Role of AtCIPK16 in Arabidopsis abiotic tolerance

Wenmian Huang

A thesis submitted for the degree of Doctor of Philosophy School of Agriculture, Food and Wine Faculty of Sciences The University of Adelaide

May 2015

Table of Contents

Table of Contentsi		
List of Figuresvii		
List of Tablesxi		
List of	Abbreviations	xiii
Abstrac	.t	xvii
Declara	tion	xix
Acknow	ledgments	xxi
Chapter	: 1: Literature Review and Research Aims	1
1.1	Salinity	1
1.1.1	Impacts of salinity	1
1.1.2	Effects of salinity stress on plants	1
1.1.3	The plants' tolerance mechanism to salt stress	2
1.2	Calcium signalling pathways	7
1.2.1	Structural characterisation of CBL	8
1.2.2	Structural characterisation of CIPK	9
1.2.3	Specificity of the CBL-CIPK signalling pathway	12
1.2.4	Function of the CBL-CIPK signalling pathway	
1.3	AtCIPK16	18
1.3.1	Potential role of AtCIPK16 in salinity tolerance	19
1.4	Research aims	20
Chapter	2: General materials and methods	21
2.1	Plant materials	21
2.2	Plant growth facilities	21
2.3	Plant growth in soil	21
2.4	Plant growth in hydroponics	23
2.5	Plant growth on plates containing Murashige and Skoog media	
2.6	DNA extractions	25
2.6.1	Phenol/chloroform/iso-amyl alcohol method	25
2.6.2	Edwards DNA extraction method	
2.7	Agarose gel electrophoresis - DNA	27
2.8	DNA extraction from agarose gels	27
2.9	DNA sequencing	27
2.10	RNA extractions and agarose gel electrophoresis	28
2.11	cDNA synthesis	29
2.12	Polymerase chain reaction (PCR)	
2.12.1	Routine gDNA/cDNA PCR	

2.12.2	High-fidelity PCR	.31
2.12.3	Colony PCR	.32
2.13	Cloning PCR products into entry vectors	.33
2.14	Preparation of competent cells (Escherichia coli)	
2.15	Transformation of plasmid DNA into <i>E.coli</i> cells	
2.16	Isolation of plasmid DNA from <i>E.coli</i> cells	.37
2.17	Restriction enzyme digestion of plasmid DNA	37
2.18	LR reactions	.38
2.19	Agrobacterium-mediated stable transformation of Arabidopsis	.40
2.19.1	Preparation of competent A. tumefaciens AGL1 cells	.40
2.19.2	Transformation of plasmid DNA into A.tumefaciens AGL1 cells	.40
2.19.3	Transformation by floral dipping	.41
2.20	Selection of transformants	41
2.20.1	Selection in soil	
2.20.2	Selection on MS plate	.41
2.21	Statistical analysis	42
Chapter	3: Identification of upstream regulators of AtCIPK16	43
3.1	Introduction	43
3.2	Chapter aims	.46
3.3	Materials and methods	46
3.3.1	Yeast two hybrid assays	.46
3.3.1.1	Cloning for yeast two hybrid assays	46
3.3.1.2	Preparation of yeast strain AH109 from stock	51
3.3.1.3	Transformation of constructs into S. cerevisiae	51
3.3.1.4	Yeast two-hybrid assay	.52
3.3.1.5	Isolation of plasmid DNA from S. cerevisiae	53
3.3.2	Bimolecular fluorescence complementation (BiFC) assay using both transit	ient
	expression and stable expression	53
3.3.2.1	Cloning of AtCBLs and AtCIPK16 into BiFC assay vector for transient expression	n in
	mesophyll protoplast	54
3.3.2.2	Cloning of AtCBLs and AtCIPK16 into BiFC assay vector for	
	Agrobacterium-infiltration in Arabidopsis leaves, tobacco leaves and stable	
	constitutive over-expression in Arabidopsis plants	58
3.3.2.3	Transient expression of AtCBLs-AtCIPK16 in Arabidopsis mesophyll protoplasts.	60
3.3.2.4	Transient expression of AtCBLs-AtCIPK16 in Arabidopsis leaves using	
	Agro-infiltration	.61
3.3.2.5	Transient expression of AtCBLs-AtCIPK16 in tobacco leaves (Nicotiana	
	benthamiana) using Agro-infiltration	.62
3.3.2.6	Stable constitutive over-expression of AtCBLs-AtCIPK16 in Arabidopsis ecot	ype

