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Abslract- In a companion paper, we studied the system- 
theoretic properties of discrete time transfer matrices in the 
context of inversion, and classified them according to the types of 
inverses they had. In particular, we outlined the role of CAusul 
FIR matrices with AntiCAusal FIR inverses (abbreviated cafacaj) 
in the characterization of FIR perfect reconstruction (PR) filter 
banks. Essentially all FIR PR filter banks can be characterized 
by causal FIR polyphase matrices having anticausal FIR inverses. 
In this paper, we introduce the most general degree-one cafacaji 
building block, and consider the problem of factorizing cafacaji 
systems into these building blocks. Factorizability conditions 
are developed. A special class of cafacuj systems called the 
biorthogonal lapped transform (BOLT) is developed, and shown to 
be factorizable. This is a generalization of the well-known lapped 
orthogonal transform (LOT). Examples of unfactorizable cafacaji 
systems are also demonstrated. Finally it is shown that any causal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIR matrix with FIR inverse can be written as a product of a 
factorizable cafaca$ system and a unimodular matrix. 

I. INTRODUCTION 

N A companion paper [I], we studied the system-theoretic I properties of discrete time transfer matrices in the context 
of inversion, and classified them according to the types of 
inverses they had. In particular, we outlined the role of CAusal 
FIR matrices with AntiCAusal FIR inverses (cafacaji) in the 
characterization of FIR perfect reconstruction filter banks. 

Briefly, Fig. l(a) represents a maximally decimated filter 
bank with identical decimation ratios in all the channels. This 
can be redrawn in polyphase form as in Fig. l(b). The system 
has the perfect reconstruction property (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( n )  in 
absence of subband quantizers) if and only if R(z) = E-'(z). 
See [ 11 for detailed references on this topic. An FIR filter bank 
is one where E(z) and R(z) are FIR. In [ I ]  we argued that in 
the FIR case, if we study the cafacaj class of matrices E(z), it 
is sufficient to characterize practically all FIR PR filter banks. 

In contrast, the family of causal FIR transfer matrices with 
causal FIR inverses (i.e., unimodular matrices in z - l )  are not 
very useful in characterizing the class of all FIR PR filter 
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Fig. 1. (a) Maximally decimated filter bank; (b) polyphase representation. 

banks. First, restricting the polyphase matrix to be unimodular 
results in a loss of generality; given a causal FIR system with 
arbitrary FIR inverse, we cannot in general multiply it with a 
delay z-' to obtain a causal FIR system with a causal FIR 
inverse. Furthermore, as we will see at the end of Section II- 
A, unimodular matrices cannot in general be factorized into 
degree-one unimodular building blocks.' For these reasons, 
we will not pursue the possibility of characterizing FIR PR 
systems in terms of unimodular matrices alone. The class of 
cafucafi systems are more useful than unimodular systems for 
this purpose. 

In this paper we will use the results of [I] to obtain certain 
fundamental FIR building blocks with FIR inverses. These 
building blocks can be considered to be the biorthogonal 
versions of the orthonormal (paraunitary) systems reported 

'Even though it is well-known [2] that unimodular matrices can be 
expressed as products of three kinds of elementary matrices, that would not 
be a useful parameterization for filter bank design. For, it would not yield 
us a structure with a fixed number of multipliers which can be optimized to 
design the filter responses. 
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earlier [3]-[SI. We will consider the factorization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcafacaj 
systems using these building blocks and develop some results 
in this direction. For convenience, we state from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 two of the 
system-theoretic results that play a crucial role in this paper: 

An M x M causal LTI system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(z)  has an anticausal 
inverse if and only if the realization matrix 

A B  
q c  D] 

of any minimal realization of G(z )  is nonsingular (see 
Theorem 5.1 of [l]). Whether the anticausal inverse is 
FIR or not is not addressed by this result. 
Let G ( z )  be an M x M causal FIR system with FIR 
inverse. Then, the inverse is anticausal FIR if and only 
if [detG(z)] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC Z - ~ ,  where N = McMillan degree of 
G ( z )  (see Theorem 5.3 of [l]). 

Fig. 2. Implementation of the degree-one building block. The thick lines 

indicate vector signals and thin lines (such as the input and output of the 

delay element) indicate ,scalar signals. 

7) However, in Section VI1 we show that any causal FIR 
matrix with FIR inverse can be written as a product of 
a factorizable cafacaj system and a unimodular matrix. 
This factorization, however, is not minimal as we shall 
explain. 

All notations and acronyms will be exactly as in [l]. 

- ~. 11. SYNTHESIS USING DEGREE-ONE BUILDING BLOCKS 
A. Paper Outline 

Based on the results of [l], we will establish a number of 
positive and negative results pertaining to factorization of FIR 
systems with FIR inverses. The road map is as follows: 

1) In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII, we present a degree-one FIR building 
block, and establish conditions under which it will have 
different types of FIR inverses (causal, anticausal, and so 
forth). The unimodular building block (i.e., the one with 
causal FIR inverse) which results from this study is used 
to demonstrate that an arbitrary unimodular matrix may 
not be factorizable into degree one unimodular blocks. 

2) The degree-one cafacaj building block which results 
from our discussion will be used in Section 11-B to derive 
conditions under which arbitrary cafacaji systems can be 
factorized into these building blocks. Even though the 
building block is the most general degree-one cafacaj 
system (as we show later in Section IV), we will see in 
Section VI that it cannot be used to factorize arbitrary 
cufacaj systems. 

3) In Section 111, we restate the factorizability conditions 
for cafacaj systems in terms of state space parameters. 

4) Using this, we show in Section IV that a subclass 
of matrices called the biorthogonal lapped transforms 
(BOLT), which is a generalization of the lapped orthog- 
onal transform LOT [6]-[8], can always be factorized 
into degree one cafacaj building blocks. 

5 )  In Section V, we stud FIR transfer matrices of the 

of the inverse can be deduced from the eigenvalues of 
VtU (Theorem 5.2). We use this to find necessary and 
sufficient conditions for any first order FIR matrix to 
be a BOLT. In particular, we impose conditions on the 
degree-one factors derived in Section 11, guaranteeing 
the BOLT property structurally. 

6) In Section VI, we derive examples of cafacaj systems 
that cannot be factorized into degree one building blocks, 
and introduce degree two building blocks. It is also 
shown that there exist cafacaji systems which cannot 
be factorized using any combination of these building 
blocks. 

form I -UVt + z-'UU r and show that many properties 

In this section, we introduce the general degree-one causal 
FIR building block of the form 

V(z) = I - uvt + z-1uvt (2 )  

where U and v are M x  1 vectors, and study its properties. 
In particular, its role in the synthesis of FIR causal systems 
with anticausal FIR inverses will be studied. Because of the 
appearance of the outer product uvt, the building block is said 
to be diadic-based. Fig. 2 shows a structure for this system. 
Note that V( l )  = I. 

A. Properties of the Degree-One Building Block 

Theorem 2.1: Consider the M x M system V(z) = I - 
uvt +z-luvt, where U and v are M x  1 vectors (so that the 
degree = 1 unless U or v is zero). Then, the following are true: 

1) [detV(z)] = 1 + vtu(z-l - 1). 
2) Let vtu = 1, so that [detV(z)] = z-'. In this case, 

V-l(z) = V(2-l) = I - uvt + zuvt. That is, the 
inverse is anticausal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIR. If U = v, then V(z)  becomes 
the paraunitary building block known before [5]. 

3) Let vtu = 0, so that [detV(z)] = 1 (i.e., V(z)  is 
unimodular in z-') .  In this case, V-'(z) = I + uvt - 
z-'uvt which is causal FIR. 

Proof: Let x,, 0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 M -  2 be vectors orthogonal to 
v. Then, V(z)x, = x, so that there are M - 1 eigenvectors 
with eigenvalue unity. Next, by substitution we see that 
V(z)u = (1 + vtu(z-' - 1))u so that (1 +vtu(z-'- 1)) 
is an eigenvalue. When vtu # 0, U is not in the span of 
{ x,}. Therefore, we have found M independent eigenvectors 
including U, and all but one have eigenvalue equal to unity. 
Thus 

(3) detV(z) = 1 + vtu(2-l - 1). 

