
1 September 2019 | Volume 10 | Article 1068

REVIEW

doi: 10.3389/fpls.2019.01068
published: 19 September 2019

Frontiers in Plant Science | www.frontiersin.org

Role of Arbuscular Mycorrhizal 
Fungi in Plant Growth Regulation: 
Implications in Abiotic Stress 
Tolerance
Naheeda Begum 1, Cheng Qin 1, Muhammad Abass Ahanger 1, Sajjad Raza 2, 

Muhammad Ishfaq Khan 3, Muhammad Ashraf 4, Nadeem Ahmed 1,5 and Lixin Zhang 1*

1 College of Life Sciences, Northwest A&F University, Yangling, China, 2 College of Natural Resources and Environment, 

Northwest A&F University, Yangling, China, 3 Department of Weed Science, The University of Agriculture, Peshawar, Pakistan, 
4 University of Agriculture Faisalabad, Faisalabad, Pakistan, 5 Department of Botany, Mohi-Ud-Din Islamic University Azad 

Jammu and Kashmir, Muzaffarabad, Pakistan

Abiotic stresses hamper plant growth and productivity. Climate change and agricultural 

malpractices like excessive use of fertilizers and pesticides have aggravated the effects 

of abiotic stresses on crop productivity and degraded the ecosystem. There is an urgent 

need for environment-friendly management techniques such as the use of arbuscular 

mycorrhizal fungi (AMF) for enhancing crop productivity. AMF are commonly known 

as bio-fertilizers. Moreover, it is widely believed that the inoculation of AMF provides 

tolerance to host plants against various stressful situations like heat, salinity, drought, 

metals, and extreme temperatures. AMF may both assist host plants in the up-regulation 

of tolerance mechanisms and prevent the down-regulation of key metabolic pathways. 

AMF, being natural root symbionts, provide essential plant inorganic nutrients to host 

plants, thereby improving growth and yield under unstressed and stressed regimes. The 

role of AMF as a bio-fertilizer can potentially strengthen plants’ adaptability to changing 

environment. Thus, further research focusing on the AMF-mediated promotion of crop 

quality and productivity is needed. The present review provides a comprehensive up-to-

date knowledge on AMF and their influence on host plants at various growth stages, their 

advantages and applications, and consequently the importance of the relationships of 

different plant nutrients with AMF.
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INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) facilitate host plants to grow vigorously under stressful 
conditions by mediating a series of complex communication events between the plant and the 
fungus leading to enhanced photosynthetic rate and other gas exchange-related traits (Birhane 
et  al., 2012), as well as increased water uptake. Numerous reports describe improved resistance 
to a variety of stresses including drought, salinity, herbivory, temperature, metals, and diseases 
due to fungal symbiosis (Rodriguez et al., 2008; Ahanger et al., 2014; Salam et al., 2017). Nearly 
90% of plant species including flowering plants, bryophytes, and ferns can develop interdependent 
connections with AMF (Zhu et al., 2010a; Ahanger et al., 2014). AMF form vesicles, arbuscules, and 
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hyphae in roots, and also spores and hyphae in the rhizosphere. 
Formation of hyphal network by the AMF with plant roots 
significantly enhances the access of roots to a large soil surface 
area, causing improvement in plant growth (Bowles et al., 2016). 
AMF improve plant nutrition by increasing the availability as 
well as translocation of various nutrients (Rouphael et al., 2015). 
AMF improve the quality of soil by influencing its structure and 
texture, and hence plant health (Zou et al., 2016; Thirkell et al., 
2017). Fungal hyphae can expedite the decomposition process 
of soil organic matter (Paterson et al., 2016). Furthermore, 
mycorrhizal fungi may affect atmospheric CO2 fixation by host 
plants, by increasing “sink effect” and movement of photo-
assimilates from the aerial parts to the roots. Keeping in view 
the importance of AMF and the research advancements related 
to their applications in agriculture, the present review focuses 
on the role of AMF as bio-fertilizers in the regulation of plant 
growth and development with improved nutrient uptake under 
stressful environments, and the level to which AMF can enhance 
plant growth under stressful environments.

BACKGROUND OF ARBUSCULAR 
MYCORRHIZAL FUNGI

AMF are soil-borne fungi that can significantly improve plant 
nutrient uptake and resistance to several abiotic stress factors 
(Sun et al., 2018). A majority of the species of AMF belong to the 
sub-phylum Glomeromycotina, of the phylum Mucoromycota 
(Spatafora et al., 2016). Four orders of AMF, namely, Glomerales, 
Archaeosporales, Paraglomerales, and Diversisporales, have 
been identified in this sub-phylum that also include 25 genera 
(Redecker et al., 2013). They are obligate biotrophs and ingest 
plant photosynthetic products (Bago et al., 2000) and lipids to 
accomplish their life cycle (Jiang et al., 2017). AMF-mediated 
growth promotion is not only by improving water and mineral 
nutrient uptake from the adjoining soil but also by safeguarding 
the plants from fungal pathogens (Smith and Read, 2008; Jung 
et al., 2012). Therefore, AMF are vital endosymbionts playing 
an effective role in plant productivity and the functioning of 
the ecosystem. They are of key importance for sustainable crop 
improvement (Gianinazzi et al., 2010).

