CRPC [62]. The US 
Food and Drug Administration approved apalutamide 
for patients with non-metastatic CRPC in February 
2018.

Darolutamide (ODM-201) is a nonsteroidal antian-
drogen that inhibits androgen binding to AR. Darolu-
tamide antagonizes both overexpressed and mutated 
ARs (F876L), which confers resistance to enzalutamide 
and apalutamide. It can also inhibit AR transcriptional 
activity with point mutations of F877L, H875Y/T878A, 
F877L/T878A, and T878G [63]. Darolutamide showed 
negligible penetrance of the brain-blood barrier [64]. 
A phase 1 study showed that darolutamide was well 
tolerated in patients with CRPC [65]. Darolutamide is 
currently undergoing a phase 3 trial (ARAMIS) in men 
with high-risk non-metastatic CRPC (NCT02200614).

Galeterone is a new androgen-targeted agent that in-
hibits CYP17, antagonizes the AR, and reduces AR ex-
pression in prostate cancer cells by causing an increase 
in the degradation of both full-length AR and AR-
V7 [66]. Galeterone is also effective for prostate cancer 
cells with the T878A AR mutation [67]. Open-label 
phase I and II studies (Androgen Receptor Modulation 
Optimized for Response-1 [ARMOR1] and ARMOR2 
part 1) showed that a more than 30% decline in PSA 
was achieved by galeterone in 49% of patients with 
treatment-naive non-metastatic or metastatic CRPC 
[68]. A study of galeterone compared to enzalutamide 
in men expressing AR-V7 metastatic CRPC (ARMOR3-
SV) is now underway (NCT02438007).

All of these AR-targeted therapies target the LBD. 
The NTD contains AF-1, which is essential for AR 
transcriptional activity. EPI-506 is a prodrug of EPI-
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002, which is an antagonist of AF-1. EPI, which effec-
tively inhibits the growth of prostate cancer in vitro 
and in vivo, has results in aberrant AR activity, includ-
ing overexpression of coactivators, AR gain-of-function 
mutations, and constitutively active AR-V7 [69]. A 
phase I/II clinical trial of EPI-506 for patients with 
metastatic CRPC who are resistant to abiraterone and/
or enzalutamide is now being conducted (NCT02606123).

CONCLUSIONS

AR plays pivotal roles in prostate cancer, especially 
in the development of CRPC and the acquisition of re-
sistance to AR-directed therapy. Even after the devel-
opment of new AR-targeted therapy, CRPC will even-
tually gain resistance. Understanding the mechanisms 
of this resistance will enable the development of new-
generation therapies against CRPC.
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