When vtu = 0, it can be shown that there are no eigenvectors 
of V(z) other than the x, (or their linear combinations). For 
this note that V(z)w = w + (vtw)(z-'- 1) U for any w .  
If w is an eigenvector, then either i) w is aligned to U or ii) 
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vtw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Since vtu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, condition i) implies vtw = 0, 
which is condition ii) again. The condition vtw = 0 means, 
of course, that w is a linear combination of xi's. Therefore, 
all the eigenvectors are in the span of xi's, and the common 
eigenvalue is unity. Thus, [detV(z)] = 1, that is, (3) holds 
even with vtu = 0. 

The stated forms of the inverses in parts 2 and 3 can be 
verified by direct multiplication of V(z) with the claimed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 inverse and using utv = 0 or 1 as the case may be. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Comments: 
1) For vtu = 1, the following identity is easily verified: 

I - uvt + z-Kuvt = rI (I - uvt + z-luvt). 
U C ~ C  times 

2) Smith-McMillan forms (reviewed in Section IV-A of 
[l]). Since vtu = 1 implies that V(z) has an anticausal 
FIR inverse; therefore, by Theorem 5.2 of [l], the 

Smith-McMillan form of V(z) is ri' ;]. On the 

other hand, vtu = 0 implies that V(z) is unimodular 
in z-l, and the Smith-McMillan form of V(z) is the 
identity matrix modified as follows: the first diagonal 
element is replaced with z-l and the last diagonal 
element replaced with z.  

3) Let uvt # 0 to avoid trivialities. Then we can show the 
following: V(z) has an i) anticausal inverse if and only 
if vtu # 0, ii) FIR inverse if and only if vtu = 0 or 
1. These will follow as special cases of a more general 
result (Theorem 5.2). Thus, the inverse is anticausal FIR 
if and only if vtu = 1 and causal FIR if and only if 

I )  Unimodular Systems and Unfactorizability: Consider 
the M x M causal FIR system V(z)  = I+z-'uvt, where U 

and v are Mx 1 vectors. If vtu = 0, it can be verified that 
the inverse is I - z-luvt; therefore, V(z)  is unimodular. A 
stronger result is the following. 

Lemma2.1: The system V(z) = I + z-luvt has IIR 
inverse if vtu # 0 and causal FIR inverse when vtu = 0. 
Therefore, V(z)  is unimodular if and only if vtu = 0. 

Proofi Let x;, 1 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 M- 1 be a set of independent 
vectors orthogonal to v. Then, V(z)x; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi. On the other 
hand, V(z)u = (1 + z-'vtu)u. Therefore 

vtu = 0. 

V(z)[u PI = [(1+ *-lvtu)u PI 

where P is M x (M- 1) with columns equal to x;. If vtu # 
0, the vector U is not in the span of x;. Therefore, [U PI is 
nonsingular, and we get [detV(z)] = (1 + z-lvtu). This is 
not a delay since vtu # 0. Therefore, the inverse of V(z) is 
IIR. 0 

More generally, let G(z) be any degree-one unimodular 
matrix in z-'. Since G(m) is nonsingular, we can always 
write G(z) = (I + z-luvt)D where vtu = 0 and D = 

G(m). 

Example 2. I-A Degree-Two Unfactorizable Unimodular 
System: We now show that the unimodular system 

cannot be factorized into degree-one causal unimodular sys- 
tems. Suppose we could then 

G(z)  = (DO + z-'uov0)(D1 + z-lulv!) (5) 

where DO and D1 are nonsingular and must be such that 
DoDl = I. We can always rearrange this to be of the form 

vectors U; and vi. Comparison of coefficients of 2-l in (4) 

t 

G(z) = (I + z- lu~vo)( I  t + z-lulvl) t by redefining the 

and the product (I + z- lu~vO)( I  t + z-lulvl) shows that we 
need uov0 t + ulv! = 0 so that u1 = cuo for some scalar c. 

(I + Z - ~ U O V ~ ) .  t Thus, the coefficient of z-2 in (5) is uO(vO t 
This implies viu1 = 0 since vi,, = 0 for unimodularity of 

u1)vi = 0, and the product (5) can never be equal to (4). 

B. Degree Reduction Using Degree-one 
cafacaj Building Blocks 

anticausal FIR inverse H, (z) 
We are given an M x M causal FIR matrix G,(z) with 

K L 

n=O n=O 

Assume K, L > 0 and g,(K) # 0 and h,(L) # 0 to avoid 
trivialities. Then, K is the order of G,(z), and L is the order 
of H, (2). If the McMillan degree of G, (2) is m, then 

[detG,(z)] = 

(see Theorem 5.3 of 111). Suppose we wish to express it as 

Gm (2) = Vm( 2)Gm-l ( z )  (7) 

where V,(z) is a degree-one causal FIR system with anti- 
causal FIR inverse 

V,(z) = I - uvt + z-luvt, vtu = 1. (8) 

See Fig. 3(a). From Theorem 2.1, we have [detV,(z)] = 2-l 

so (7) implies [detG,-l(z)] = C Z - ( ~ - ' ) .  Therefore, we 
know that G,-l(z) has McMillan degree (m - 1) as long as 
it is also causal FIR with anticausal .FIR inverse (see Theorem 
5.3 of [l]). If we can do this successfully m times, then the 
final remainder GO(.) is cafacaj with constant determinant 
so that it is just a nonsingular constant (see Theorem 5.3 of 
[l]). This would give the cascaded structure of Fig. 3(b). 

The conditions under which we can successfully ensure 
that G,-l(z) is cafacaj still need to be explored. Since 
V;l(z) = V,(z-') (Theorem 2.1), we can write 

G,-l(z) = (I - uvt + zuvt) 

x ( g m ( 0 )  + z- lgm( l )  + . . .  + z-Kg,(K)). 

(9) 
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Causality of the remainder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,-l(z) requires vtg,(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 
Next, consider 

G&Yl(z) = ( L ( 0 )  + zh,(l) + . . .  + zLh,(L)) 

x (I - uvt + z-'uvi.). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(10) 

Anticausality of this quantity requires h,(O)u = 0. Summa- 
rizing, the degree-reduction procedure will succeed if and only 
if there exist vectors U and v such that 

vtg,(O) = 0, h,(O)u = 0, V ~ U  = 1. (11) 

We know that g,(O) and h,(O) are singular (see Section V- 
C of [l]), and therefore, there exist nonnull vectors v and u 
satisfying vtg,(O) = 0 and h,(O)u = 0. However, there 
is no guarantee that there will exist U and v which are also 
nonorthogonal (so that they can be scaled to satisfy vtu = 1). 

In Section VI we will see examples of cufucuJi G,(z) for 
which (11) cannot be satisfied. In Sections IV-V, we will 
present some useful subclasses of cufucuj systems for which 
(11) can be satisfied at every step of the degree reduction 
process. Towards this goal it proves to be convenient to 
reformulate the condition (11) in t e q s  pf the state space 
descriptions (A, B, C, D) and (A, B, C, D). 

111. STATE SPACE FORMULATION OF FACTORIZABILITY 

In Section I11 of [l], we described causal systems having 
anticausal inverses in terms of minimal state space descrip- 
tions. Let (A, B, C, D) be a minimal realization of G,(z). 
Defining the realization matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and its inverse 

we obtain the minimal realization (A, B, C, D) for the anti- 
causal inverse in the sense defined in Section 111-A of [ 11. (We 
have omitted a subscript m on the matrices (A, B, C, D) etc., 
for simplicity). Note that the inverse of R exists because of 
the assumed existence of the anticausal inverse (see Theorem 
5.1 of [l]). We can express zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K 

G,(z) = D + PCA"-~B, 

H,(z) = G&l(z) = D + znCAn-lB. (13) 

n=l 

L 

n=l 

In particular, therefore, D = g,(O) and D = h,(O); 
therefore, the three conditions in (1 1) are equivalent to 

vtD = 0 ,  Du=O, v t u =  1. (14) 

As stated before, D and D are singular, so the only nontrivial 
issue is to prove the existence of U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv such that vtuA = 1. 