CHARACTERISTICS OF AMF SYMBIOSIS

The symbiosis of AMF with plants had been reported 400 million 
years ago (Selosse et al., 2015). Such types of links are established 
as a succession of biological processes, which lead to a variety of 
useful effects in both natural ecosystem and agricultural biotas 
(Van der Heijden et al., 2015). The symbiotic association of AMF 
is a classic example of mutualistic relationship, which can regulate 
the growth and development of plants. The mycelial network 
of fungi extends under the roots of the plant and promotes 
nutrient uptake that is otherwise not available. The fungal 
mycelium colonizes roots of many plants even if they belong to 
different species, resulting into a common mycorrhizal network 
(CMN). This CMN is considered as a primary component of 

the terrestrial ecosystem with its significant effects on different 
plant communities, particularly on invasive plants (Pringle 
et  al.,  2009) and the fungal-mediated transport of phosphorus 
(P) and nitrogen (N) to plants (Smith and Read, 2008). Moreover, 
communal nutrients also relocate from fungi to the plant, along 
with other related effects, which is probably why AMF improve 
plant tolerance to biotic and abiotic factors (Plassard and 
Dell,  2010). They have the ability to improve characteristics of 
soil and consequently encourage plant development in normal 
as well as in stressful circumstances (Navarro et al., 2014; 
Alqarawi et al., 2014a; Alqarawi et al., 2014b). AMF colonization 
improves tolerance of plants to stressful cues by bringing about 
several changes in their morpho-physiological traits (Alqarawi 
et al., 2014a; Alqarawi et al., 2014b; Hashem et al., 2015). AMF 
are considered as natural growth regulators of a majority of 
terrestrial flora. AMF are used as bio-inoculants, and researchers 
encourage their use as prominent bio-fertilizers in sustainable 
crop productivity (Barrow, 2012). Furthermore, AMF-inoculated 
soil forms more constant masses and significantly higher extra-
radical hyphal mycelium than do the non-AMF-treated soils 
(Syamsiyah et al., 2018). Glomalin-related soil protein (GRSP) is 
believed to maintain water content in soils exposed to different 
abiotic stresses (Wu et al., 2014), which later on regulates water 
frequencies between soil and plants, automatically triggering 
plant development. Glomalin contains 30–40% C and its related 
compounds that safeguard soil from desiccation by enhancing 
the soil water holding capacity (Sharma et al., 2017). Growth-
related functions, for example, stomatal conductance, leaf water 
potential, relative water content (RWC), PSII efficiency, and CO2 
assimilation are affected by AMF inoculation (He et al., 2017; 
Chandrasekaran et al., 2019). AMF also help improve water stress 
tolerance by physiological alteration of the above-ground organs 
and tissues (Bárzana et al., 2012). Furthermore, inoculation of 
AMF improves the accumulation of dry matter and enhances 
water moisture uptake, consequently improving plant tolerance 
against stresses like drought and salinity. Exploitation of AMF 
for plant growth in various biological ecosystems can contribute 
greatly to organic culturing for growth promotion and yield 
maximization (Figure 1).

AMF AS A BIO-FERTILIZER

Bio-fertilizers are a mixture of naturally occurring substances 
that are used to improve soil fertility. These fertilizers are very 
useful for soil health as well as for plant growth and development 
(Sadhana, 2014). Different research studies conducted on AMF 
during the past two decades have highlighted their countless 
benefits on soil health and crop productivity. Therefore, it is 
widely believed that AMF could be considered as a replacement 
of inorganic fertilizers in the near future, because mycorrhizal 
application can effectively reduce the quantitative use of 
chemical fertilizer input especially of phosphorus (Ortas, 2012). 
Continuous use of inorganic fertilizers, herbicides, and fungicides 
has caused various problems to soil, plants, and human health, 
through their damaging impact on the quality of food products, 
soil health, and air and water systems (Yang et al., 2004). It is 
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believed that AMF can possibly lower down the use of chemical 
fertilizers up to 50% for best agricultural production, but this 
estimate depends on the type of plant species and the prevalent 
stressful regimes (Table 1).

AMF AND MINERAL NUTRITION

Excessive land use may have a drastic impact on the overall 
biodiversity, which in turn may affect the ecosystem function 
as shown by several reports (Smith and Read, 1997; Balliu et al., 
2015; Nouri et al., 2015; Wagg et al., 2015). A prominent role of 
such symbiotic relationship is to transfer nutrients, for example, 
organic carbon (C), in the form of lipids and sugars (Jiang 
et al., 2017; Luginbuehl et al., 2017). AMF colonization is widely 
believed to stimulate nutrient uptake in plants (Table  1). It is 
evident that inoculation of AMF can enhance the concentration of 
various macro-nutrients and micro-nutrients significantly, which 
leads to increased photosynthate production and hence increased 
biomass accumulation (Chen et al., 2017; Mitra et al., 2019). AMF 
have the capability to boost the uptake of inorganic nutrients in 
almost all plants, specifically of phosphate (Smith et  al., 2003; 
Nell et al., 2010). AMF are also very effective in helping plants 
to take up nutrients from the nutrient-deficient soils (Kayama 
and Yamanaka, 2014). Apart from the macronutrients, AMF 
association has been reported to increase the phyto-availability of 
micronutrients like zinc and copper (Smith and Read, 1997). AMF 
improve the surface absorbing capability of host roots (Bisleski, 
1973). Experimental trials on tomato plants inoculated with 