	Col-0	63
3.3.2.7	Fluorescence imaging by confocal microscopy	64
3.4	Results	65
3.4.1	Vector construction for a yeast two hybrid assay	65
3.4.2	Yeast two hybrid assay shows AtCIPK16 interacts with 6 AtCBL proteins	67
3.4.3	Vector construction for Bimolecular Fluorescence Complementation (BiFC) ass	say in
	Arabidopsis mesophyll protoplast	68
3.4.4	Bimolecular fluorescent complementation (BiFC) assay in Arabidopsis meso	phyll
	protoplast	71
3.4.5	Vector construction for a Bimolecular Fluorescence Complementation (BiFC)	assay
	using either Agro-infiltration of Arabidopsis and tobacco leaves, or stable expre	ession
	in Col-0	75
3.4.6	Subcellular localization using Agro-infiltration in Arabidopsis leaves	78
3.4.7	Subcellular localization using Agro-infiltration in tobacco leaves	88
3.4.8	Localization of AtCBLs-AtCIPK16 complexes using stable expression in	
	Arabidopsis ecotype Col-0	91
3.5	Discussion	93
3.5.1	Interacting partners of AtCIPK16 in yeast two hybrid assays	93
3.5.2	Interactions and localizations of AtCBL-AtCIPK16 in BiFC assays	95
3.6	Summary	102
Chapter	r 4: Identification of downstream targets of AtCIPK16	103
4.1	Introduction	103
4.2	Materials and methods	105
4.2.1	Pull-down assay	105
4.2.1.1	Peptide antigen design	105
4.2.1.2	Generation of a specific rabbit IgG antibody	106
4.2.1.3	Production of recombinant protein	107
4.2.1.4	SDS Polyacrylamide Gel Electrophoresis	110
4.2.1.5	Western blot for identification of the expected band on the gel	111
4.2.1.6	Optimization of recombinant protein synthesis	112
4.2.1.7	Purification of denatured protein	113
4.2.1.8	Refolding of purified denatured protein	114
4.2.2	Yeast two hybrid assay	115
4.2.2.1	Cloning for yeast two hybrid assay	115
4.2.2.2	Analysis of the protein sequences of AtHKT1;1, AtSOS1 and AtAKT1	115
4.4	Results	117
4.4.1	Alignment of the protein sequences of AtCIPK16 with 26 AtCIPKs in Arabid	lopsis
	and peptide antigen design	117
4.4.2	Construction of plasmid for protein synthesis	121

4.4.3	Recombinant His-AtCIPK16 was obtain from E.coli and recognized by
	anti-AtCIPK16 antibody in Western blot121
4.4.4	Optimization of recombinant protein synthesis123
4.4.4.1	Expression of recombinant His-AtCIPK16 in two codon bias-adjusted E. coli strains
	showed no improvement in protein yield124
4.4.4.2	Low temperature induction shows no improvement on soluble protein yield126
4.4.4.3	Induction of His-AtCIPK16 using 0.2 % L-arabinose resulted in the maximum yield
	of insoluble recombinant protein
4.4.5	Recombinant His-AtCIPK16 was successfully denatured by Guanidine-HCl and
	purified by using cobalt chelating resin128
4.4.6	Purified denatured His-AtCIPK16 was refolded using gradual dialysis128
4.4.7	Construction of vector for yeast two hybrid assay
4.5	Discussion
4.5.1	Expression of recombinant protein His-AtCIPK16133
4.5.2	Potential downstream targets of AtCIPK16134
4.5.3	The alignment of 26 AtCIPKs shows unique regions of AtCIPK16 in functional
	motifs
4.5.4	Future work
4.6	Summary
Chapter	5: Dissecting the role of AtCIPK16 in salinity tolerance143
5.1	Introduction
5.2	Chapter aims
5.3	Methods
5.3.1	Plant materials for complementary function analysis145
5.3.2	Cloning of <i>AtCIPK16</i> into constitutive expression vector
5.3.3	Transformation of plasmid DNA into A.tumefaciens AGL1 competent cells146
5.3.4	Stable constitutive over-expression of AtCIPK16 in sos2 knockout lines146
5.3.5	Selection of transformants of AtCIPK16-sos2146
5.3.6	Phenotyping of T ₂ transgenic lines that constitutively over-expresses AtCIPK16 in
	sos2 knockout lines under salt stress
5.3.7	Biomass and flame photometry measurements
5.3.8	Genotyping
5.3.9	RT-PCR
5.3.10	Radioactive Tracer Experiments
5.4	Result
5.4.1	Vector constructed for stable constitutive expression of AtCIPK16 in sos2 knockout
	lines
5.4.2	Analysis of the expression level of SOS2, AtCIPK16 in sos2 knockout lines and
	complimentary lines