In all the results to follow, (A, B, C, D) and (A, B, C, D) 
are minimal realizations of G,(z) and GG1 ( z ) ,  respectively, 
and are related as in (12). Note that since G,(z) and G;l(z) 
are FIR, all the eigenvalues of A and A are equal to zero. 
By explicitly writing out the four components of the relation 
RR-l = I, we obtain the four equations 

(15) 
AA + BC = I, AB + BD = 0, 

C A +  DC = 0, CB +DD = I. 

AA + B c  = I, AB + BD = 0, 

CA + DC = 0, CB + DD = I. 

Similarly, by writing out R-'R = I, we get 

(16) 

We will find these equations useful for future reference. 
Theorem 3.1: There exist vectors U and v satisfying 

vtD = 0, Du = 0, and vtu = 1 if and only if there 
exist vectors t and s satisfying 

As = 0, t t A  = 0, and tts = 1. (17) 

Proofi Suppose vtD = 0 for some v. From (15), we 
see that this implies vtCA = 0 and vtCB = vt. Defining 
t t  = vtC, we see that t t A  = 0. Similarly, we can show 
usingJl5) that if Du = 0 for some U, then As = 0 where 
s = Bu. With the quantities t and s defined in terms of v 
and U as above, we get 

t t s  = VtCBU = vtu 

using CB = I - DD (from (15)) and the fact that vtD = 0. 
Summarizing, if there exist U and v such that vtD = 0 and 
Du = 0, then there exist t and s such that t tA  = 0, As = 0, 
and t t s  = vtu. 

Second, suppose there exist vectors s and t such that 
As = 0 and t tA  = 0. Defining U = Cs and vt = t t B  
we can show using (16) that Du = 0 and vtD = 0, and 
furthermore vtu = t ts. Combining this with the observation 
in the preceding paragraph, we can say that there exist vectors 
U and v satisfying vtD = 0, Du = 0, and vtu = 1 if and 
only if there exist vectors t and s satisfying As = 0, t t A  = 0, 

In the above theorem we have established a one to one 
correspondence between the annihilators of the pair (D, D) 
and the pair (A, A). Therefore, the degree reduction condition 
for the cufucuJi factorization can be reformulated as follows. 

Theorem 3.2: The degree reduction step for the causal FIR 

system G,(z) with anticausal FIR inverse G;l(z) will be 
successful if and only if there exist vectors t and s satisfying 
(17) or, equivalently, vectors U and v satisfying (14). 

I )  A Different State-Space Condition: With G,(z) and 
H,(z) expressed as in (6), we know that h(O)g(K) = 0 
and h(L)g(O) = 0 (subscript m on g(n) and h(n) omitted 
for convenience). This shows that we can satisfy (11) by 
taking vt to be any row of h(L) and U to be any column of 
g(K). There will exist such a choice which further satisfies 
the condition vtu = 1 as long as h(L)g(K) # 0. In this 
connection, the following result is helpful. 

and t t s  = 1. 0 
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Theorem 3.3: Consider the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x A 4  system G,(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E,"=, 

z- 'g( i )  with anticausal FIR inverse G;'(z) = z'h(i). 
Let (A, B, C, D) and (A, B, C, D) represent their respective 
minimal realizations related in the usual manner, i.e., as in 

Proof: We know h(L) = CALP1B and g ( K )  = 
(12). Then, h(L)g(K) = 0 if and only if AL-lAK-l - - 0. 

CAK-'B, so that 

h(L)g(K) = CAL-'BCAK-'B 

= CAL-lAK-lB - CALAKB 
- - CAL-IAK-IB 

(using (16)) 

(18) 

The last equality follows because th? FIR property and min- 
imality of the realizations imply CAL = 0 and AKB = 0 

(see Lemma 13.9.1 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]). Now, consider the product I !A 1 AL-lAK-lp AB . . .  A"-'B] (19) 
" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

CAm-1 Q - 
P 

where m is the McMillan degree of G,(z). By using C A L  = 
0 and AKB = 0 it follows that the only nonzero ele- 
ment of this matrix product is the M x A4 block matrix 

on the top left comer. However by minimality we know that 
P and Q have full column-rank and row-rank respectively 
(= m) so that the above product will be zero if and only 

us h(L)g(K) = 0 if and only if 

CAL-IAK-IB (. i.e., h(L)g(K),  by (18)), which will appear 

if AL-1AK-l = 0 Th . 
AL-1AK-1 = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Iv .  FACTORIZATION OF THE B~ORTHOGONAL 
LAPPED TRANSFORM (BOLT) 

The lapped orthogonal transform (LOT) was introduced in 
[7] and further studied in [6] and [8]. We will define the LOT 
to be an A4 channel maximally decimated analysis bank, in 
which the polyphase matrix satisfies two properties: first, it is 
a first-order causal FIR system, that is 

(20) 

(i.e., E(z) in Fig. l(b) has the above form). Second, it is 
paraunitary, that is, 

G(z) = g(0) + z-lg(1) 

G-l(z) = G ( z )  = gt(0) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzg t (1) 

The inverse, therefore, is anticausal FIR. Though G(z) is a 
first order system (i.e., the highest power of 2-l  is z- I ) ,  its 
degree is equal to the rank of g (  1). Historically, in the original 
definition of the LOT, the analysis filters were additionally 
restricted to be symmetric or antisymmetric (i.e., have linear 
phase) [8]. In our discussion, we shall not make this restriction. 

A generalization of the LOT to the biorthogonal case 
would result if we restrict G(z) above to be merely FIR 
with an anticausal FIR inverse, and remove the paraunitary 
(orthonormal) constraint. The inverse is not necessarily equal 
to G(z) anymore. We will call this system the biorthogonal 
lapped transform (BOLT). 

Fig. 4. Implementation of g(0) + z- 'g( l ) ,  where g(0) = D and 

g(1) = CB. 

Definition 4. I-The Biorthogonal Lapped Transfom 
(BOLT): The BOLT is a maximally decimated analysis bank 
(Fig. l),  where the polyphase matrix E(z) is a first-order 
causal FIR transfer matrix (i.e., as in (20) and has anticausal 
FIR inverse G-'(z). We sometimes say that G(a) is a 
BOLT matrix. Note that a BOLT matrix is just a first order 
cafaca3 system. 

Clearly, the LOT is a special case of the BOLT. Unlike 
the LOT, the anticausal FIR inverse of the BOLT could have 
higher order. Here is an example: 

G(z)  = 1 , 
-1 + z-1 0 

1 

where G(z) has order = 1 and the FIR anticausal inverse has 
order = 2. However, the degree of G-'(z)  in z is still equal 
to the degree of G(z) in 2-l (see Observation 5 at the end 
of Section V-A of [l]). 

Let (A, B , C , D) and (A, B , C , D ) be minimal realizations 
of G(z) and its anticausal FIR inverse G-'(z) related as 
usual (i.e., (12)). Thus, g(0) = D, and g(1) = CB. From the 
structure shown in Fig. 4, we see that A = 0 for any minimal 
realization of G(z). Therefore, any vector s satisfies As = 0. 

Next, all the eigenvalues of A are zero, and there exists tt # 0 

satisfying t t A  = 0. Thus, we can always find vectors t and 
s satisfying (17). By using Theorem 3.2, we conclude that the 
degree reduction step will succeed.* The reduced remainder 
function will continue to satisfy A = 0 so that we can repeat 
the degree reduction. We therefore have the following: 

Theorem 4.1-BOLT Factorization: Consider an M-  
channel maximally decimated filter bank with analysis bank 
polyphase matrix G(z)  = g(O)+z-'g(l). Suppose this has an 
FIR anticausal inverse. Then, we can factorize G(z) as 

G ( z )  = Vp(z)Vp-i (2) . . . Vi (z)Go (22) 

that is, as in Fig. 5, where we have the following: 
1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the McMillan degree of G(z) (i.e., p = the rank of 

the A4 x A4 matrix g(1)). 
2) V,(z) = I - u,v, t + Z - ~ U , V ~  with V ~ U ,  = 1. 

3) Go = G(1) and is nonsingular. 

2Note that since A = 0, the quantity AL-'A''-' = 0 in Theorem 3 3, 

and yet, the factonzation succeeds This is because AL-lAz'-l # 0 is only 
a sufficient but not necessary condition. 
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Fig. 5.  Factorization of the degree-p biorthogonal lapped transform (BOLT) 2-1 2-1 

in terms of degree-one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcufucafi building blocks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  
matrices. 