AMF have shown increased leaf area, and nitrogen, potassium, 
calcium, and phosphorus contents, reflecting enhanced plant 
growth (Balliu et al., 2015). AMF develop symbiosis with roots to 
obtain essential nutrients from the host plant and consequently 
provide mineral nutrients in return, for example, N, P, K, Ca, 
Zn, and S. Thus, AMF provide nutritional support to the plants 
even under inappropriate conditions inside the root cells. 
AMF produce fungal structures like arbuscules, which assist in 
exchange of inorganic minerals and the compounds of carbon 
and phosphorus, ultimately imparting a considerable vigor to 
host plants (Li et al., 2016b; Prasad et al., 2017). Therefore, they 
can significantly boost the phosphorus concentration in both root 
and shoot systems (Al-Hmoud and Al-Momany, 2017). Under 
phosphorus-limited conditions, mycorrhizal association improves 
phosphorus supply to the infected roots of host plants (Bucher, 
2007). For example, Pi uptake rate was markedly improved in 
the AMF-colonized maize plants (Garcés-Ruiz, 2017). Increased 
photosynthetic activities and other leaf functions are directly 
related to improved growth frequency of AMF inoculation that 
is directly linked to the uptake of N, P, and carbon, which move 
towards roots and promote the development of tubers. It has 
been observed that AMF maintain P and N uptake ultimately 
helping in plant development at higher and lower P levels under 
different irrigation regimes (Liu et al., 2014; Liu et al., 2018). 
For example, mycorrhizal symbiosis positively increased the 
concentrations of N, P, and Fe in Pelargonium graveolens L. 
under drought stress (Amiri et al., 2017). Gomez-Bellot et al. 
(2015) reported improved levels of P, Ca, and K in Euonymus 
japonica under salinity stress due to instant fungus attachment.  

FIGURE 1 | A diagrammatic representation of mycorrhizal functions to regulate various processes in the ecosystem and plant growth promotion under abiotic  

stress condition.
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TABLE 1 | Observed responses of plants to the inoculation application of AMF on host species exposed to various abiotic stress treatments.

Stress Host species Fungus species Observed responses References

Drought  Glycine max L. AMF Enhanced leaf proline, 

photosynthesis, leaf area index, 

relative growth rate, fresh weight, 

and dry weight of seeds

Pavithra and Yapa 

(2018)

Drought Poncirus trifoliata Funneliformis mosseae, Paraglomus 

occultum

Increased hyphal length, hyphal 

water absorption rate, and leaf 

water potential

Zhang et al. (2018a)

Drought Olea europaea AMF Alleviated drought impact and 

increased turgor potential (Ψp) and 

mineral uptake

Sara et al. (2018)

Drought  Triticum aestivum L. Glomus mosseae, Glomus 

fasciculatum, Gigaspora decipiens

Increased plant growth parameters, 

and total chlorophyll pigments

Pal and Pandey (2016)

Drought Digitaria eriantha Rhizophagus irregularis Increased shoot dry matter,  

stomatal conductance, lipid 

peroxidation, H2O2 in shoot and 

root 

Pedranzani et al. (2016)

Drought  Triticum aestivum Glomus mosseae Increased osmotic potential, 

chlorophyll content and 

fluorescence, activities of 

antioxidant enzymes, ascorbic

 acid, enzymes of N and P 

metabolism, and contents of N, 

P, and K 

Rani (2016)

Drought  Triticum durum Rhizophagus intraradices Higher grain biomass, and 

higher contents of copper, iron, 

manganese, zinc and gliadins in 

grains

Goicoechea et al. 

(2016,2017)

Drought Ipomoea batatas Glomus spp. Proline and soluble sugars adjust 

osmotic potential

Yooyongwech et al. 

(2016)

Drought Saccharum arundinaceum Retz. Glomus spp. Increased leaf water uptake, and 

levels of metabolites, phenolics, 

ascorbic acid, glutathione, 

antioxidant enzymes, chlorophyll 

fluorescence, and plant biomass

Mirshad and Puthur 

(2016)

Drought Zea mays Rhizophagus intraradices, strain 

BGCBJ09

Increased plant dry weight, uptake 

of P, N, K, and Mg in shoot, and 

water use efficiency

Zhao et al. (2015)

Drought Lettuce and tomato Rhizophagus irregularis,

Glomus intraradices

Increased biomass production, 

efficiency of photosystem II,

ABA accumulation and synthesis, 

and strigolactone production

Ruiz-Lozano et al. 

(2015)

Drought Pelargonium graveolens Rhizophagus intraradices, 

Funneliformis mosseae

Improved nutrient concentration, 

plant biomass, and essential oil 

content, and glomalin related soil 

proteins (GRSP)

Amiri et al. (2015)

Drought Fragaria ananassa F. mosseae BEG25, F. geosporus 

BEG11

Increased shoot and root fresh 

weights, WUE, and plant survival 

Boyer et al. (2014)

Drought Robinia pseudoacacia L. Funneliformis mosseae and 

Rhizophagus intraradices

Increased dry biomass, WUE, and 

net photosynthetic rate

Yang et al. (2014)

Drought Glycine max Septoglomus constrictum, Glomus 

spp. including Glomus aggregatum

Improved water content and P and 

N levels 

Grümberg et al. (2015)

Drought Antirrhinum majus L. Glomus deserticola Increased shoot and root diameter, 

shoot length, leaf area, leaf number 

per plant, water content, Chl 

content, and proline

Asrar et al.  (2012)

Drought Vigna subterranea Glomus intraradices, Gigaspora 

gregaria, Scutellospora gregaria

Increased mineral content, soluble 

sugars, and acid phosphatase, but 

reduced proline content

Tsoata et al. (2015)

Drought Hordeum vulgare Glomus intraradices Increased root volume, P content, 

and activity of phosphatase 

enzyme 

Bayani et al. (2015)

(Continued)
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In another study, AMF-inoculated Pistachio plants exhibited 
high levels of P, K, Zn, and Mn under drought stress (Bagheri 
et al., 2012). In addition, AMF inoculation improved P and N 
contents in Chrysanthemum morifolium plant tissues (Wang et al., 
2018) and increased seedling weight by improving water content 
and intercellular CO2, P, and N contents in Leymus chinensis 
(Jixiang et al., 2017).