5.4.3	Constitutive expression of AtCIPK16 fails to complement the salt sensitivity
	phenotype of sos2 knockout lines
5.4.4	Movement of ²² Na ⁺ through 35S:AtCIPK16 expressing Arabidopsis158
5.5	Discussion
5.5.1	AtCIPK16 and AtCIPK24 could have no functional redundancy161
5.5.2	AtCIPK16 may alter net Na ⁺ influx in root
5.5.3	Future work
5.6	Summary
Chapter	• 6: Characterization of <i>AtCIPK16</i> under various abiotic stresses166
6.1	Introduction
6.2	Chapter aims
6.3	Materials and methods
6.3.1	In silico analysis of AtCIPK16
6.3.2	Selection of homozygous transgenic lines that constitutively over-expresses
	<i>AtCIPK16</i>
6.3.3	Phenotyping transgenic lines constitutively over-expressing AtCIPK16 under ABA
	treatment
	1
6.3.4	Characterization of the phenotype of homozygous transgenic lines that constitutively
	over-expresses <i>AtCIPK16</i> under low potassium stress171
6.3.5	Characterization of the phenotype of homozygous transgenic lines that constitutively
	over-expresses AtCIPK16 when exposed to additional KCl172
6.3.6	Characterization of the phenotype of homozygous transgenic lines that constitutively
	over-expresses AtCIPK16 under drought stress
6.3.7	Characterization of the phenotype of homozygous transgenic lines that constitutively
	over-expresses AtCIPK16 under osmotic stress
6.3.8	Characterization of the phenotype of homozygous transgenic lines that constitutively
	over-expresses AtCIPK16 under cold stress
6.3.9	Proline content measurements
6.3.10	Chlorophyll content measurements
6.3.11	Flame photometry measurements
6.4	Result
6.4.1	In silico expression profile of AtCIPK16
6.4.2	Constitutive expression of AtCIPK16 resulted in lower germination rate with
	increasing ABA treatments
6.4.3	Under low potassium stress constitutively over-expressing AtCIPK16 lines have
	improved root K ⁺ accumulation compared with Col-0
6.4.4	Col-0 and AtCIPK16 over-expression lines behave similarly under high KCl
	stress

6.4.5	Col-0 and AtCIPK16 over-expression lines behave similarly under drought
	stress
6.4.6	Col-0 and AtCIPK16 over-expression lines behave similarly during osmotic
	stresses
6.4.7	Col-0 and AtCIPK16 over-expression lines behave similarly during cold stresses197
6.5	Discussion
6.5.1	AtCIPK16 exhibits ABA-related characteristics
6.5.2	AtCIPK16 exhibits K ⁺ transport characteristics202
6.5.3	AtCIPK16 exhibits no characteristics for drought, osmotic and cold stresses205
6.5.4	Limitations of experimental techniques
6.6	Summary
Chapter	7: General Discussion209
7.1	Summary of accomplished work
7.1.1	AtCBL interacting partners and localizations of AtCIPK16209
7.1.2	Function of AtCIPK16 in Na ⁺ , K^+ transport and response to ABA in Arabidopsis
	plants
7.2	Future work
7.2.1	Future directions for functionally characterising AtCIPK16 in ion
	transport
7.2.2	Future directions for identifying AtCIPK16 equivalents in different species212
7.2.3	Future directions for identifying downstream targets of AtCIPK16213
7.3	Conclusion
Referen	ces
Append	ix241