Second factorization of the BOLT in terms of constant nonsingular 

Comments: 
1) Conversely, a product of the form (22) represents a 

causal FIR system with anticausal FIR inverse, but it 
may not be BOLT. This is because in general the product 
does not have the form (20) but can have higher terms, 
e.g., zP2g(2)  and so forth. In the next section we will 
show how to further constrain the parameters of (22) 
which will ensure that the product is BOLT. 

2) If G(z) has real coefficients it can be verified that the 
coefficients of V,(z) are also real. 

3) For the special case where the BOLT is a LOT, we 
have U, = v, so that each building block V,(z) is 
paraunitary . 

4)  Complexity. Implementation of the building block in 
Fig. 2 requires 2M multiplications (even if U = v as 
in the LOT case). So the number of multiplications 
in the structure of Fig. 5 equals 2Mp plus whatever 
is required for Go. Since the polyphase matrix works 
at the decimated rate, this implies we need a total of 
2p multipliers (plus cost of Go) per input sumple, to 
implement the analysis bank of a degree-p LOT or 
BOLT. 

5 )  Smith-McMillan form. With p denoting the degree, it 
can be shown that the Smith-McMillan form of G(z)  is 1. This follows from the fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z) = 

that the quantities Li defined in Theorem 5.2 of [l] 
satisfy 0 5 5 1. 

Note that a degree one system also has order = 1. Therefore, 
a degree one cafacaji is a BOLT and can be factorized as 
above, with p = 1. We can express it in the form 

z - l l p  [ 0 I M - p  

G(z) = (I - uvt + z-luvt)Go (23) 

where utv = 1 and Go is nonsingular (in fact Go = 
G( 1)). Therefore, (23) represents the most general degree- 
one cafacaji. The matrix Go has M 2  elements and each of 
the vectors U and v has M elements. Since these elements are 
constrained by the equationut v = 1, the number of degrees of 
freedom in the degree one cafacaji is equal to (2M-  1) +M2. 
We summarize the preceding result in the following corollary. 

Corollary 4. I-The Most General Degree-one cafacaji Sys- 
tem: A transfer matrix is cafacaji of degree one if and only if 
it has the form (23), where utv = 1, and Go is nonsingular. 

A Second Cascaded Realization: The M x M building 
block V,(z) and the factorization (22) can be rewritten in a 
form that makes the cufacaji property obvious by inspection. 
To obtain this, let U,, 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 M -  2 be a set of mutually 
orthogonal vectors, which in turn are orthogonal to v. We see 
that V(z)u, = U,. (The subscript on V(z) is dropped for 

simplicity.) We also see that V(z)u = z-lu. Thus 

V(z)[uo U1 . . .  UM-2 U ]  

call this T 

Since vtu = 1, the vector U is not in the span of the ui's. 
Therefore, the matrix T is nonsingular and we can rewrite the 
above as 

Thus, the general form of the degree-one cafacaji in (23) can 
be rewritten as 

where T and S are nonsingular matrices. Therefore, the BOLT 
factorization (22) can be rewritten as 

where T; are nonsingular matrices. The structure is shown in 
Fig. 6. The previous factorization (22) has only 2Mp + M 2  
parameters, which is less than the number of matrix elements 
M 2 p  + M 2  in (27). Therefore, there is  some redundancy in 
the representation (27), but its advantage is that it is explicitly 
clear that the inverse is anticausal FIR. 

v. MORE RESULTS ON FIRST-ORDER SYSTEMS 

AND BIORTH~GONAL LAPPED TRANSFORMS 

Consider a first order M x M transfer matrix of the form 

G(z) = g(0) + z-lg(1). (28) 

Let the McMillan degree be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (i.e., the rank of g(1) is p). 
Suppose G(l)  is nonsingular (as is the case when there exists 
an FIR inverse, since the determinant would then be a delay). 
We can then rewrite G(z) = G(l)F(z) where F( l )= I. 
Therefore, we can write 

F(z) = I - U V t  + z-l U Vt (29) vv 
M x p p x M  

with the constant matrices U and V t  having rank p. We 
will now relate the properties of the inverse F-'(z) to the 
properties of the matrices UVt and VtU. Such a study adds 
significantly to the understanding of the biorthogonal lapped 
transform. 



1109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVAIDYANATHAN AND CHEN: ROLE OF ANTICAUSAL INVERSES IN MULTIRATE FILTER BANKS-PART 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z-‘Ip 
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Fig. 7. Implementation of the system F ( i ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Inverse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the First-Order System ( I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- UVt + z-lUVt) 

The nature of the inverse of (29) depends largely on the 
properties of the p x p matrix VtU as shown by the results 
to be developed below. 

Lemma 5.1: Consider the system F(z)  = I - UV + 
z-lUVt, where U and V are M x p with rank p (so that 
F(z)  has degree p).  There exists an anticausal inverse for this 
system if and only if VtU (which is p x p)  is nonsingular. 

Proot Fig. 7 shows an implementation of F(z) with 
p delays, i.e., a minimal implementation. The state space 
description (A, B, C, D) for this is 

t 

Theorem 5.1: Consider the first-order system F(z) = I - 
UVt + z-lUVt, where U and V are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp with rank p (so 
UVt has rank p and F(z) has degree p).  Then, the inverse 
of F(z) is 

1) FIR if and only if all eigenvalues of UVt are restricted 
to be 0’s and 1’s. 

2) FIR and anticausal (i.e., F(z)  is cufucufi) if and only 
if UVt has p of its eigenvalues equal to unity and the 
remaining M - p eigenvalues equal to zero. 

3) FIR and causal (i.e., F(z) is unimodular in z-’) if and 
only if UVt has all eigenvalues equal to zero. 

Comments: 
1) Restricting the eigenvalues of a matrix P to be zeros 

and ones does not imply that P2 = P or that it is a 
projection matrix? For example, the matrix UVt in (33) 
has all eigenvalues = 0, but P2 = 0 # P. 

2) Since UVt has rank p, it can have at most p nonzero 
eigenvalues. However, it could be fewer, as in the 
extreme example of a triangular matrix with all diagonal 
elements equal to zero. Another example is (33), which 
has rank = 1, but all the eigenvalues are equal to zero. 

Proof of Theorem 5.1: From the unitary triangularization 
theorem [ll], we can write UVt = T A T t ,  where 
TTt = I, and A is upper triangular with the eigenvalues 
{ Ao, A1 . . . AP-l, 0, . . . 0)  on the diagonals. (Since the rank 
is p there could be at most p nonzero eigenvalues). We can 

A = O ,  B = v ~ ,  C = U ,  D = I - U V ~ .  (30) 

The realization matrix R is then 

P M  

. (31) 
M U I - U V t  then express zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR=[. A B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I=” ( 0  

Recall from Theorem 5.1 of [ 11 that there exists an anticausal 
inverse if and only if the above matrix is nonsingular. We 
will show that this matrix is nonsingular if and only if VtU 

is nonsingular. Suppose Rx = 0 for some vector x = 

Then , 

vtx, = 0 ,  and Uxl + x2 = 0 .  (32) 

Combining these two equations, we get VtUxl  = 0.  If VtU 
is nonsingular, then XI = 0,  and therefore, x2 = -Uxl = 0 
from (32). This implies that if Rx = 0 ,  then x is necessarily 
0.  Therefore, R is nonsin ular. 

such that VtUy = 0. If we now choose XI = -y and 
x2 = U y ,  then R is annihilated by x proving that it is singular. 
Therefore, R is nonsingular if and only if VtU is nonsingular. 