It is believed that AMF improve the uptake of almost all 
essential nutrients and contrarily decrease the uptake of Na 
and Cl, leading to growth stimulation (Evelin et al., 2012). The 
extra-radical mycelium (ERM) can effectively improve nutrient 
uptake, thereby improving plant growth and development 
(Lehmann and Rillig, 2015). Nitrogen (N), being a main source 
of soil nutrition, is a well-known mineral fertilizer, even in 
those areas where there are enough livestock and farm-yard 
manure (FYM). Many scientists have reported the role of 
AMF in uptake of soil nutrients, especially of N and P, which 

can effectively promote the growth of host plants (Smith et al., 
2011). In higher plants and some crops, N is a premier growth 
limiting factor. Several studies have explained that AMF have 
the ability to absorb and transfer N to the nearby plants or host 
plants (Hodge and Storer, 2015; Battini et al., 2017; Turrini 
et al., 2018). Zhang et al. (2018a) have demonstrated AMF 
mediated increased allocation of shoot biomass to panicles and 
grains through increased N and P redistribution to panicles 
particularly under low fertilizer levels. Translocation of N 
into seeds is enhanced from heading to maturity. AMF after 
establishing symbiosis produce extensive underground extra-
radical mycelia ranging from the roots up to the surrounding 
rhizosphere, thereby helping in improving the uptake of 
nutrients specifically N (Battini et al., 2017). The interaction of 
salinity stress and AMF significantly affects the concentrations 
of P and N and the N:P ratio in plant shoots (Wang et al., 2018). 
Recently, it has been reported that native AMF treatments 

TABLE 1 | Continued

Stress Host species Fungus species Observed responses References

Heat Triticum aestivum L. Rhizophagus irregularis, 

Funneliformis mosseae, 

Funneliformis geosporum, 

Claroideoglomus claroideum

Increased grain number, nutrient 

allocation, and nutrient composition 

in root 

Cabral et al. (2016)

High temperature Zea mays Rhizophagus intraradices, 

Funneliformis mosseae, F. 

geosporum 

Increased leaf length, plant 

height, leaf number, chlorophyll 

a, photosynthetic rate, stomatal 

conductance, and transpiration rate  

Mathur et al. (2016)

High temperature Solanum lycopersicum Rhizophagus irregularis Enhanced photosynthetic capacity, 

root hydraulic conductivity or 

aquaporin abundance and 

phosphorylation status

Calvo-Polanco et al. 

(2016)

Metal—General Sesbania rostrata Glomus mosseae Stimulated formation of root 

nodules, and increased N and P 

contents 

Lin et al.(2007)

Metals—Cadmium Trigonella foenum-graecum L. Glomus monosporum, G. clarum, 

Gigaspora nigra, and Acaulospora 

laevis

Increased antioxidant enzymes 

activities and malondialdehyde 

content.

Abdelhameed and 

Rabab (2019)

Metals—Cadmium 

and zinc

Cajanus cajan L. Rhizophagus irregularis Improved root biomass, nutrient 

status (P, N, Mg, Fe.), and proline 

biosynthesis

Garg and Singh (2017)

Salinity Cucumis sativus L. Glomus etunicatum, Glomus 

intraradices, Glomus mosseae

Increased biomass, photosynthetic 

pigment  synthesis, and enhanced 

antioxidant enzymes

Hashem et al. (2018)

Salinity  Solanum lycopersicum L. Rhizophagus irregularis Enhanced shoot FW, leaf area, 

leaf number, root FW, and levels of 

growth hormones 

Khalloufi et al. (2017)

Salinity Oryza sativa L. Claroideoglomus etunicatum Improved quantum yield of PSII 

photochemistry, net photosynthetic 

rate, stomatal conductance

Porcel et al. (2015)

Salinity Aeluropus littoralis Claroideoglomus etunicatum Increased shoot and root dry mass, 

stomatal conductance, soluble 

sugars, free α-amino acids, and 

Na+ and K+ uptake 

Hajiboland et al. (2015)

Salinity Solanum lycopersicum L. Glomus intraradices Improved dry matter, ion uptake, 

growth parameters, and chlorophyll 

content

Hajiboland et al. (2010)

Salinity Acacia nilotica Glomus fasciculate Improved root and shoot biomass 

as well as P, Zn, and Cu contents

Giri et al. (2007)

Salinity-alkali Leymus chinensis Glomus mosseae Increased colonization rate, 

seedling weight, water contents, 

and both P and N.

Jixiang et al. (2017)
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produce significant alterations in the N contents of crop plants 
(Turrini et al., 2018).