List of Figures

Figure 1.1: The main mechanisms of salt tolerance in plants
Figure 1.2: The general structure of CBL proteins contains four EF-hands. Black numbered
boxes representing each EF-hand in CBLs9
Figure 1.3: The general structure of CIPKs
Figure 1.4: Sequence of the activation loops motif in all AtCIPKs 10
Figure 1.5: Diagram showing different abiotic stresses triggering a variety of CBL-CIPK
signalling pathways in Arabidopsis13
Figure 2.1: Schematic diagram of pCR8/GW/TOPO TA Gateway® entry vector35
Figure 3.1: The bait vector pTOOL27 was used to express AtCIPK16 fused to GAL4 DNA
binding domain for the yeast two hybrid assay49
Figure 3.2: The prey vector pTOOL28 was used to express one of the 10 AtCBL genes fused to
GAL4 activation domain for yeast two hybrid assay50
Figure 3.3: The vector <i>pUC-SPYNE/GW</i> was used to express <i>AtCIPK16</i> fused to the
N-terminal split eYFP fragment for BiFC assay
Figure 3.4: The vector pUC-SPYNE/GW was used to express 10 AtCBLs fused to the
C-terminal split eYFP fragment for BiFC assay
Figure 3.5: The vector <i>pGPTVII</i> was used to express 10 AtCBLs/AtCIPK16 fused to
N-/C-terminal split eYFP fragment for Agrobacterium-infiltration in Arabidopsis leaves,
tobacco leaves and stable constitutive over-expression in Arabidopsis plants
Figure 3.6: $pTOOL28 + AtCBL1$ to 10 and $pTOOL27 + AtCIPK16$
Figure 3.7: Yeast two hybrid assay showing AtCIPK16 interacts with 6 AtCBL proteins67
Figure 3.8: The <i>pUC-SPYCE/GW+ AtCBL1</i> to 10 and <i>pUC-SPYNE/GW+ AtCIPK16</i> plasmids
used for subcellular localization in a mesophyll protoplast expression system70
Figure 3.9: Subcellular localization of AtCBLs::YC and AtCIPK16::YN interactions in
Arabidopsis mesophyll protoplasts
Figure 3.10: pGPTVII.Hyg. AtCBL1 (to 10)::YC, pGPTVII.Hyg.YC::AtCBL1 (to 10),
pGPTVII.Bar.AtCIPK16::YN and pGPTVII.Bar. YN::AtCIPK16 plasmids used for
Agro-infiltration and stable expression in Col-0
Figure 3.11: YN::AtCIPK16 and AtCBLs::YC interactions in Arabidopsis leaves
Figure 3.12: YN::AtCIPK16 and YC::AtCBLs interactions in Arabidopsis leaves
Figure 3.13: AtCIPK16::YN and YC::AtCBLs interactions in Arabidopsis leaves
Figure 3.14: AtCIPK16::YN and AtCBLs::YC interactions in Arabidopsis leaves
Figure 3.15: YN::AtCIPK16 and AtCBLs::YC interactions in tobacco leaves (Nicotiana
benthamiana)
Figure 3.16: Co-expression of different AtCBLs / AtCIPK16 split YFP constructs in

