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Abstract 

 

Soil salinity is a significant environmental problem affecting agriculture around the world 

leading to reduced crop yield. High concentrations of Na+ affect cell metabolism and compete 

with K+ for the binding sites of enzymes which play important roles in cellular function. One 

mechanism for improving salinity tolerance of crop plants is to minimise the accumulation of 

Na+ in the shoot. AtCIPK16 (Calcineurin B-like-interacting protein kinase 16) has been 

identified as a novel candidate gene important in increasing salinity tolerance (Roy et al. 2013). 

Over-expression of AtCIPK16 has been shown to reduce the shoot sodium in a number of 

species. In both hydroponic and soil culture, Arabidopsis with constitutive over-expression of 

AtCIPK16 show significant reductions in Na+ concentration in shoot, compared with wild type 

and nulls, while Arabidopsis with amiRNA knockdown of AtCIPK16 exhibit an increase of 

Na+ concentration in shoot (Roy et al. 2013). While it can be clearly seen that alterations in the 

expression of AtCIPK16 result in increased salinity tolerance, little is known, however, about 

the role the protein plays in tolerance mechanisms. It is therefore important to identify its 

cellular location, upstream and downstream targets, and which abiotic stresses it is involved in 

to elucidate its function in plants.  

 

Yeast two hybrid systems were used to identify the potential upstream CBL partners of 

AtCIPK16. The assay revealed 6 AtCBLs (AtCBL1, AtCBL2, AtCBL4, AtCBL5, AtCBL9 and 

AtCBL10) could interact with AtCIPK16. Bimolecular Fluorescence Complementation (BiFC) 

assays were then employed to confirm the result from Y2H and showed one more interacting 

AtCBL partner, AtCBL3. Additionally, BiFC demonstrated possible plasma membrane 

localization of the complexes of AtCBL1-AtCIPK16, AtCBL4-AtCIPK16, AtCBL5-AtCIPK16 

and AtCBL9-AtCIPK16; and cytoplasm localization of the complexes of AtCBL2-AtCIPK16, 

AtCBL3-AtCIPK16 and AtCBL10-AtCIPK16 using transient co-expression in Nicotiana 

benthamiana leaves. Moreover, a pull-down assay was planned to identify downstream target 

proteins of AtCIPK16.  

 

The radioactive tracer 22Na+ was used to quantify net Na+ accumulation in the different part of 

transgenic Arabidopsis overexpressing AtCIPK16 and nulls to determine if this gene can alter 

Na+ influx or Na+ translocation in plants. Only one transgenic line showed lower Na+ 

accumulation in root compare to nulls under salt stress, while all three transgenic lines 

demonstrated slightly lower but not significant Na+ translocation rate and shoot Na+ 

accumulation compare to nulls under 50 mM NaCl treatment. Furthermore, to examine the 

function redundancy of AtCIPK24 and AtCIPK16 in salt stress, complementary lines of 

constitutively expressing AtCIPK16 in the atcipk24/sos2 knockout lines background were 
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generated and analysed with plate assay and soil assay. The study revealed constitutive 

expression of AtCIPK16 could not complement the salt sensitivity phenotype of atcipk24/sos2 

knockout mutants, suggest their different functions which are non-complementary in each 

other’s signalling pathway. 

 

The phenotypes of 35S:AtCIPK16 were characterized under osmotic, drought, cold, low K+ 

stresses and ABA treatment to examine the potential function of AtCIPK16 in other stresses. 

This study revealed that over-expressing AtCIPK16 plants were more sensitive to ABA and 

had increased K+ root accumulation when grown under low K+ stress, it appears that 

AtCIPK16 is involved with processes involving the transport of monovalent cations. No 

significant phenotypic variation was observed in cold, drought, osmotic and high KCl stresses, 

suggesting AtCIPK16 could be not involved in other stresses which typically require the 

production of compatible solutes or enzymes which mop up reactive oxygen species. However, 

the function of AtCIPK16 in salinity tolerance and in the response to other abiotic stresses still 

requires further characterization. 
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