It has been widely accepted that fungi have the ability to take 
substantial amount of N from dead and decomposed material 
that later increases their fitness to grow and stay alive. Apart 
from this, large biomass and increased N requirements for 
AMF render them the main stakeholder of global N pool that 
is equivalent in scale to fine roots. Thus, they play a pivotal role 
in the N cycle (Hodge and Fitter, 2010). The AMF extra-radical 
hyphae can absorb and assimilate inorganic N (Jin et al., 2005). 
Several studies have shown that approximately 20–75% of the 
total N uptake of AM plants can be transferred by the AMF to 
their hosts (Tanaka and Yano, 2005; Govindarajulu et al., 2005; 
Ahanger et al., 2014; Hameed et al., 2014; Hashem et al., 2018). 
Increased N in AMF-colonized plants evidently results in higher 
chlorophyll contents, as chlorophyll molecules can effectively 
trap N (De Andrade et al., 2015). Other evidences favoring the 
AMF-mediated improvement in plant N nutrition can also be 
seen in the literature (Courty et al., 2015; Bucking and Kafle, 
2015; Corrêa et al., 2015). AMF inoculation improves C and N 
accumulation and N assimilation under ambient and elevated 
CO2 concentrations (Zhu et al., 2016). For example, in olive 
plants, AMF were reported to improve growth, accumulation of 
micro-nutrients and macro-nutrients, and their allocation in the 
plantlets grown under increased levels of Mn (Bati et al., 2015).

Enhancement of plant nutrition and maintenance of Ca2+ 
and Na+ ratio are the significant dynamic attributes that help 
improve beneficial aspects of AMF colonization on overall plant 
performance (Evelin et al., 2012; Abdel Latef and Miransari, 
2014). Improved growth and levels of protein, Fe, and Zn were 
found in mycorrhizal chickpea (Pellegrino and Bedini, 2014). 
Moreover, different reports have shown enhanced activity of 
a K+ transporter in the mycorrhizal roots of Lotus japonicus 
(Guether et al., 2009; Berruti et al., 2016). Moreover, two meta-
analysis reports that appeared a few years ago showed the role 
of mycorrhizal symbiosis to various micro-nutrients in crops 
(Lehmann et al., 2014; Lehmann and Rillig, 2015; as reviewed by 
Berruti et al., 2016). Asrar et al. (2012) reported that the specified 
fungal association enhanced the contents of macronutrients such 
as N, P, K, Ca, and Mg of Antirrhinum majus under drought. AMF 
also proved to be effective in restricting the high accumulation of 
Na, Mn, Mg, and Fe in roots (Bati et al., 2015). Several studies 
conducted during the last few years have shown that AMF, 
such as Glomus mosseae and Rhizophagus irregularis exhibited 
improved heavy metal translocation in the shoot (Zaefarian et al., 
2013; Ali et al., 2015). Micronutrients such as Zn and Cu being 
diffusion limited in soils are absorbed by plants with the help of 
mycorrhizal hyphae.

AMF AND PLANT YIELD

Beneficial rhizosphere microorganisms not only can improve the 
nutrient status of crops, as described above, but also can enhance 
the quality of crops. For example, AMF-colonized strawberry 
exhibited increased levels of secondary metabolites resulting 
in improved antioxidant property (Castellanos-Morales et al., 

2010). AMF can enhance the dietary quality of crops by affecting 
and production of carotenoids and certain volatile compounds 
(Hart et al., 2015). Bona et al. (2017) observed beneficial effects 
of AMF on the quality of tomatoes. In another study, Zeng et al. 
(2014) have reported increased contents of sugars, organic acids, 
vitamin C, flavonoids, and minerals due to Glomus versiforme 
resulting in enhanced citrus fruit quality. Mycorrhizal symbiosis 
induces enhanced accumulation of anthocyanins, chlorophyll, 
carotenoids, total soluble phenolics, tocopherols, and various 
mineral nutrients (Baslam et al., 2011). AMF have been employed 
in a large-scale field production of maize (Sabia et al., 2015), yam 
(Lu et al., 2015), and potato (Hijri, 2016), confirming that AMF 
possess a considerable potential for enhancing crop yield. AMF 
can also enhance the biosynthesis of valuable phytochemicals 
in edible plants and make them fit for healthy food production 
chain (Sbrana et al., 2014; Rouphael et al., 2015).

Rouphael et al. (2015) have reported that the abiotic stress 
mitigation by AMF could occur through maintenance of soil pH, 
thereby protecting its horticultural value. In addition, AMF can 
also play a critical role in improving the resistance of plants to 
stressful environments, as described below.

AMF AND ABIOTIC STRESSES

Drought
Drought stress affects plant life in many ways; for example, 
shortage of water to roots reduces rate of transpiration as well as 
induces oxidative stress (Impa et al., 2012; Hasanuzzaman et al., 
2013). Drought stress imparts deleterious effects on plant growth 
by affecting enzyme activity, ion uptake, and nutrient assimilation 
(Ahanger and Agarwal, 2017; Ahanger et al., 2017a). However, 
there is a strong evidence of drought stress alleviation by AMF in 
different crops such as wheat, barley, maize, soybean, strawberry, 
and onion (Mena-Violante et al., 2006; Ruiz-Lozano et al., 
2015; Yooyongwech et al., 2016; Moradtalab et al., 2019). Plant 
tolerance to drought could be primarily due to a large volume of 
soil explored by roots and the extra-radical hyphae of the fungi 
(Gianinazzi et al., 2010; Orfanoudakis et al., 2010; Gutjahr and 
Paszkowski, 2013; Zhang et al., 2016).