Arabidopsis ecotype Col-0
Figure 4.1: The vector pDEST17 was used to express AtCIPK16 and AtCBL4 in E.coli108
Figure 4.2: Diagram of Western blot setup
Figure 4.3: Alignment of 26 AtCIPKs protein sequence using Vector NTI version 11.0119
Figure 4.4: Hydrophilicity plot of AtCIPK16 using ExPASy ProtScale program
Figure 4.5: pDEST17-AtCIPK16 and pDEST17-AtCBL4 used for production of His-tagged
AtCIPK16 and His-tagged AtCBL4 (negative control) in <i>E.coli</i>
Figure 4.6: Concentration of His-AtCIPK16 in E.coli strain BL21-AI after 0-4 h induction
period
Figure 4.7: SDS-PAGE analysis of protein samples from <i>E.coli</i> after either a 2 h or 4 h
induction
Figure 4.8: Rare <i>E.coli</i> Codon analysis of the DNA sequence of <i>AtCIPK16</i> using Rare Codon
Calculator
Figure 4.9: SDS-PAGE analysis of protein samples extracted from various <i>E.coli</i> strains:
BL21-CodonPlus(DE3)-RIL, BL21-CodonPlus(DE3)-RP and BL21-AI
Figure 4.10: SDS-PAGE analysis of protein samples from cultures induced at different
temperatures and concentrations of L-arabinose
Figure 4.11: SDS-PAGE gel of purified denatured His-AtCIPK16 extracted from <i>E. coli</i> and
refolded His-AtCIPK16
Figure 4.12: Topology model of AtSOS1, AtHKT1;1 and AtAKT1 with predicted
phosphorylation sites
Figure 4.13: Alignment of 26 AtCIPKs protein sequence using Vector NTI version 11.0139
Figure 4.14: The vector <i>pMDC83</i> will be used to express <i>AtCIPK16</i> fused to GFP tag141
Figure 5.1: <i>pMDC32-35S:AtCIPK16</i> for constitutive over-expression of <i>AtCIPK16</i> in <i>sos2</i>
knockout lines
Figure 5.2: Expression analysis of sos2 knockout lines and AtCIPK16-sos2 complimentary
lines
Figure 5.3: Characterisation of sos2 knockout and sos2-AtCIPK16 complimentary lines on
plates
Figure 5.4: Characterisation of sos2 knockout and sos2-AtCIPK16 complimentary lines on
soil157
Figure 5.5: The expression levels of AtCIPK16 in transgenic lines were confirmed by RT-PCR
using cDNA which was synthesised from RNA extracted from root tissue159
Figure 5.6: Measurement of Na ⁺ content in 35S:AtCIPK16 over-expressing Col-0 and nulls
after 5 days 50 mM NaCl treatment in the preliminary experiments
Figure 5.7: Measurement of ${}^{22}Na^+$ content in 35S:AtCIPK16 over-expressing Col-0 and nulls
using radioactive tracer ²² Na ⁺
Figure 6.1: <i>pTOOL2-35S:AtCIPK16</i> for constitutively over-expressing <i>AtCIPK16</i> in
Arabidopsis170

Figure 6.2: The transcriptional response of AtCIPK16 to various stimuli (e.g. biotic, chemical,
hormone, nutrient, photoperiod, stresses and others) in 152 microarray studies stored in
Genevestigator
Figure 6.3: Effect of ABA on seedling growth
Figure 6.4: Effect of increasing ABA concentrations on germination rate of AtCIPK16
over-expression lines day 3 to day 10 after vernalization
Figure 6.5: AtCIPK16 over-expressing lines have improved K ⁺ uptake under K ⁺ deficient
conditions
Figure 6.6: AtCIPK16 over-expressing Arabidopsis were not more tolerant to high
concentrations of K ⁺ 191
Figure 6.7: Over-expression of <i>AtCIPK16</i> does not improve drought tolerance193
Figure 6.8: AtCIPK16 over-expressing lines have no significant difference in osmotic stress
tolerance when compared to Col-0195
Figure 6.9: Over-expression of AtCIPK16 does not improve cold tolerance

х

List of Tables

Table 2.1: Nutrient solution for soil grown Arabidopsis. 22
Table 2.2: Germination solution for hydroponics Arabidopsis
Table 2.3: Basal nutrient solution for hydroponics Arabidopsis
Table 2.4: Primers for sequencing the entry vectors and destination vectors constructed in this
project
Table 2.5: Platinum Taq polymerase PCR solution and program used for routine
PCR
Table 2.6: Platinum Taq polymerase high fidelity and Elongase PCR solution and program
used for the routine PCR
Table 2.7: Platinum <i>Taq</i> polymerase PCR solution and program used for the colony PCR33
Table 2.8: Summary of destination vectors used in this thesis
Table 3.1: Primers used to the clone coding sequences of 10 AtCBLs, AtCIPK16, AtCIPK16Nt
and <i>AtAKT1</i> from Arabidopsis cDNA
Table 3.2: Primers used to clone coding sequences (without the stop codon) of 10 AtCBLs and
AtCIPK16 from Arabidopsis cDNA
Table 3.3: Primers for genotyping the BiFC stable expressed Arabidopsis
Table 3.4: Summary of entry vectors and destination vectors constructed for yeast two hybrid
assay
Table 3.5: Summary of entry vectors and destination vectors constructed for transient
expression of CIPK16 and CBL genes in mesophyll protoplast using BiFC assay69
Table 3.6: Summary of entry vectors and destination vectors constructed for transient
expression in Arabidopsis and tobacco leaves or for stable expression in Col-076
Table 3.7: Summary of AtCIPK16 - AtCBL interactions and their cellular location in
Arabidopsis leaves using Agro-infiltrations with various vector pairs
Table 3.8: Summary of AtCIPK16/AtCBL interactions as measured using yeast two hybrids
and transient expression in Arabidopsis protoplasts, Arabidopsis leaves and tobacco
(N.benthamiana) leaves
Table 4.1: Names and accession numbers of 26 AtCIPKs aligned for antibody design106
Table 4.2: Four elution buffers used to dissociate and elute purified protein from resin114
Table 4.3: Prediction of His-AtCIPK16 solubility in <i>E.coli</i>
Table 5.1: sos2 knockout lines obtained from NASC. 145
Table 5.2: Primers for genotyping AtCIPK16-sos2 lines
Table 5.3: Primers for examining the expression levels of AtCIPK24, AtActin2, AtHKT1;1 and
<i>AtCIPK16</i>
Table 5.4: Tissue concentrations of ²² Na ⁺ and % translocated from root to shoot160