On the other hand, if V 7 U is singular, there exists y # 0 

This completes the proof. 0 
As an example suppose 

uvt = [;][I - 11. (33) 

Then, p = 1, but VtU = 0, therefore, there does not exist an 
anticausal inverse. As another example suppose UVt itself is 
nonsingular (i.e., p = M ) ;  then VtU is nonsingular and there 
exists an anticausal inverse, possibly IIR. The next theorem 
makes precise the conditions under which the inverses are FIR. 

so that 

P - 1  

detF(z) = n(1 - Ai + z-lxi).  (35) 
i=O 

This is of the form (which is necessary and sufficient 
for the existence of an FIR inverse) if and only if A, = 
0 or 1 for each i .  Since the degree of F(z) is p, the FIR 
inverse is anticausal if and only if the determinant is cz-p [ 1, 
theorem 5.31. This will be the case if and only if UVt has 
p eigenvalues equal to unity (and, of course, the remaining 
M - p eigenvalues = 0). Finally the FIR inverse is causal 
(i.e., F(z) is unimodular) if and only if the determinant is a 

0 
We can combine Lemma 5.1 and Theorem 5.1 and restate 

everything in terms of VtU rather than UVt as follows. 
Theorem 5.2: Consider the system F(z) = I - UVt + 

z - ~ U V ~ ,  where U and V are M x p with rank p (so UVt 
has rank p and F(z) has degree p).  Then 

1) F(z) has an anticausal inverse if and only if VtU is 

2) The inverse of F(z) is FIR if and only if all eigenvalues 

constant, that is A, = 0 for all z. 

nonsingular. 

of VtU are restricted to be 0’s and 1’s. 

3 A  matrix P is said to be a projection if it is Hermitian and P2 = P (see 
p. 75 of [IO]). 
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3) The inverse of F(z) is FIR and anticausal (i.e., F(z) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cafacafi) if and only if VtU has all eigenvalues equal 
to unity. 

4) The inverse of F(z) is FIR and causal 6% F(z) is 
unimodular) if and only if VtU has all eigenvalues equal 
to zero. 

Theorem 5.2 (part 3) we can say that a system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ( z )  is BOLT if 

and only if it has the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(l)( I -UUt +t- 'UVt) ,  
where VtU has all eigenvalues equal to unity. 

In Section IV, we showed that the BOLT can be factorized 
as in (22), where 

Proofi Part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is a repetition of Lemma 5.1. Parts 2 and 4 vm(z) = I - umvk + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-lUmVki vkum = (37) 

follow from Theorem 5.1 by using the fact that every nonzero 
eigenvalue of the matrix PQ is an eigenvalue of QP (for 

any two and for which pQ and QP are 
defined). Part 3 follows by combining parts 1 and 2; indeed, the 
nonsingularity of VtU and the condition that the eigenvalues 
be restricted to be ones and zeros is equivalent to the statement 
that all the eigenvalues of UtU are equal to unity, 

Example 5.1: The cases where V ~ U  = I,, and V ~ U  = o 
give examples of FIR systems with anticausal and causal FIR 
inverses, respectively. We have 

and p is the degree of G(z)  (i.e., p = rank of g(1)). 
Conversely, if we have a product of the form (22) with V, ( z )  
as above, it still represents a system with anticausal FIR 
inverse, but may have order >1 (i.e., there could be terms 
g(n)zPn.n > 1 in G(z)). To ensure that the product has 
order = 
further restrictions on u k  and vk. Suppose we restrict these 
vectors to be such that 

(i.e., that it represents a BOLT), we need to 

(38) 1, i = k  

Then, it is easily verified by induction that the product 
(I - U V t  + t-1UVt)-' 

I -  MU^ + z ~ ~ t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I  I + U V ~  - z - 1 ~ ~ t  for U ~ U =  o (36) G(z) = G(l)V,,(z)V,-l(z)...Vi(z) (39) 

for U ~ U  = I,, 

as one can verify by direct multiplication. Notice that if 
VtU = I,, then the inverse is also of first order. Therefore, 
first order cafacaj systems with higher order inverses (as in 
(21)) are not covered by the system with V ~ U  = I,,. In Section with the constant matrices V and U given by 
11-A, we saw the special case where p = 1 (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and V were 
vectors with VtU = 1 and 0, respectively). V = [ v 1  v2 . . .  v,,], U = [ u 1  U2 . . .  U,,]. 

with Vm(z) defined as above does  duce to the form 

G(z) = G(l)(I - UUt + z- lUVt)  (40) 

(41) Example 5.2: The following example 

satisfies part 4 of Theorem 5.2 so that F(z) is unimodular, 
even though VtU # 0. 

Example 5.3: As a special case, consider I - P + z-'P 
where P2 = P. With p denoting the rank of P, we can 
write P = U V ~ .  NOW ~2 = P implies U U ~ U V ~  = uvt. 
Premultiplying by U t  and postmultiplying with V and using 
the facts that UtU and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUtU are nonsingular we obtain VtU = 
I. From part 3 of Theorem 5.2 we therefore conclude that 
there exists an anticausal FIR inverse for I - P + z- lP ,  when 
P2 = P. In fact the inverse is I - P + zP, as can be verified 
by direct substitution. 

Example 5.4-Unimodular System: By a slight modifica- 
tion of the above theorem we can show that I + z- lUVt 
is unimodular if and only if VtU has all eigenvalues equal 
to zero. 

Notice that the constant matrix G(l) occurs as the left-most 
factor unlike in (22). This difference is immaterial; a slight 
variation of the steps would lead to the form (22). Except for 
this difference, the structure for (39) is as in Fig. 5. 

Conversely, can we represent any BOLT system as in (39) 

with the restriction (38)? The answer is in the affirmative: If 
G ( z )  is BOLT, this means in particular that it has an FIR 
inverse, and therefore, G(  1 )  is nonsingular. Therefore, we can 
always write a degree p BOLT as in (40), where U and V are 
M x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp matrices with rank p. Now, U V t  = U T T t V t  for any 

unitary T ,  and we can rewrite U V t  = UlV, by defining U1 = 

U T  and V? = T t V t .  Note that V?U1 = T t V t U T .  By proper 

In other words, we can assume without loss of generality that 
VtU is triangular. Since G(z)  is cafacafi, we see that this 
matrix has all diagonal elements equal to unity (use part 3 of 
Theorem 5.2), that is 

t 

choice of T ,  we can ensure that VIU1 t is a triangular matrix. 

r i  x x . . .  XI 

(42) 
B. General Expression and Complete Parameterization 
of the Biorthogonal Lapped Transforms (BOLT) 

In Section IV, we considered the biorthogonal lapped trans- 
forms or BOLT systems. These are first-order cafacafi systems, 
that is, systems of the form G(z) = g(0) +z-'g(l) with anti- 
causal FIR inverses. Since this implies G( 1) is nonsingular, we 
can write G(z)  = G ( l ) F ( z )  where F(z) is as in (29). Using 

where x stands for possibly nonzero elements. NOW, denote 
the columns of V and U as in (41). Then the property (42) 
means that (38) is satisfied. 
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Thus, we have defined a set of vectors U, and v,, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
m 5 p such that they satisfy (38). We already mentioned that 
if such U, and v, are used in the product (39), the result has 
the form (40) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and V given by (41). In other words, the 
given BOLT matrix (40) can indeed be represented as in (39), 

with the vectors satisfying (38). 

We can summarize all of the above results as follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 5.3-BOLT Characterization: Consider an M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 

M transfer matrix G(z). We say that this is a BOLT if 
G(z) = g(0) + z-lg(l), and it has an anticausal FIR inverse. 
The following statements are equivalent: 

1) G(z) is a BOLT. 
2) G(z) can be factorized as G(z) = G(l)Vp(z)Vp-l(z) 

+ . . V,(z), where G(l)  is nonsingular and V,(z) are 
as in (37), with the vectors V k  and U, satisfying (38). 

3) G(z) can be written in the form G(z) = G(l)(I  - 
UVt + a-'UVt), where G(l) is nonsingular and VtU 
has all eigenvalues equal to unity. 

4) G(z) can be written in the form G(z) = G(l ) ( I  - 
UVt + z - ~ U V ~ ) ,  where G(l)  is nonsingular and VtU 
has the triangular form (42). 

Thus, if G(z) is BOLT with VtL4 written in the form (42), 

the columns of V and U (see (41)) satisfy (38) and can 
be taken to be the vectors v, and U, in the factorization 
(39). Therefore, the factorization is determined simply by 
identifying the columns of V and U. 