Such a symbiotic association is believed to regulate a variety 
of physio-biochemical processes in plants such as increased 
osmotic adjustment (Kubikova et al., 2001), stomatal regulation 
by controlling ABA metabolism (Duan et al., 1996), enhanced 
accumulation of proline (Ruiz-Sánchez et al., 2010; Yooyongwech 
et al., 2013), or increased glutathione level (Rani, 2016). Symbiotic 
relationship of various plants with AMF may ultimately 
improve root size and efficiency, leaf area index, and biomass 
under the instant conditions of drought (Al-Karaki et al., 2004; 
Gholamhoseini et al., 2013). Moreover, AMF and their interaction 
with the host plant are helpful in supporting plants against severe 
environmental conditions (Ruiz-Lozano, 2003; Table 1). The 
AMF symbiosis also results in enhanced gas exchange, leaf water 
relations, stomatal conductance, and transpiration rate (Morte 
et  al., 2000; Mena-Violante et al., 2006). AMF can facilitate 
ABA responses that regulate stomatal conductance and other 
related physiological processes (Ludwig-Müller, 2010). Recently,  
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Li et al. (2019) have demonstrated AMF-mediated enhancement 
in growth and photosynthesis in C3 (Leymus chinensis) and C4 
(Hemarthria altissima) plant species through up-regulation of 
antioxidant system.

Salinity
It is widely known that the soil salinization is an increasing 
environmental problem posing a severe threat to global food 
security. Salinity stress is known to suppress growth of plants 
by affecting the vegetative development and net assimilation 
rate resulting in reduced yield productivity (Hasanuzzaman 
et al., 2013; Ahanger et al., 2017a). It also promotes the excessive 
generation of reactive oxygen species (Ahmad et al., 2010;  
Ahanger and Agarwal, 2017; Ahanger et al., 2017b; Ahanger 
et al., 2018). Attempts are being made to explore potential means 
of achieving enhanced crop production under salt affected 
soils. One such potential means is the judicious use of AMF 
for mitigating the salinity-induced adverse effects on plants 
(Santander et al., 2019). Several research studies have reported 
the efficiency of AMF to impart growth and yield enhancement 
in plants under salinity stress (Talaat and Shawky, 2014; Abdel 
Latef and Chaoxing, 2014; Table 1). El-Nashar (2017) reported 
that AMF enhanced growth rate, leaf water potential, and water 
use efficiency of the Antirrhinum majus plants. Recently, Ait-El-
Mokhtar et al. (2019) have reported the beneficial effects of AMF 
symbiosis on physiological parameters such as photosynthetic 
rate, stomatal conductance, and leaf water relations under saline 
regimes. AMF significantly alleviated the deleterious effects 
on photosynthesis under salinity stress (Sheng et al., 2011). 
Mycorrhizal inoculation markedly improved  photosynthetic 
rate, and other gas exchange traits, chlorophyll content, and water 
use efficiency in  Ocimum basilicum L. under saline conditions 
(Elhindi et al., 2017). AMF-inoculated Allium sativum plants 
showed improved growth traits including leaf area index, and 
fresh and dry biomass under saline conditions (Borde et al., 
2010). Recently, Wang et al. (2018) have reported considerable 
enhancement in fresh and dry weights, and N concentration of 
shoot and root due to mycorrhizal inoculation under moderate 
saline conditions.

Furthermore, plants possessing AMF show enhanced synthesis 
of jasmonic acid, salicylic acid, and several important inorganic 
nutrients. For example, concentrations of total P, Ca2+, N, Mg2+, 
and K+ were higher in the AMF-treated Cucumis sativus plants 
compared with those in the uninoculated plants under salt stress 
conditions (Hashem et al., 2018). Mycorrhizal inoculation to 
Capsicum annuum exhibited enhanced chlorophyll contents, and 
Mg2+ and N uptake coupled with reduced Na+ transport under 
saline conditions (Cekic et al., 2012). In addition, Santander 
et al. (2019) have shown with lettuce that the mycorrhizal plants 
had higher biomass production, increased synthesis of proline, 
increased N uptake, and noticeable changes in ionic relations, 
particularly reduced accumulation of Na+, than those in non-
mycorrhizal plants under stress conditions. AMF inoculation 
can effectively regulate the levels of key growth regulators. For 
example, Hameed et al. (2014) and Talaat and Shawky (2014) 
have observed AMF-mediated improvement in cytokinin 

concentration resulting in a marked photosynthate translocation 
under salinity stress. In addition, AMF-mediated growth 
promotion under salinity stress was shown to be due to alteration 
in the polyamine pool (Kapoor et al., 2013). Furthermore, Aroca 
et al. (2013) showed that enhanced strigolactone in AMF-treated 
plants notably mitigated various salinity effects in lettuce plants. 
AMF-colonized plants have the ability to decrease oxidative 
stress by suppressing lipid membrane peroxidation under salinity 
stress (Abdel Latef and Chaoxing, 2014; Talaat and Shawky, 
2014). Furthermore, inoculation of AMF was also observed to 
enhance the accumulation of various organic acids resulting in 
up-regulation of the osmoregulation process in plants grown 
under saline stress. For example, Sheng et al. (2011) observed 
an enhanced synthesis/accumulation of certain organic acids in 
maize plants growing in saline soil, and AMF induced increased 
production of betaine, confirming the indirect role of AMF in 
plant osmoregulation under salinity stress.