Table 6.1: Primers used for identifying homozygous transgenic lines	over-expressing
AtCIPK16	169
Table 6.2: Medium for low stress treatment	
Table 6.3: Programme used for cold treatment	

List of Abbreviations

Abbreviation	Full term
3'	Three prime, of nucleic acid sequence
5'	Five prime, of nucleic acid sequence
#	Number
%	Percent
±	Plus and minus
×	Times
°C	Degree Celsius
aa	Amino acid
ABA	Abscisic acid
ACPFG	Australian Centre for Plant Functional Genomics
AGRF	Australian Genome Research Facility
Agrobacterium	Agrobacterium tumefaciens
AKT	Arabidopsis potassium channel
amiRNA	Artificial micro ribonucleic acid
ANOVA	Analysis of variance
Arg	Arginine
Asp	Aspartic acid
At	Arabidopsis thaliana
AVP	Vacuolar H ⁺ -pyrophosphatase
BLAST	Basic Local Alignment Search Tool
BNS	Basal nutrient solution
bp	Base pairs, of nucleic acid
BSA	Bovine serum albumin
C-terminal	Carboxyl terminal
C-terminus	Carboxyl terminus
Ca ²⁺	Calcium ion
$Ca(NO_3)_2$	Calcium nitrate
CaCl ₂	Calcium chloride
cAMP	Adenosine 3', 5'-cyclic monphophate
CaMV	Cauliflower mosic virus
Cat.#	Catalogue number
CBL	Calcineurin B-like proteins
cDNA	Complementary deoxyribonucleic acid
CHX	Cation/H ⁺ exchangers
CIPK	CBL-interacting protein kinases
Cl ⁻	Chloride ion
cm	Centimetre(s)
CoCl ₂	Cobalt chloride
Col-0	Columbia-0

CuSO ₄	Cupric sulfate
d	Day(s)
Da	Dalton
DEPC	Diethylpyrocarbonate
dH ₂ O	Deionised water
DNA	Deoxyribonucleic acid
dNTPs	Mixture of equal equivalents of dATP, dTTP, dCTP and dGTP
EDTA	Ethylenediaminetetraacetic acid
FAO	Food and Agricultural Organization of the United Nations
FW	Fresh weight
g	Gram(s)
g	Gravity
gDNA	Genomic deoxyribonucleic acid
GFP	Green fluorescent protein
H_2O	water
H_3BO_3	Boric acid
HCl	Hydrochloric acid
His	Polyhistidine tag
h	Hour(s)
H^{+}	Proton
\mathbf{K}^+	Potassium ion
KAT	Potassium Arabidopsis transporter
kb	Kilo base pairs, of nucleic acid
KCl	Potassium chloride
KDa	Kilo Dalton
KH_2PO_4	Monopotassium phosphate
KNO ₃	Potassium nitrate
LB	Luria and Bertani medium
Leu	Leucine
LR	Ligation reaction
Lys	Lysine
М	Molar
MES	2-(N-Morpholino) ethanesulfonic acid,
MES	4-morpholineethanesulfonic acid
Met	Methionine
mg	Miligram(s)
Mg^{2+}	Magnesium ion
$MgSO_4$	Magnesium sulphate
min	Minute(s)
mL	Millilitre(s)
mm	Millimetre(s)
mM	Millimolar
Mn ²⁺	Manganese ion
MnCl ₂	Manganese choride