Degrees of Freedom: Thus, the BOLT is characterized by 
(39) which has a nonsingular matrix G( 1) with M 2  elements, 
and 2 p  vectors uk. Vk, with M elements each, that is, there 
are M2+2pM scalar elements associated with the expression 
(39). However, the number of freedoms is less than this, in 
view of the constraints (38). In the real coefficient case, it can 
be verified that the M x M degree-p BOLT has M2+2pM- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5p(p+ 1) degrees of freedom. In the special case of the 
LOT (i.e., the paraunitary case), we have u k  = Vk and G(1) 
is unitary so there are only 0.5M(M- l)+pM- 0.5p(p+ 1) 
degrees of freedom. Traditional transform coding (which is a 
special case where UVt = 0 and G(l) is unitary) has only 
0.5M(M- 1) freedoms. The extra freedom offered by the 
BOLT can perhaps be exploited to obtain better attenuation 
for the analysis filters (see example below), or to impose 
other constraints such as linear phase, regularity (for wavelet 
synthesis [12]) and so forth. This topic requires detailed 
investigation, and is beyond the scope of this paper. 

Design Example 5.1-The BOLT Filter Bank: We now 
present a design example for the BOLT filter bank.4 Let 
M = 8 (i.e., an eight channel filter bank; see Fig. l(a)). Let 
the polyphase matrix E(z) = g(O)+z-lg(l) with rank of 
g(1) equal to three (i.e., degree of E(z) is three). This is 
constrained to be a BOLT by expressing it in the factored 
form (39) and constraining the vectors to satisfy (38). Under 
these constraints, the magnitude responses (Hk(eJW) 1 of the 
analysis filters are optimized. The result is shown in Fig. 8(a). 

For comparison, Fig. 8(b) shows the responses of the cor- 
responding LOT filter bank (i.e., with the vectors further 

We would like to thank Y.-P. Lin, graduate student, Caltech, for generating 
this example. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 8. Design Example 5.1. Magnitude responses of the analysis filters for 
an eight-channel filter bank (a) BOLT filter bank; (b) LOT filter bank. The 

degree of the polyphase matrix is p = 3. 

constrained such that v; = U; for each i, and G( 1) constrained 
to be unitary). The improved filtering characteristics of the 
BOLT over the LOT is clear from the plots. The BOLT pro- 
vides a minimum stopband attenuation of 27 dB, whereas it is 
about 20 dB for the LOT. Notice that the analysis filters in the 
examples do not necessarily have linear phase; our definitions 
of the LOT and the BOLT do not impose this restriction. 

VI. DEGREE-TWO DYADIC BUILDING BLOCKS 

If the degree-one reduction scheme of Section I1 has to 
work, there should exist vectors U and v such that (1 1) holds. 
If this is not the case, one might consider extracting the 
building block from the right rather than left, i.e., one might 
try the decomposition G, (2) = G,- 1 (z)V, (z) instead of 
(7). In this case, the degree reduction equations remain the 
same except that g,(0) and h,(O) are interchanged. Thus, 
degree-one reduction will fail when neither of the following 
two conditions: 

Condition 1: vtg,(O) = 0, h,(O)u = 0, utv = 1, 

Condition 2: vth,(O) = 0, g,(O)u = 0, utv = 1 

(43) 

I (44) 

can be satisfied for any choice of U and v 
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A. Cases Where Degree-One Reduction Fails 

We can create examples of cafacaji systems for which 
degree-one reduction will fail. For example, let us consider 
the 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( M  = 2). In this case, we can exactly specify 
the conditions when the degree reduction will fail. 

Lemma 6.1: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,(z) be 2 x 2 cafacaji with inverse 
H,(z) (both as in (6)). Assume g,(O) # 0 and h,(O) # 0 

and K ,  L > 0 in (6). Then, the degree reduction by one (using 
the building block (2) will fail if and only if g,(O)h,(O) 
= h,(O)g,(O) = 0, that is, if and only if DD = DD = 0 in 
terms of state space notations (Section 111). 

Proot Since the 2 x 2 matrices g,(O) and h,(O) are 
singular (see Section V-C of [l]) and nonzero, the vectors v 
and U satisfying vth,(O)= 0 and g,(O)u = 0 are unique 
up to scale. Clearly, g,(O) and h,(O) have rank one, and we 
can write 

g,(O) = abt and h,(O) = cdt 

for some 2 x 1 nonnull vectors a ,b ,c  and d. Thus, 
vth,(O) = 0 and g,(O) U = 0 imply, respectively 

vtc=O and b tu=0 .  

From this, we see that if vtu = 0, then U = c and v = b 
(up to scale), and this implies btc = vtu = 0, that is, g,(O) 
h,(O) = 0. Therefore, if (44) cannot be satisfied then g,(O) 
h,(O)= 0. Conversely, let gm(0) h, (0) = 0. Then, btc = 

0. Therefore, the conditions vth,(O) = 0 and g,(O)u = 0 

imply, res ectively, v = b and U = c (up to scale) so that 
vtu = bpc = 0, and (44) cannot be satisfied. Thus, (44) 
cannot be satisfied if and only if g,(O) h, (0) = 0. Similarly, 
(43) cannot be satisfied if and only if h,(O) g,(O) = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Since the cafacaj system and its inverse satisfy the state 
space relations (15) and (16), we can restate the above result 
in terms of state space parameters (Section 111) like this: the 
degree-one reduction step will fail in the 2 x 2 case if and 
only if 

CB = CB = I. 

This fo!lows by setting DD = 0 in the last equation of (16) 
and DD = 0 in the last equation of (15). 

1) 2 x 2 Example Where Degree-One Reduction Fails: 
Now, consider the A 4  x M system 

G,(z) = abt + z-'I + z-'abt, atb = 0. (45) 

where a and b are nonzero M x 1 vectors. We can verify that 
the inverse is G;'(z) = -abt + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzI - abtz2 by multiplying 
the two expressions. This system is therefore cafacaji. Since 
a tb = 0, we have g,(O)h,(O) = h,(O)g,(O) = 0. 

Therefore, by Lemma 6.1, the degree reduction step will fail 
in the M = 2 case. For M = 2, the system (45) therefore 
serves as a cafacaj example where the degree-one reduction 
fails, that is, neither (43) nor (44) be satisfied for any pair of 
vectors U and v. 

In Appendix A, we show that for arbitrary M the degree 
of (45) is equal to M ,  and present a minimal implementation 
(Fig. 10). 

Fig. 9. Minimal structure for the AI x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31 degree-2 cafacuj'i system (46). 

2) M x M Example Where Degree-One Reduction Fails: If 
M > 2, the system in (45) is still cufacaji, but its degree 
can be reduced successfully by one, using the building block 
(2). To see this, note that in this case there exists a vector w 

orthogonal to both a and b so that we can set U = v = w 

and satisfy (43). To create an M x M example that cannot be 
factorized into degree-one building blocks, consider 

G ( z )  = PPt + abt + z-'(I - PPt) + zP2abt (46) 

where P is M x ( M -  2), and a and b are column vectors such 
that [P a b] is unitary. It can then be verified that its inverse is 

(47) 

which is anticausal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIR. In the notation of (6), we have 
g,(O) = PPt+abt  and h,(O) = PPt -abt. Both of these 
matrices have rank M - 1 (e.g., note that g,(O)[P a b] = 
[P 0 a]; therefore, gm(0)  has rank M -  1) so that the 
annihilating vectors U and v in (43) are unique. In fact the 
annihilating vectors in (43) are U = a and v = b so that 
utv = 0. Thus, the condition utv = 1 in (43) cannot be 
satisfied. Similarly (44) cannot be satisfied. Therefore, the 
degree of (46) cannot be reduced by extracting a degree-one 
cafaca$ building block. 

The degree of G ( z )  is clearly 2 2 since the order is seen 
to be two from (46). We will show that the degree is exactly 
two by displaying an implementation with two delays. Since 
[P a b] is unitary, we have = aat + bbt + PPt. 
Using this, we can see that the system G(z)  in (46) can be 
implemented as in Fig. 9. Therefore, the degree of G ( z )  is 
two indeed. 