Heavy Metals
AMF are widely believed to support plant establishment in soils 
contaminated with heavy metals, because of their potential 
to strengthen defense system of the AMF mediated plants to 
promote growth and development. Heavy metals may accumulate 
in food crops, fruits, vegetables, and soils, causing various health 
hazards (Liu et al., 2013; Yousaf et al., 2016). AMF association 
with wheat positively increased nutrient uptake under aluminum 
stress (Aguilera et al., 2014). Plants grown on soils enriched 
with Cd and Zn exhibit considerable suppression in shoot and 
root growth, leaf chlorosis, and even death (Moghadam, 2016). 
There are many reports in the literature on uncovering the 
AMF-induced effects on the buildup of metals in plants (Souza 
et al., 2012; Table 1). Heavy metals can be immobilized in the 
fungal hyphae of internal and external origin (Ouziad et al., 
2005) that have the ability to fix heavy metals in the cell wall 
and store them in the vacuole or may chelate with some other 
substances in the cytoplasm (Punamiya et al., 2010) and hence 
reduce metal toxicity in the plants. The strong effects of AMF on 
plant development and growth under severe stressful conditions 
are most often due to the ability of these fungi in increasing 
morphological and physiological processes that increase plant 
biomass and consequently uptake of important immovable 
nutrients like Cu, Zn, and P and thus reduced metal toxicity in 
the host plants (Kanwal et al., 2015; Miransari, 2017). It is also 
believed that enhanced growth or chelation in the rhizospheric 
soil can cause metal dilution in plant tissues (Kapoor et al., 2013; 
Audet, 2014). AMF reportedly bind Cd and Zn in the cell wall of 
mantle hyphae and cortical cells, thereby restricting their uptake 
and resulting in improved growth, yield, and nutrient status 
(Andrade and Silveira, 2008; Garg and Chandel, 2012).

Mycorrhizae can disturb the uptake of different metals into 
plants from the rhizosphere and their movement from the 
root zone to the aerial parts (Dong et al., 2008; Li et al., 2015). 
Mycelia of various AMF have a high cation-exchange capacity 
and absorption of metals (Takács and Vörös, 2003). Metal 
non-adapted AMF settle the polluted soils and reduce uptake 
and accumulation of heavy metals, as observed in perennial 
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ryegrass (Lolium perenne) in artificially polluted soil with 
various elements like Cd, Ni, and Zn (Takács and Vörös, 2003).  
AMF are believed to regulate the uptake and accumulation of 
some key inorganic nutrients. For example, enhanced uptake of 
Si has been reported in mycorrhiza-inoculated plants like Glycine 
max (Yost and Fox, 1982) and Zea mays (Clark and Zeto, 2000). 
Hammer et al. (2011) also recorded considerable uptake of Si in 
spores and hyphae of Rhizophagus irregularis and its transfer to 
the host roots. It is pertinent that low Cd mobility and toxicity can 
also be addressed with AMF by increasing soil pH (Shen et al., 
2006), restoring Cd in the extra-radical mycelium (Janouškova 
and Pavlíková, 2010), and binding Cd to glomalin, a glycoprotein. 
For example, in rice, AMF were very effective in lowering the 
levels of Cd in both the vacuoles and cell wall, which brought 
about Cd detoxification (Li et al., 2016a). Wang et al. (2012) 
observed that AMF-mediated improved Cd tolerance in alfalfa 
(Medicago sativa L.) had been possibly due to the modification of 
chemical forms of Cd in different plant tissues. Various processes 
that occur through the AMF are immobilization/restriction of 
metal compounds, precipitation of polyphosphate granules in 
the soil, adsorption to fungal cell wall chitin, and heavy metal 
chelation inside the fungus (Figure 1).

Temperature (High and Low)
As soil temperatures increase, plant community reactions may 
be dependent on AMF interactions for sustainable yield and 
production (Bunn et al., 2009). Heat stress significantly affects 
plant growth and development by imparting i) loss of plant vigor 
and inhibition of seed germination, ii) retarded growth rate,  
iii) decreased biomass production, iv) wilting and burning of leaves 
and reproductive organs, v) abscission and senescence of leaves,  

vi) damage as well as discoloration of fruit, vii) reduction in yield 
and cell death (Wahid et al., 2007; Hasanuzzaman et al., 2013), and  
viii) enhanced oxidative stress. Generally, AMF-inoculated plants 
show better growth under heat stress than do the non-AMF-
inoculated ones (Gavito et al., 2005). Maya and Matsubara (2013) 
have reported the association of AMF Glomus fasciculatum with 
plant growth and development leading to positive changes in growth 
under the conditions of high temperature (Figure 2; Table 1).

AMF can increase plant tolerance to cold stress (Birhane 
et  al., 2012; Chen et al., 2013; Liu et al., 2013). Moreover, a 
majority of reports state that various plants inoculated 
with AMF at low temperature grow better than non-AMF-
inoculated plants (Zhu et al., 2010b; Abdel Latef and Chaoxing, 
2011b; Chen et al., 2013; Liu et al., 2013). AMF support 
plants in combating cold stress and eventually improve plant 
development (Gamalero et al., 2009; Birhane et al., 2012). 
Moreover, AMF also can retain moisture in the host plant (Zhu 
et al., 2010a), increase plant secondary metabolites leading to 
strengthen plant immune system, and increase protein content 
for supporting the plants to combat cold stress conditions 
(Abdel Latef and Chaoxing, 2011b). For example, during cold 
stress, AMF-inoculated plants showed an enhanced water 
conservation capacity as well as its use efficiency (Zhu et al., 
2010b). Symbiotic AMF relationship improves water and plant 
relationships and increases gas exchange potential and osmotic 
adjustment (Zhu et al., 2012). AMF improve the synthesis 
of chlorophyll leading to a significant improvement in the 
concentrations of various metabolites in plants subjected to 
cold stress conditions (Zhu et al., 2010a; Abdel Latef and 
Chaoxing, 2011b). The role of AMF during cold stress has also 
been reported to alter protein content in tomato and other 
vegetables (Abdel Latef and Chaoxing, 2011b).