mRNA	Messenger RNA
MS media	Murashige and Skoog media
mV	millivolt
n	Sample size
N-terminal	Amine terminal
N-terminus	Amine terminus
N/A	Not applicable
Na+	Sodium ion
Na ₂ HPO ₄	Sodium phosphate dibasic
Na ₂ MoO ₄	Sodium molybdate
NaCl	Sodium chloride
NaFe(III)EDTA	Sodium iron EDTA
NaOH	Sodium hydroxide
NCBI	National Centre for Biotechnology Information
NH ₄ NO ₃	Ammonium nitrate
NHX	Na ⁺ /H ⁺ antiporter
NiCl ₂	Nickel chloride
nM	Nanomolar
No.	Number
NO ³⁻	Nitrate ion
nosT	Bacterial nopaline synthase terminator sequence
ng	Nanogram(s)
OD ₆₀₀	Optical density measured at 600 nm
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
pI	Isoelectric point
PI	Proidium iodide
PO ₄ ³⁻	Phosphate ion
Q-PCR	Quantitative real time polymerase chain reaction
QTL	Quantitative trait loci
RNA	Ribonucleic acid
RO	Reverse osmosis
ROS	Reactive oxygen species
sec	Second(s)
SEM	Standard error of the mean
Ser	Serine
SDS	Sodium dodecyl sulphate
SKOR	Stelar K ⁺ outward rectifier
SOS	Salt overly sensitive
T-DNA	Transfer deoxyribonucleic acid
T_1	Primary Arabidopsis transformant
T_2	Progeny of T ₁ plant

TAE	Tris base, acetic acid and EDTA buffer
TE	Tris-EDTA
Thr	Threonine
Tm	Melting temperature, of primers
Tris-HCl	Tris (hydroxymethyl) aminomethane hydrochloride
Trition X-100	Toctylphenoxypolyethoxyethanol
Trp	Tryptophan
Tyr	Tyrosine
U	Units
UTR	Untranslated region
V	voltage
v/v	Volume per volume
w/v	Weight per volume
Xenopus	Xenopus laevis
YFP	Yellow fluorescent protein
Zn^{2+}	Zinc ion
ZnSO ₄	Zinc sulfate

Abstract

Soil salinity is a significant environmental problem affecting agriculture around the world leading to reduced crop yield. High concentrations of Na⁺ affect cell metabolism and compete with K⁺ for the binding sites of enzymes which play important roles in cellular function. One mechanism for improving salinity tolerance of crop plants is to minimise the accumulation of Na⁺ in the shoot. *AtCIPK16* (Calcineurin B-like-interacting protein kinase 16) has been identified as a novel candidate gene important in increasing salinity tolerance (Roy *et al.* 2013). Over-expression of *AtCIPK16* has been shown to reduce the shoot sodium in a number of species. In both hydroponic and soil culture, Arabidopsis with constitutive over-expression of *AtCIPK16* show significant reductions in Na⁺ concentration in shoot, compared with wild type and nulls, while Arabidopsis with amiRNA knockdown of *AtCIPK16* exhibit an increase of Na⁺ concentration in shoot (Roy *et al.* 2013). While it can be clearly seen that alterations in the expression of *AtCIPK16* result in increased salinity tolerance, little is known, however, about the role the protein plays in tolerance mechanisms. It is therefore important to identify its cellular location, upstream and downstream targets, and which abiotic stresses it is involved in to elucidate its function in plants.

Yeast two hybrid systems were used to identify the potential upstream CBL partners of AtCIPK16. The assay revealed 6 AtCBLs (AtCBL1, AtCBL2, AtCBL4, AtCBL5, AtCBL9 and AtCBL10) could interact with AtCIPK16. Bimolecular Fluorescence Complementation (BiFC) assays were then employed to confirm the result from Y2H and showed one more interacting AtCBL partner, AtCBL3. Additionally, BiFC demonstrated possible plasma membrane localization of the complexes of AtCBL1-AtCIPK16, AtCBL4-AtCIPK16, AtCBL5-AtCIPK16 and AtCBL9-AtCIPK16; and cytoplasm localization of the complexes of AtCBL10-AtCIPK16 using transient co-expression in *Nicotiana benthamiana* leaves. Moreover, a pull-down assay was planned to identify downstream target proteins of AtCIPK16.