G-'(z) = PPt - abt + %(I - PPt) - z2abt 

B. Degree Reduction Equations with Degree-Two 
Building Blocks 

The fact that we cannot factorize the 2 x 2 system (45) 
into degree-one blocks leads us to ask if we can factorize a 
general 2 x 2 cafacaji system using a combination of degree- 
one and degree-two building blocks. With some algebra it can 
be shown (Appendix B) that the most general 2 x 2 cafacaji 
system with degree equal to two, which cannot be factorized 
into degree one cafacaj systems has the form 

V,(z) = uvt + z-'I + S Z - ~ U V ~ ,  utv = 0 (48) 

where s is a nonzero ~ c a l a r . ~  By explicit multiplication we can 
verify that the inverse is V,'(z) = -suvt + zI - z2uvt. 

We can of course multiply this with a nonsingular constant matrix, but it 
can be absorbed in G,, -2 (2 )  in (49) and is of no interest. 



VAIDYANATHAN AND CHEN: ROLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF ANTICAUSAL INVERSES IN MULTIRATE FILTER BANKS-PART zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 1113 

Since V ~ ( Z )  is degree-two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcafacaj, we have [detVs(z)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

Now, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG , ( z )  be degree-m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcafacaji with [detG,(z)] = 
c,z-,. Suppose degree-one reduction fails (i.e.. we cannot 
find U and v satisfying either (43) or (44)). Suppose we wish 
to use (48) to obtain a degree reduction by two, i.e., we wish 
to find a degree-(m- 2) cafacaj system G,-z(z) such that 

cz-2, c # 0. 

G,(z) = VZ(Z)G,-2(Z). (49) 

Since [detVz(z)] = czP2, we have [detG,-n(z)] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c , - ~ z - ( ~ - ~ ) .  It can be shown (Appendix C) that G,-z(z) 
will be cafacaj if and only if U and v are such that 

g,(0) = uv t g,(l), h,(O) = -sh,(l)uvt (50) 

where g, (n) and h, (n)  are the impulse response coefficients 
of G,(z) and its inverse respectively (see (6)). If the above 
can be satisfied by choice of U and v then Gm-2(z) is cafacaj 
with degree m - 2 because its determinant is c , - ~ z - ( ~ - ~ )  
(see Theorem 5.3 of 111). 

1) Another Example of an Irreducible cafacaj System: 
Consider the 2 x 2 system G ~ ( z )  = abt + zP2I  + zP4abt 
with atb  = 0, which is the same as (45) with z replaced by 
z2.  Therefore, it is cafacaj. We still have g,(O) = abt and 
h,(O) = -ab* so that degree-one reduction is not possible 
(as seen in Section VI-A). Since g,(l) = 0 ,  (50) cannot be 
satisfied. Thus we cannot do degree reduction by two, if we 
use the building block (48). Since the degree one building 
block and the degree two building block used above are 
the most general cafacaj building blocks, the system G ~ ( z )  
cannot be factorized into lower degree cafacafi blocks at all. 

VII. FACTORIZATION OF CAUSAL 

FIR SYSTEMS HAVING FIR INVERSE 

Let G,(z) be a causal FIR system, with an FIR inverse 
(not necessarily anticausal). Then its determinant has the form 
czPm, though m does not represent the McMillan degree 
unless the inverse is anticausal. Unless G,(z) is unimodular 
in z-' ,  we have m > 0, and the determinant is zero for z = m. 
In other words, the constant coefficient g,(0) = G,(m) is 
singular. 

Suppose we wish to express G,(z) in the form G,(z) = 
V, (z)G,- ( z ) ,  where V, ( z )  is the familiar cafacaj build- 
ing block (8). Since G,-l(z) = V,(z-')G,(z), it is still 
FIR. From (9), we see that we can force it to be causal by 
choosing v such that vtg,(0) = 0. The singularity of g, 
(0) ensures the existence of such nonnull v. The choice of U 

is arbitrary except for the requirement utv = 1 in (8). For 
example, we can make U = v with unit norm in which case 
V, (2 )  becomes paraunitary. 

Since [detV,(z)] = z-', we have [detG,-l(z)] = 
Thus G,-l(z) is causal and FIR with the degree 

of determinant reduced by one. We can repeat this process 
until we obtain 

G,(z) = Vm(z)Vm-i(z) . . .  Vi(z)Go(z) (51) 

where Go(.) is unimodular (causal and FIR with determinant 
c # 0). Therefore, we have proved the following. 

Theorem 7.1: Let G,(z) be M x M causal FIR with FIR 
inverse so that [detG,(z)] = c # 0. Then, we can 

factorize it as in (51), where V,(z) = (I - u,v, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-l 

umvm), vmum = 1, and Go(z) is unimodular in z-'. The 
matrices V,(z) can be chosen to be paraunitary if desired (by 
taking U, = v,) in which case the product of quantities on 
the right hand side preceding Go(.) is paraunitary. 

This result has some resemblance to the so called inner-outer 
factorization used in system theory [ l ,  ref. [35]]. However, 
the preceding statement is for FIR matrices with FIR inverses 
and provides detailed structural form for the factorization. 
As in Section IV, we can replace the building blocks V,(z) 
as in (25) to obtain a factorization of the form (27), where 
To is replaced with a unimodular remainder Go(z). For the 
special case where G,(z) is paraunitary with degree m, the 
building blocks V,(z) are paraunitary, and the terminator 
Go(z) becomes a unitary constant. In this case all T, in (27) 
will be unitary. 

We therefore see that any casual FIR system GN(z) with 
an FIR inverse can be written as GN(z)  = Gc,a(z)Gc,c(z), 
where Gc,,(z) is causal FIR with anticausal FIR inverse, and 
G,,,(z) is causal FIR with causal FIR inverse. This follows by 
letting Go@) = Gc,c(z) and lumping the remaining factors 
on the right side of (51) into Gc,,(z). In particular we can 
let Gc,,(z) be paraunitary without loss of generality. Notice, 
however, that the degree of Gm(z) is not, in general, the sum 
of the degrees of Gc,,(z) and Gc.c(z); therefore, this is not 
a minimal decomposition. 

t 
t t  

VIII. CONCLUDING REMARKS AND OPEN PROBLEMS 

Many of the previously reported designs for perfect recon- 
struction filter banks were orthonormal (i.e., the polyphase 
matrix E(z) was paraunitary). In the IIR case this meant 
that if the analysis filters are causal and stable (poles inside 
the unit circle) then the synthesis filters would be anticausal 
and stable (poles outside the unit circle). In [l], we argued 
that for the FIR case, the more general class of biorthogonal 
systems can be characterized if we can characterize all causal 
FIR polyphase matrices with anticausal FIR inverse (i.e., all 
cafacaj matrices). More generally, the relevance of systems 
with anticausal inverses was elaborated in Section I-A of 
111. 

The basic similarity between causal systems with anticausal 
inverses and causal paraunitary systems is fascinating. First, 
the latter is a special case of the former. Second, the former is 
characterized by nonsingular realization matrices (for minimal 
realizations) whereas the latter is characterized by unitary 
realization matrices (up to similarity). Finally, in the FIR 
case, both of these classes have determinant equal to c K N ,  
where N is the McMillan degree. (That is, both of them 
achieve the maximum value that the degree of a determinant 
can ever achieve, viz., the McMillan degree.) In both cases, 
the most general degree-one FIR building block has the 
form (I - uvt + z-'uvt)Go, where utv = 1, and Go is 
nonsingular. In the paraunitary case, we further have U = v, 
and Go is unitary. 
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matrices. This seems to be an open issue requiring deeper 
investigation. 

In principle the set of all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcafacuji matrices can be char- 
acterized in terms of the realization matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (see (12)). 
For cufacaji systems, the matrix R is invertible, A has all 
eigenvalues equal to zero (equivalentlyAAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 where A is 
N x, N), and furthermore the matrix A in the inverse (12) 
has all eigenvalues equal to zero. Therefore, M x M cafacaji 
matrices with degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN are completely characterized by the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

179 ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2-' I M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 

(a) 

of all (N + M) x (N + M) matrices R having the following 
properties: 

i) They are nonsingular. 
ii) The top-left N x N submatrix A has all eigenvalues 

iii) The top-left N x N submatrix A of R-' has all 
equal to zero. 

eigenvalues equal to zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) Finding a simple analytic way to impose these three restric- 

an open problem. 
Fig. 10. 
the degree-M system given by abt + z - ~ I ~ ~  + ;-2abt. 