FIGURE 2 | AMF inoculation alleviates temperature stress in plants.
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AMF AND COMBINED ABIOTIC STRESSES

It is widely accepted that AMF could alleviate various stresses 
or combination of stresses that include, drought, salinity, 
temperature, nutrients, and heavy metals. For example, exposure 
of plants to a combination of drought and salinity causes 
an enhanced production of reactive oxygen species, which 
can be highly injurious to plants (Bauddh and Singh, 2012). 
Detoxification of reactive oxygen species (ROS) is done by the 
enzymes that include commonly superoxide dismutase (SOD), 
catalase (CAT), peroxidase (POD), and glutathione reductase 
(GR) (Ahanger and Agarwal, 2017). In addition, combined 
application of drought and salinity to tomato plants inoculated 
with Scolecobasidium constrictum showed improved biomass 
production, leaf water relations, stomatal conductance, and Fv/
Fm relative to those in non-inoculated plants (Duc et al., 2018). 
Thus, AMF are critical for improving plant growth and yield 
under stress (Abdel Latef, 2011; Abdel Latef and Chaoxing, 2011a; 
Abdel Latef and Chaoxing, 2011b; Abdel Latef and Chaoxing, 
2014). Very rare research reports are available in the literature 
demonstrating the role of AMF in mitigation of combined 
effects of two or more stresses. AMF symbiosis protects plants 
against a variety of abiotic stresses using various processes such 
as improved photosynthetic rate, uptake and accumulation 
of mineral nutrients, accumulation of osmoprotectants, 
up-regulation of antioxidant enzyme activity, and change in the 
rhizosphere ecosystem (Bárzana et al., 2015; Calvo-Polanco et al., 
2016; Yin et al., 2016). Several studies have shown improved 
nutritional status of AMF plants under osmotic stress conditions 
(Augé et al., 2014; Lehmann et al., 2014; Lehmann and Rillig, 
2015) resulting from deficit irrigation or salinity. Similarities 
among the tolerance mechanisms may occur in response to 
AMF-mediated combined stress adaptations. It is proposed that 
AMF-mediated alterations in phytohormone profile, mineral 
uptake and assimilation, accumulation of compatible osmolytes 
and secondary metabolites, and up-regulation of antioxidant 
system can be the common mechanisms induced during different 
stresses. However, specific mechanisms like compartmentation 
and sequestration of toxic ions, production of phytochelatins, 
and protein expression can be specific and exhibit a significant 
change with stress type and the AMF species involved. Changes 
in root characteristics like hydraulic conductivities can improve 
the osmotic stress tolerance to considerable levels (Evelin et al., 
2009). Zhang et al. (2018b) have shown that the AMF protected 
castor bean against saline stress by altering gas exchange traits 
and the levels of some key metabolites. The said characteristics 
of AMF may elevate nutraceutical quality of crops and could 
be of considerable agronomic importance for production and 
management of different potential crops. However, extensive 
studies are required to unravel the role of AMF in counteracting 
the effects of combined stresses.

CONCLUSION AND FUTURE PROSPECTS

A few research reports have already documented the 
beneficial role of AMF in improving plant growth under 

stressful environments. Therefore, in this review, the existing 
information related to the role of AMF has been combined 
in a coherent way for understanding of AMF symbiotic 
relationship with a variety of plants under stress environments. 
Previously, the AMF have been mainly discussed as beneficial 
entities for nutrient uptake from soil; however, recently, it has 
been clearly depicted that plants inoculated with AMF can 
effectively combat various environmental cues, like salinity, 
drought, nutrient stress, alkali stress, cold stress, and extreme 
temperatures, and thus help increase per hectare yield of a 
large number of crops and vegetables. Encouragement of AMF 
usage is of immense importance for modern global agricultural 
systems for their consistent sustainability. Undoubtedly, 
exploitation of AMF for agricultural improvement can 
significantly reduce the use of synthetic fertilizers and other 
chemicals, thereby promoting the bio-healthy agriculture. 
AMF-mediated growth and productivity enhancement in 
crop plants can be beneficial to overcome the consumption 
requirement of increasing population across the globe. In 
addition, environment-friendly technologies shall be highly 
encouraged due to their widespread use. The primary focus 
of future research should be on the identification of genes 
and gene products controlling the AMF mediated growth and 
development regulation under stressful cues. Identification of 
both host as well as AMF specific protein factors regulating 
symbiotic association and the major cellular and metabolic 
pathways under different environmental stresses can be hot 
areas for future research in this field. Understanding the AMF 
induced modulations in the tolerance mechanisms and the 
crosstalk triggered to regulate plant performance can help 
improve crop productivity. Taken together, AMF must be 
explored at all levels to further investigate their role in nature 
as a bio-fertilizer for sustainable agricultural production.
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