The radioactive tracer ²²Na⁺ was used to quantify net Na⁺ accumulation in the different part of transgenic Arabidopsis overexpressing *AtCIPK16* and nulls to determine if this gene can alter Na⁺ influx or Na⁺ translocation in plants. Only one transgenic line showed lower Na⁺ accumulation in root compare to nulls under salt stress, while all three transgenic lines demonstrated slightly lower but not significant Na⁺ translocation rate and shoot Na⁺ accumulation compare to nulls under 50 mM NaCl treatment. Furthermore, to examine the function redundancy of AtCIPK24 and AtCIPK16 in salt stress, complementary lines of constitutively expressing *AtCIPK16* in the *atcipk24/sos2* knockout lines background were

generated and analysed with plate assay and soil assay. The study revealed constitutive expression of *AtCIPK16* could not complement the salt sensitivity phenotype of *atcipk24/sos2* knockout mutants, suggest their different functions which are non-complementary in each other's signalling pathway.

The phenotypes of 35S:AtCIPK16 were characterized under osmotic, drought, cold, low K⁺ stresses and ABA treatment to examine the potential function of AtCIPK16 in other stresses. This study revealed that over-expressing AtCIPK16 plants were more sensitive to ABA and had increased K⁺ root accumulation when grown under low K⁺ stress, it appears that AtCIPK16 is involved with processes involving the transport of monovalent cations. No significant phenotypic variation was observed in cold, drought, osmotic and high KCl stresses, suggesting AtCIPK16 could be not involved in other stresses which typically require the production of compatible solutes or enzymes which mop up reactive oxygen species. However, the function of AtCIPK16 in salinity tolerance and in the response to other abiotic stresses still requires further characterization.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Wenmian Huang and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder/s of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.....

Wenmian Huang

.....

Date

Acknowledgments

Firstly I would like to thank my supervisors Dr Stuart Roy and Prof. Mark Tester for their time, support, patience, understanding, encouragement and excellent guidance throughout my candidature.

I gratefully acknowledge the financial support provided from The University of Adelaide through provision of Adelaide Graduate Research Scholarship and The Australian Centre for Plant Functional Genomics during my PhD, Grain Research and Development Corporation for a travel grant to attend the IWPMB2013.

I would like to thank all people who have provided advices and technical support during my study. A special thanks to Prof. Joerg Kudla for providing advice and plasmid vectors, Dr Bettina Berger for providing advice on the project, Mr Nadim Shadiac for a lot of advice and assistance in protein experiment, Dr Matt Gilliham for providing advice and support on radioactive tracer experiments, Dr Sam Henderson for designing the experiment and providing assistance in radioactive flux assay, Dr Andrew Jacobs and Ms Jodie Kretschmer for instruction on cloning and providing plasmid vectors, Ms Natasha Bazanova for providing vectors, strains and assistance in yeast two hybrid assays, Dr Yuri Shavrukov for assistance with the flame photometer assay, Mr George Dimitroff for providing tobacco leaves in BiFC assays, Dr Gwen Mayo and Ms Lynette Waterhouse for the help with microscopy, Ms Jan Nield for assistance throughout the vectors import process, Ms. Ruth Harris for assistance and advice in English writing.

Huge thanks to all the members of the ACPFG Salt Focus Group, both past and present, for their support and help: Ms Melissa Pickering, Dr Rhiannon Schilling, Mr Gordon Wellman, Dr Sandra Schmoeckel, Dr Bo Li, Dr Aris Hairsmann, Dr Monique Shearer, Dr Nawar Shamaya, Dr Aurelie Evrard, Ms Jessica Bovill, Dr Joanne Tillbrook. Many thanks to the members of Plant Research Centre for their kind help: Ms Jiaen Qiu, Dr Bo Xu and Dr Jin Zhang.

Finally, I would like to thank my friends and parents for their support and encouragements throughout all of my studies.