(a) Conceptual implementation of z-'If i~; (b) implementation of On a constant ( N  + M ,  ( N  + M ,  matrix is 

The most significant difference between causal systems with 
anticausal inverses and causal paraunitary systems is that 
the former cannot in general be factorized into degree one 
building blocks whereas the latter can be so factorized. This 
factorization was used in the past (see references in ch. 6 of 
[4]) for the design and implementation of orthonormal perfect 
reconstruction filter banks. We saw in Section IV that a special 
case of cufacaji systems can indeed be factorized into degree- 
one cufucaj building blocks. These are cufucaji systems of 
order one. This factorization gives rise to the biorthogonal 
lapped transform (BOLT) which is a generalization of the 
lapped orthogonal transform LOT. 

The BOLT is a maximally decimated analysis bank where 
the polyphase matrix is a first order causal FIR system 
with anticausal inverse. Since it is a generalization of the 
lapped orthogonal transform, it provides additional degrees of 
freedom in the design. It remains to see how to exploit this 
freedom while designing filter banks for data compression, 
or for generation of biorthogonal wavelets and so forth. 
These require further investigation. There are other problems 
requiring further investigation. In this paper we introduced two 
cufucaji building blocks, namely the degree one building block 
(8) and the degree two building block (48). (These are the most 
general building blocks we need to consider). We showed that 
a subclass of cafucuji systems, namely the BOLT system can 
be factorized using degree-one building blocks. On the other 
hand the degree two building block (48) cannot be expressed 
as a product of the degree-one building blocks. Furthermore 
there exist examples of cafacuji systems whose degree cannot 
be reduced using either of these two building blocks (see the 
end of Section VI-B), that is, they cannot be expressed as a 
product of any combination of the two building blocks. 

However, what does that mean? Perhaps there is a broader 
class of building blocks which will suffice for factorization; 
perhaps the number of required building blocks somehow 
depends on the order and the size (M x M) of the cafacuji 

APPENDIX A 

DEGREE OF THE SECOND-ORDER SYSTEM (45) 

For arbitrary M ,  the system (45) has degree M. To see 
this, first consider U(z) k I + z-labt, with a t b  = 0. This 
is unimodular (i.e., [detU(z)J = c # 0) with U-'(z) = 
I - abtz-l. Clearly, the causal FIR system z - ~ U ( Z )  has 
the anticausal FIR inverse zI - abt, and by construction, its 
determinant is c z P M .  In other words, z-lU(z) is cafacaji and 
its degree is M (see Theorem 5.3 of [l]). The system (43, 

which is ab* + z-'U(z) therefore has degree M. 
How do we find a structure for G(z) with only M delays? 

Since a and b are mutually orthogonal vectors, we can define 
a M x A4 unitary matrix of the form [P a b] where P is 
M x (M- 2). (For this purpose we assume that a and b have 
unit norm for simplicity.) We then have IM = aat + bbt + 
PPt so that we can implement z-'IM as shown in Fig. 10(a). 
If we insert two new branches as shown in Fig. 10(b), we 
obtain a realization of (45) with M delays. This, therefore, is 
a minimal realization. 

APPENDIX B 
MOST GENERAL DEGREE-TWO BUILDING BLOCK FOR k! = 2 

We now find the most general 2 x 2 degree-two cafacaj 
system G( x) that cannot be factorized into degree-one building 
blocks. Since G(z)  has degree = 2, it has the form 

G(z) = g(0) + z-lg(1) + z-'g(2). (B1) 

If g(2) = 0, this becomes a BOLT and can be factorized 
(Section IV); therefore, we must have g(2) # 0.  If g(0) = 0, 
then the degree-reduction condition (1 1) is trivially satisfied 
because we can first choose U, and then, let v = U. Summa- 
rizing, we have g(0) # 0 and g(2) # 0.  

We know that G-l(z)  has degree two in z (see Section 
V-A of [l]). Therefore, it has the form H(z) = h(0) + 
zh(1) + z'h(2). Since G(z) cannot be factorized into degree 
one cafacaj systems, we cannot factorize H(z-') into degree 
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one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcufucuj systems. Therefore, we can modify the argument 
in the preceding paragraph and obtain h(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0 and h(2) # 0. 

If we now equate the like powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in G(z)H(z) = I, we 
obtain, among other things, g(O)h(2) = 0 and g(2)h(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.  
Since none of the matrices is null and all of them are 2 x 
2, this implies that they all have rank one. Therefore, we can 
write 

G(z) = uvt + z-’g(l) + f 2 x y t ,  (B2) 

(B3) G-l(z) = H(z) = V ~ U ~  t + zh(1) + z2ylx, t 
for some nonzero vectors U, v, x, y, UJ., VI-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI and y l .  

From Lemma 6.1, we know that in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x 2 case, failure 
of degree-one reduction implies h(O)g(O) = g(O)h(O) = 0. 

Therefore, we conclude that v t v l  = 0 and u[u = 0 
(hence, the notation with subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI). Now, the condition 
G(z)H(z) = I implies, in particular, that v t y l  = 0 and 
y t v l  = 0 (since z2 and z P 2  terms in the product are zero). 
Since all vectors are 2 x 1 and nonnull, we conclude y l  = v i  
and y = v up to scale. Similarly from H(z)G(z) = I we 
conclude that x = U and XI = u l  up to scale. Summarizing, 
the two matrices must have the form 

(B4) 

(B5) 

for nonzero scalars s1,s2. Since v t v l  = ut,, = 0, we 
see that the condition G(z)H(z) = I implies g(l)h(l)  = I. 
Therefore, g(1) and h(1) are nonsingular. We can always 
factor them out, so let us assume g(1) = h(1) = I, that 
is, except for a constant nonsingular factor, we have the form 

G(z) = uvt + z- l I  + z-’sluvt. (B6) 

037) H(z) = V ~ U ~  t + ZI + Z ~ S ~ V ~ U ~  t 

for nonzero scalars SI,  s2. Now, by equating the coefficients 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in G ( ~ ) H ( Z )  = I we get uvt = -s2vJ.ul. t similarly 

vlut, = -sluvt. This means, in particular, u = v l  up to 

scale, and therefore utv = 0. Summarizing, the most general 
2 x 2 degree-two cufucu. system G(z), which cannot be 
factorized into degree-one building blocks has the form 

G(z) = (uvt + z- l I  + z-2sluvt)g(l) (B8) 

where utv = 0, g(1) is arbitrary nonsingular, and SI is 
arbitrary but nonzero. Its anticausal FIR inverse is 

H(z) = [g(l)]-l(-s1uvt + zI - z2uvt) 

G(z) = uvt + z-’g(l) + Y2s1uvt. 
H(z) = V ~ U ~  t + zh(1) + Z ’ S ~ V ~ U ~  t 

(B9) 

as we can double check by multiplying G(z) and H(z). 

APPENDIX C 

DEGREE Two REDUCTION 

Given the cufucuji system Gm(z) with inverse H,(z) as 
in (6), suppose we wish to perform a degree reduction by two, 
using the cufucuj building block V,(z) in (48). This means 
that we wish to find the vectors U and v such that G,(z) 

can be expressed as in (49) where Gm-2(z) is cufucu$. 
Since G,-~(Z) = V;’(z)Gm(z) it is clear that it is already 
FIR, and so is G;Y2(z) = GZ1(z)V2(2). Only causality of 
G,-z(z) and anticausality of G;L2(z) need to be enforced 
by choice of U and v. We have 

Gm-2(z) = V,l(z)G,(z) 

= (-suvt + z I  - z2uvt) 

x (g,(O) + z-lgm(l) + . . .). (Cl) 

Causality of this requires that the coefficients of z and ,z2 be 
zero, that is, g,(O) - uvtgm(l) = 0, and uvtg,(O) = 0. 

Premulti lying the first of the two conditions by vt and 

automatically satisfied. It is sufficient to satisfy g,(O) - 
uvtg,(l) = 0. This proves the first part in (50). Next 

using v r U = 0, we verify that the second requirement is 

G,!2 (2) GL1 (z)V2 ( z )  
= (hm(O) + zh,(1) + ...) 

x (UVt  + z- l I  + sz-2uv)t. (C2) 

anticausality of this requires that the coefficients of z-‘ 
be zero. Proceeding as before, we obtain the second 

in (50). 
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